• Sonuç bulunamadı

For sketching a curve of f (x ):

N/A
N/A
Protected

Academic year: 2021

Share "For sketching a curve of f (x ):"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Curve Sketching

For sketching a curve of f (x ):

I determine the domain

I find the y -intercept f (0) and the x -intercepts f (x ) = 0

I find vertical asymptotes x = a, that is:

x lim →a

= ± ∞ or lim

x →a

+

= ± ∞

I find horizontal asymptotes y = L, that is:

x lim →∞ = L or lim

x →−∞ = L

I find intervals of increase f 0 (x ) > 0 and decrease f 0 (x ) < 0

I find local maxima and minima

I determine concavity on intervals and points of inflection

I

f

00

(x ) > 0 concave upward

I

f

00

(x ) < 0 concave downward

I

inflections points where f

00

(x ) changes the sign

(2)

For local minima and maxima:

I find critical numbers c

I then the first First Derivative Test:

I

f

0

changes from + to − at c = ⇒ maximum

I

f

0

changes from − to + at c = ⇒ minimum

I Second Derivative Test:

I

f

00

(c) < 0 = ⇒ maximum

I

f

00

(c) > 0 = ⇒ minimum

I

f

00

(c) = 0 = ⇒ use First Derivative Test

Then sketch the curve:

I draw asymptotes as thin dashed lines

I mark intercepts, local extrema and inflection points

I draw the curve taking into account:

I

increase / decrease, concavity and asymptotes

(3)

Curve Sketching

Sketch the curve of f (x ) = x 2x

2

−1

2

.

The domain is {x | x 6= ±1}, that is, (−∞, −1) ∪ (−1, 1) ∪ (1, ∞) We have f (0) = 0 and f (x ) = 0 ⇐⇒ x = 0

The vertical asymptotes are x = −1 and x = 1 lim

x →−1

= ∞ lim

x →−1

+

= − ∞ lim

x →1

= − ∞ lim

x →1

+

= ∞ The horizontal asymptotes are y = 2

x lim →∞ f (x ) = 2 lim

x →−∞ f (x ) = 2

(4)

Sketch the curve of f (x ) = x 2x

2

−1

2

. The derivative is:

f 0 (x ) = 4x (x 2 − 1) − 2x 2 (2x )

(x 2 − 1) 2 = −4x (x 2 − 1) 2 Thus

I increasing (f 0 (x ) > 0) on (− ∞, −1) ∪ (−1, 0)

I decreasing on (f 0 (x ) < 0) on (0, 1) ∪ (1, ∞) The critical numbers are x = 0 (since f 0 (0) = 0)

I f 0 (x ) changes from + to − at 0 = ⇒ local maximum (0, 0)

(5)

Curve Sketching

Sketch the curve of f (x ) = x 2x

2

−1

2

.

f 0 (x ) = −4x (x 2 − 1) 2 The second derivative is:

f 00 (x ) = −4(x 2 − 1) 2 − (−4x ) · 2(x 2 − 1) · 2x (x 2 − 1) 4

= −4(x 2 − 1) + 16x 2

(x 2 − 1) 3 = 12x 2 + 4 (x 2 − 1) 3 12x 2 + 4 > 0 for all x

f 00 (x ) > 0 ⇐⇒ (x 2 − 1) 3 > 0 ⇐⇒ x 2 − 1 > 0 ⇐⇒ |x| > 1

I concave upward on (− ∞, −1) ∪ (1, ∞)

I concave downward on (−1, 1)

I inflection points: none (−1 and 1 not in the domain)

(6)

Sketch the curve of f (x ) = x 2x

2

−1

2

.

x y

-3 -2 -1 1 2 3

-3 -2 -1 0 1 2 3

(7)

Slant Asymptotes

Asymptotes that are neither horizontal nor vertical:

If lim

x →∞ [f (x ) − (mx + b)] = 0

or lim

x →−∞ [f (x ) − (mx + b)] = 0 the the line y = mx + b is called slant asymptote.

x y

0

Note that the distance between curve and line approaches 0.

(8)

Sketch the graph of f (x ) = 2x x

23

+1 . The domain is (− ∞, ∞)

The f (0) = 0 and f (x ) = 0 ⇐⇒ x = 0

Vertical asymptotes: none. Horizontal asymptotes: none Slant asymptotes: y = 1 2 x since

x lim →∞

 x 3

2x 2 + 1 − x 2



= lim

x →∞

 2x 3 − x (2x 2 + 1) 2(2x 2 + 1)



= lim

x →∞

 −x

2(2x 2 + 1)



= 0

(9)

Slant Asymptotes

Sketch the graph of f (x ) = 2x x

23

+1 . f 0 (x ) = 3x 2 (2x 2 + 1) − x 3 (4x )

(2x 2 + 1) 2 = 2x 4 + 3x 2

(2x 2 + 1) 2 = x 2 (2x 2 + 3) (2x 2 + 1) 2 Thus f 0 (x ) > 0 for all x 6= 0. Hence increasing on (− ∞, ∞).

Local minima, maxima: none (since f 0 does not change sign) We have

f 00 (x ) = − 2x (2x 2 − 3) (2x 2 + 1) 3

Thus f 00 (x ) = 0 ⇐⇒ x = 0 or x = ±p3/2 Interval f 00 (x )

x < −p3/2 + concave up on (− ∞, −p3/2)

−p3/2 < x < 0 - concave down on (−p3/2, 0) 0 < x < p3/2 + concave up on (0, p3/2)

p3/2 < x - concave up down (p3/2, ∞) Inflection points: (−

q 3 2 , − 3 8

q 3

2 ), (0, 0) and ( q 3

2 , 3 8 q 3

2 )

(10)

Sketch the graph of f (x ) = 2x x

23

+1 .

I x - and y -intercept: (0, 0)

I inflection points: (−

q 3 2 , − 3 8

q 3

2 ), (0, 0) and ( q 3

2 , 3 8 q 3

2 )

I slant asymptote: y = 1 2 x

x y

0

-2 -1 1 2

-1

1

(11)

Slant Asymptotes

Sketch the graph of f (x ) = 2x x

23

+1 .

I increasing on (− ∞, ∞) and f 0 (0) = 0

I concave up on (− ∞, −p3/2) and (0, p3/2)

I concave down on (−p3/2, 0) and (p3/2, ∞)

x y

0

-2 -1 1 2

-1

1

Referanslar

Benzer Belgeler

Eğer parabolün kolları aşağı doğru olsaydı, tepe noktasının ordinatı fonksiyonun en büyük elemanı olurdu ve en küçük eleman bilinemezdi.. Parabolün en alt ya da en

Verilen f(x) fonksiyonunun sürekli olmadığı noktaları söylemeye çalışınız. Fonksiyonun -4, -2, 1 ve 5 apsisli noktalarda limitleri varsa bulunuz. Bulduğunuz

Aşağıdaki her iddia için ya bir kanıt ya da bir karşıt

¨ Orne˘ gin g L ’ye yakınsayan basamak fonksiyonların mutlak toplan- abilir serilerin kısmı toplamalar dizisi-integrallenebilme varsayımından dolayı b¨ oyle bir dizi

[r]

Bu dizinin bir Cauchy dizisi oldu˘ gunu g¨ osterelim.. Bir ε &gt; 0

Ödül alan fotoğraflar sergi dışında çeşitli yöntemlerle çoğaltılmış olarak yarışma sergisinde ve sergi duyurusunda, ayrıca Nuh Naci Yazgan Üniversitesi düzenleyeceği

11. 52 yafl›ndaki bir baban›n üç çocu¤undan iki tanesi ikizdir. Di¤er çocuk, ikizlerden 5 yafl büyüktür. Bir baba ve iki çocu¤unun yafllar› toplam› 49 dur. Bir anne