• Sonuç bulunamadı

FT-IR spectroscopic investigation of the effect of SO2 on the SCR of NOx with propene over ZrO2–Nb2O5 catalyst

N/A
N/A
Protected

Academic year: 2021

Share "FT-IR spectroscopic investigation of the effect of SO2 on the SCR of NOx with propene over ZrO2–Nb2O5 catalyst"

Copied!
4
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

CatalysisToday176 (2011) 437–440

ContentslistsavailableatScienceDirect

Catalysis

Today

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

FT-IR

spectroscopic

investigation

of

the

effect

of

SO

2

on

the

SCR

of

NO

x

with

propene

over

ZrO

2

–Nb

2

O

5

catalyst

M.

Kantcheva

a,∗

,

I.

Cayirtepe

a

,

A.

Naydenov

b

,

G.

Ivanov

b

aDepartmentofChemistry,BilkentUniversity,06800Bilkent,Ankara,Turkey bInstituteofGeneralandInorganicChemistry,BAS,Sofia1113,Bulgaria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15September2010

Receivedinrevisedform19October2010 Accepted20October2010

Available online 24 November 2010 Keywords:

ZrO2–Nb2O5solidsolution

C3H6-SCRofNOx

EffectofSO2

InsituFT-IRspectroscopy MechanismofSO2poisoning

a

b

s

t

r

a

c

t

TheSO2toleranceofacatalystbasedonZrO2–Nb2O5 solidsolution(moleratioZrO2:Nb2O5=1:6)in

thecatalyticactivityforNOxreductionwithpropeneinexcessoxygenhasbeenstudied.Nolossinthe

C3H6-SCRactivitywasobservedfor2haftertheadditionof56ppmofSO2 tothereactionmixture.

WhentheconcentrationofSO2hasbeenincreasedto200ppm(theso-calledfastpoisoningexperiment)

theactivityofthecatalystdecreasedby13%andremainedunchangedformorethan5hunderthese conditions.TheeffectofSO2onthesurfacereactionoftheSCRreactantshasbeeninvestigatedbyinsitu

FT-IRspectroscopyandmechanismforthesuppressionofthecatalyticactivityathighconcentrationof thepoisonhasbeenproposed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

SelectivecatalyticreductionofNOxbyhydrocarbons(HC-SCR) hasbeenextensively studied for removalof NOx fromexhaust gasesgenerated bydieselandlean-burngasolineengines[1–4]. Animportant factor determining the efficiencyof DeNOx cata-lysts is their SO2 tolerance. It is assumed that under reaction conditions, the SO2 (which is present in the exhaust) reacts withoxygentoformthermodynamically stablesurfacesulfates. Thelatterspecies coverthecatalystsurface andblockthesites forNOx adsorption[5].Therefore, thedevelopmentofcatalysts resistant to SO2 poisoning is an important task. It has been reportedthatthedepositionofniobiumonoxidesurfacessuch asalumina[6]orzirconia[7] lowerstheconcentrationofbasic siteswhichshouldresultinimprovedresistancetoSO2 poison-ing.Recently,wehave foundthatzirconia–niobiasolidsolution (mole ratioZrO2:Nb2O5=6:1)is activein theselectivecatalytic reductionofNOxwithpropene(C3H6-SCR)inexcessoxygen[8]. The conversion of NOx reaches maximum at 220◦C. Based on in situ FT-IR results, we proposed a reaction mechanism with nitroacetone and NCO species as the key intermediates [8]. In thepresentwork,weinvestigatedtheeffectofSO2onthe activ-ity of the ZrO2–Nb2O5 solid solution for NO reduction with propeneinexcessoxygen.ThesurfacereactionoftheSCRreactants

∗ Correspondingauthor.Tel.:+903122902451;fax:+903122664068. E-mailaddress:margi@fen.bilkent.edu.tr(M.Kantcheva).

in the presence of SO2 was monitored by in situ FT-IR spec-troscopy.

2. Experimental

Mixedzirconium–niobiumoxidewaspreparedbyimpregnation ofhydratedzirconiawithacidicsolution(pH∼0.5)of peroxonio-bium(V)complex,[Nb2(O2)3]4+,ensuringZrO2:Nb2O5moleratio of6:1.Detailsaboutthemethodofpreparationand characteriza-tionofthesurfaceacidityaregivenelsewhere[9].TheBETsurface areaofthematerialcalcinedat600◦C(denotedas25NbZ-P)was 42m2/g.AccordingtoXRDtheobtainedsamplehasthestructureof Zr6Nb2O17.Theadsorptionof2,6-dimethylpyridineonthe25NbZ-P samplerevealedthepresenceofstrongBrønstedacidity.

The equipment and the conditions of catalytic tests of NOx reductionbypropeneweredescribedearlier[8].Theconversion degreesofNOxweretakenasameasureofthecatalyticactivity. TheSO2poisoningexperimentwasperformedwith56ppmofSO2 intheinletandunderfastpoisoningconditions(200ppmofSO2) attemperaturecorrespondingtothemaximumNOxconversion.

TheFT-IRspectrawererecordedusinga BomemHartman& BraunMB-102modelFT-IRspectrometerwithaliquid-nitrogen cooledMCTdetector ata resolutionof 4cm−1 (128 scans).The self-supportingdiscs(∼0.01g/cm2)wereactivatedin theIRcell by heating for 1h in a vacuumat 450◦C, and in oxygen(100 mbar,passedthroughatrapcooledinliquidnitrogen)atthesame temperature,followedbyevacuationfor1hat450◦C.The experi-mentswerecarriedoutunderstaticconditions.Thespectraofthe 0920-5861/$–seefrontmatter © 2010 Elsevier B.V. All rights reserved.

(2)

438 M.Kantchevaetal./CatalysisToday176 (2011) 437–440 600 500 400 300 200 100 0 40 45 50 55 60 65 70 75 SO 2 cut SO 2 : 200 ppm SO 2 : 56 ppm NO x conversion, % Time, min

Fig.1. ResultsoftheSO2poisoningexperimentat220◦Cusing56and200ppmof

SO2intheinlet.(Reactionconditions:245ppmNOx(NO/NO2=1.77),504ppmC3H6,

9vol.%O2,GHSV=10,000h−1).

adsorbedcompoundswereobtainedbysubtractingthespectraof theactivatedsamplefromthespectrarecorded.Thesamplespectra werealsogas-phasecorrected.ThegasesNO(99.9%),C3H6(99.9) andSO2(99.9%)usedintheinsituFT-IRexperimentsweresupplied byAirProducts.

3. Resultsanddiscussion

3.1. CatalyticactivityinthepresenceofSO2

Weshowedearlier[8]thattheNOxconversionintheC3H6-SCR reactionoverthe25NbZ-Pcatalystreachesmaximum of62%at 220◦Candthandecreasesasthecombustionofpropenebecomes predominant.TheconversionofC3H6 iscloseto100%at250◦C. Thecatalystdisplaysstableactivityatthetemperatureof maxi-mumNOxconversion(thedurationofcatalyticactivitytestswas limitedto10h).The25NbZ-Pcatalystshows goodresistanceto SO2 poisoning(Fig.1).ThereisnolossintheC3H6-SCRactivity for2haftertheadditionof56ppmofSO2tothereactionmixture. WhentheconcentrationofSO2hasbeenincreasedto200ppm(the so-calledfastpoisoningexperiment)theactivityofthe25NbZ-P catalystdecreasestoapproximately54%of NOx conversionand remainsunchangedformorethan5hundertheseconditions. 3.2. InsituFT-IRspectroscopicinvestigations

3.2.1. Co-adsorptionofSO2+O2overZrO2and25NbZ-Psamples InordertofindouttheeffectofincorporationofNb(V)into zir-coniaontheformationofsurfaceSOxspeciesweinvestigatedthe adsorptionof(0.5mbarSO2+10mbarO2)mixtureontheZrO2and 25NbZ-Psamplefor15minatvarioustemperatures.The predom-inantsurfaceSOxcompoundsobservedinthespectraofzirconia takenbelow200◦CareadsorbedSO32−species(thespectraarenot shown).Theweakbandat1362cm−1detectedonzirconiaat200◦C (Fig.2,dottedspectrum(a))ischaracteristicofthehigh-frequency componentof thesplit3 modeofhighly covalentsurface sul-fates[10,11].Thestrongabsorptionbetween1100and900cm−1 (presentalsointhespectradetectedbelow200◦C)isattributedto thevibrationalmodesofSO32−ionscoordinatedthroughtheSatom tothesurface[12,13].Thebandat1000cm−1isassignedtothe1 mode,whereasthebandsat1020and935cm−1correspondtothe split3stretchingvibrationsofSO32−ions[12,13].Thisassignment issupportedbythefactthatat25◦C,theadsorptionof0.5mbarof SO2onthezirconiasamplecausestheappearanceofabsorptions at1020,1000and930cm−1whoseintensitiesarenotaffectedby

960 1080 1200 1320 1440 Absorbance Wavenumber [cm-1 ]

a

b

c

1362 1020 0.2 1000 935 1060

Fig.2.FT-IRspectracollectedduringtheexposureofzirconia(dottedline)and 25NbZ-Psample(solidline)toa(0.5mbarSO2+10mbarO2)mixturefor10minat

200◦C(a),250C(b)and300C(c).

theincreaseinthetemperatureoftheisolatedIRcellupto350◦C. Inaddition,thebandat1362cm−1hasnotbeenobservedunder theseconditions(thespectraarenotshown).

Theheatingat300◦Ccausessignificantincreaseintheintensity ofthesulfatebandat1362cm−1attheexpenseoftheabsorption correspondingtothesulfitespecies(Fig.2,dashedspectrum(c)). Theshoulderat1060cm−1isassignedtothelow-frequency

com-1000 1200 1400 1600 1800 2000 2200 2400 Absorbance Wavenumber [cm-1 ] a b c 2270 1900 1740 1680 1544 1450 1346 1044 1013 1610 1570 1655 1277 1245 0.2 1415

Fig.3. FT-IRspectraofthe25NbZ-Psamplecollectedduringtheexposurefor10min toa(2mbarC3H6+6mbarNO+4mbarO2)mixtureintheabsence(dottedline)and

(3)

M.Kantchevaetal./CatalysisToday176 (2011) 437–440 439

Table1

Assignmentoftheabsorptionbandsinthespectraof25NbZ-Pcatalystobservedinthe25–350◦Ctemperaturerangeduringtheinvestigationof

thereactivityofsurfacespeciesformeduponroom-temperatureadsorptionofNO+C3H6+O2mixtureintheabsenceandpresenceofSO2.

Species Bandposition(cm−1) Vibration

NCO 2270 as(NCO)

N2O3(ads) 1900 (N O)

Nitroacetone(ads) 1740 (C O)

Acetone(ads) 1680 (C O)

BridgedNO3−(twotypes) BidentateNO3−

1655,1610,1245

1570,1275

(N O),as(NO2) (N O),as(NO2)

CH3COO−(twotypes) 1570,1544,1450,

1415,1346,1315

as(COO),s(COO),ı(CH3)

SO42− 1346,1044–1013 (S O),(S−O)

ponentofthesplit3 modeof theSO42− groups[10,11].These

resultsshowthatnoticeableoxidationofSO2overzirconiastarts at300◦C.Inthisprocess,mostlikely,surfaceoxygenvacanciesare involvedfacilitatingtheactivationofO2.Between200and300◦C, thesametypeofsurfaceSOxspeciesaredetectedonthe 25NbZ-Psample,howeverwithsignificantlylowerconcentrations(Fig.2, solidtraces).ThisindicatesthattheincorporationofNb5+ionsinto zirconiasuppressestheoxidationofSO2toSO3.

3.3. EffectofSO2ontheC3H6+NO+O2surfacereaction

Theresultsofourpreviousinvestigation[8]haveshownthat overthe25NbZ-Psample,characterizedbystrongBrønsted acid-ity[9],theactivationofpropeneinthepresenceofadsorbedNOx speciesisquiteeasyatlowtemperatures,producingsurface iso-propoxides.Theinteractionofthelatterspecieswiththesurface nitrate complexes leads to the formation of nitroacetone. It is proposed[8]that nitroacetonetransformsthroughtwo parallel reactions. Path(1)involvesthebasicoxidesitesof thecatalyst producingacetatespeciesandaci-nitromethane.Path(2)proceeds throughoxidationofnitroacetonetoacetatesandCOx/H2Owith release ofNO2.The latterprocessis importantat temperatures higherthan200◦C.Theaci-nitromethanegeneratesNCOspecies coordinatedtothecationicsitesofthemixedoxide.Thesurface iso-cyanatesaredetectedalreadyatroomtemperature.Itisproposed that theisocyanates reactwiththeNO3−/NO2 surface complex formedbybothoxidationofNOandoxidationofnitroacetone[8]. Fig.3comparesthespectraofthe25NbZ-Psampleobtainedat varioustemperaturesduringtheadsorptionfor15minofgaseous mixturecontaining(2mbarC3H6+6mbarNO+4mbarO2)inthe absence(dottedlines)andpresenceof0.5mbarSO2(solidlines). Table1givestheassignmentoftheabsorptionbands.

Thespectratakenatroomtemperature,containweak absorp-tionat2270cm−1indicatingtheformationofNCOspecies[8]in bothcases,inthepresenceandabsenceofSO2(Fig.3,spectra(a)). Thebroadbandat1900cm−1 ischaracteristicofadsorbedN2O3 [8,11].Someamountsof adsorbednitroacetone(1740cm−1 [8]) andacetone(1680cm−1[8])areobservedaswell.Thedifference betweenbothspectraisintheconcentrationofthesurfacenitrates (bandsat1655,1610,1570,1277and1245cm−1[8,11]),whichis lowerinthepresenceofSO2.Inaddition,theappearanceofbands at1346and1044–1013cm−1correspondingtothesplit3mode ofmultidentateSO42−groupscoordinatedtocationicsurfacesites [10,11],revealsformationofsurfacesulfatesatroomtemperature. ThisindicatesthatthenitratespeciesoractivatedNO2lower sig-nificantlytheoxidationtemperatureofSO2.Mostlikely,thesulfate speciesblocktheactivesites(Nb5+ions)fortheoxidationofNO toNO2[8]leadingtodecreaseintheconcentrationofthesurface nitrates.Asaconsequence,theamountofnitroacetoneformedat 150◦CinthepresenceofSO2islowerthanthatintheabsenceof thepoison(Fig.3,spectra(b)).Thespectrumtakenat200◦Cinthe

presenceofSO2 (Fig.3,spectrum(c),solidtrace) showsfurther increaseintheamountofsulfatespecies,whichisevidentbythe enhancementoftheabsorptionsat1346and1044–1013cm−1.The decreaseinthesurfaceconcentrationsofacetoneandnitroacetone at200◦Cmeasuredagainsttheconcentrationsat150◦Cis consid-erablysmallerthanthecorrespondingdecreaseobservedinthe absenceofSO2(Fig.3,comparespectra(b)and(c)).Thisfactleadsto theconclusionthatthesurfacesulfateshinderthetransformation ofnitroacetonetoNCOspecies.Mostlikely, thelow concentra-tionofnitroacetoneandhindranceofitstransformationresultin lowering theconcentrationoftheNCOspecies and decreasein thecatalystactivity.Itshouldbepointedoutthatthemechanism proposedforSO2poisoningshouldoperateathighconcentration ofSO2whichisevidentfromthecatalyticactivitymeasurements (seeFig.1).Theresultsoftheinvestigationshowthatthecatalytic propertiesofthezirconia–niobiasolidsolutioncouldbeof inter-estregardingthedevelopmentofsulfur-tolerant,low-temperature catalystsfortheSCRofNOxwithhydrocarbons.

4. Conclusions

TheincorporationofNb(V)intozirconialeadingtotheformation ofzirconia–niobiasolidsolution(moleratioZrO2:Nb2O5=6:1) sup-pressestheoxidationofSO2toSO3.Themixedoxidedisplaysgood resistancetowardSO2poisoningintheC3H6-SCRofNOx.Nolossin theSCRactivityisobservedatlowconcentrationofSO2(56ppm) inthefeedgas.Theactivitydeclinesby13%athighconcentration ofthepoison (200ppm)and remainsunchangedfor morethan 5h. Insitu FT-IRinvestigations showthat thenitratespeciesor activatedNO2 lower(s)theoxidationtemperatureofSO2 to sur-facesulfates.ThepresenceofsurfaceSO42−groupsdecreasesthe amountofadsorbednitrates,respectivelynitroacetone,and hin-dersthetransformationof thelattercompound toNCOspecies consideredasreactionintermediates.Thiscausesdecreaseinthe catalyticactivityobservedathighconcentrationsofSO2inthefeed gas.

Acknowledgements

ThisworkwasfinanciallysupportedbyBilkentUniversityand theScientificandTechnicalResearchCouncilofTurkey(TÜBITAK), Project TBAG-106T081.I.C.and M.K.gratefully acknowledge the supportbytheEU7FrameworkprojectUNAM-REGPOT(Grantno 203953).

References

[1]M.Iwamoto,in:A.Corma,F.V.Melo,S.Mendioroz,J.L.G.Fierro(Eds.)Stud.Surf. Sci.Catal.130(2000)23–47.

[2] R.Burch,J.P.Breen,F.C.Meunier,Appl.Catal.B39(2002)283–303. [3] R.Burch,Catal.Rev.—Sci.Eng.46(2004)271–334.

(4)

440 M.Kantchevaetal./CatalysisToday176 (2011) 437–440 [5]F.C.Meunier,J.R.H.Ross,Appl.Catal.B24(2000)23–32.

[6] M.A.Abdel-Rehim,A.C.B.dosSantos,V.L.L.Camorim,A.daCostaFaroJr.,Appl. Catal.A305(2006)211–218.

[7]J.Goscianska,M.Ziolek,E.Gibson,M.Daturi,Catal.Today152(2010)33–41. [8]I.Cayirtepe,A.Naydenov,G.Ivanov,M.Kantcheva,Catal.Lett.132(2009)

438–449.

[9]M.Kantcheva,H.Budunoglu,O.Samarskaya,Catal.Commun.9(2008)874–879.

[10]C. Morterra,G. Cerrato,F.Pinna, M.Signoretto,J. Phys.Chem.98(1994) 12373–12381.

[11]M.Kantcheva,E.Z.Ciftlikli,J.Phys.Chem.B106(2002)3941–3949. [12]K.Nakamoto,InfraredandRamanSpectraofInorganicandCoordination

Com-poundsPartB,5thedition,Wiley,NewYork,1997,pp.89–90. [13]C.C.Chang,J.Catal.53(1978)374–385.

Şekil

Fig. 2. FT-IR spectra collected during the exposure of zirconia (dotted line) and 25NbZ-P sample (solid line) to a (0.5 mbar SO 2 + 10 mbar O 2 ) mixture for 10 min at 200 ◦ C (a), 250 ◦ C (b) and 300 ◦ C (c).

Referanslar

Benzer Belgeler

kabul etmedikleri için kilisece aforoz edilen Arius nıezhebin- dekilere karşı şiddetli davran­ mış, Selânikte 7.000 kişinin kat line sebep olmuş (390) ve bu

Background:­ This single-center study aims to investigate whether a significant difference exits between the survival rates of patients operated for adenosquamous

Analytical methods are classified according to the measurement of some quantities proportional to the quantity of analyte. Classical Methods and

It establishes the experimental foundations on which the verification of the theoretical analysis carried out in the classroom is built.. In this course the theoretical and

The device consists of a compartment into which a suppository is placed and a thermostated water tank which circulates the water in this compartment.. The

Türk Dillerinin Karşılaştırmalı Şekil Bilgisi Üzerine Taslak (İsim) [Oçerki Po Sravnitel’noy Morfologii Tyurkskih Yazıkov (İmya)], Leningrad, 1977, 191 s. Türk

Bu nedenle, ülke içinde tüm illerin turizm sektörü için önemli olan turistik alanları belirlenmesi ve belirlenen önem derecesine göre turizme yön

In addition, there is good agreement between the exact theoretical results (obtained from (20)) and the simulation results, whereas the Gaussian approximation in (27)