• Sonuç bulunamadı

1. BÖLÜM

3.2. Bulanık Çok Kriterli Karar Verme Yöntemleri Uygulamaları

3.2.1. Bulanık AHP ve Bulanık ANP Yöntemi

Gençlerde madde bağımlılığı ve erken uyarı sistemi çalışmasında, risk taşıyan gençlerin bulundukları okulları tespit etmek ve risk sıralaması yapmak amacıyla diğer yöntemlerde kullanılmak üzere kriter ağırlıklarının elde edilmesinde bulanık ANP modeli oluşturulmuştur.

Şekil 3.3. Madde Bağımlılığı ve Erken Uyarı Sistemi İçin Kullanılan Bulanık ANP Modeli Model oluşturulduktan sonra modeldeki kriterlere ait etki matrisi Çizelge 3.30’da verilmiştir.

Çizelge 3.30. Kriterlere İlişkin Etki Matrisi

(C1) Madde

Kriterlerin önem ağırlıklarının elde edilmesi için uzman grubunun kriterlere ilişkin etki matrisinde verilen yapılar için ikili kıyaslamaları yapmaları istenmiştir.

Değerlendirmelerde kullanılan dilsel değerler ve bu değerlere karşılık gelen üçgen bulanık karşılıkları Çizelge 2.1’de verilmiştir. Nihai olarak elde edilen bulanık ikili karşılaştırma matrisi ise Çizelge 3.31’de görülmektedir.

Çizelge 3.31. Ana Kriterlerin Bulanık İkili Karşılaştırma Matrisi

(C1) Madde

(1.00,1.00,1.00) (1.00,3.00,5.00) (1.00,2.00,4.00) (1.00,2.00,4.00) (1.00,2.00,4.00) (1.00,3.00,5.00)

(C2) Aile İçi

İlişki (0.20,0.33,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,2.00,4.00) (1.00,2.00,4.00) (1.00,1.00,1.00) (C3) Sosyal

Çevre (0.25,0.50,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (C4) Ekonomik

Durum (0.25,0.50,1.00) (0.25,0.50,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (0.25,0.50,1.00) (C5) Eğitim

Durumu (0.25,0.50,1.00) (0.25,0.50,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (0.25,0.50,1.00) (C6) Farkındalık (0.20,0.33,1.00) (1.00,1.00,1.00) (1.00,1.00,1.00) (1.00,2.00,4.00) (1.00,2.00,4.00) (1.00,1.00,1.00)

Ana kriterlerin ağırlığının belirlenmesi için yapılan bulanık ikili karşılaştırma matrisinin ardından göreli önem ağırlıklarının belirlenmesi için ise hem bulanık AHP yönteminde hem de bulanık ANP yönteminde çözüm yöntemi olarak önerilen Chang (1992, 1996)’in Genişletme Analizi Tekniği seçilmiştir. Gerçekleştirilen analiz aşağıdaki adımlardan oluşmaktadır:

Adım 1. Çizelge 3.30’daki bulanık ikili karşılaştırma matrisi kullanılarak sentetik değerler elde edilir.

Adım 2. Adım 1’de elde edilen vektörler kullanılarak üçgen bulanık sayılar karşılaştırılır:

V ( S(1) ≥ S(2) ) = 1.00 V ( S(3) ≥ S(1) ) = 0.39 V ( S(5) ≥ S(1) ) = 0.36 V ( S(1) ≥ S(3) ) = 1.00 V ( S(3) ≥ S(2) ) = 0.74 V ( S(5) ≥ S(2) ) = 0.65 V ( S(1) ≥ S(4) ) = 1.00 V ( S(3) ≥ S(4) ) = 1.00 V ( S(5) ≥ S(3) ) = 0.84 V ( S(1) ≥ S(5) ) = 1.00 V ( S(3) ≥ S(5) ) = 1.00 V ( S(5) ≥ S(4) ) = 1.00 V ( S(1) ≥ S(6) ) = 1.00 V ( S(3) ≥ S(6) ) = 0.74 V ( S(5) ≥ S(6) ) = 0.65 V ( S(2) ≥ S(1) ) = 0.70 V ( S(4) ≥ S(1) ) = 0.36 V ( S(6) ≥ S(1) ) = 0.70 V ( S(2) ≥ S(3) ) = 1.00 V ( S(4) ≥ S(2) ) = 0.65 V ( S(6) ≥ S(2) ) = 1.00 V ( S(2) ≥ S(4) ) = 1.00 V ( S(4) ≥ S(3) ) = 0.84 V ( S(6) ≥ S(3) ) = 1.00 V ( S(2) ≥ S(5) ) = 1.00 V ( S(4) ≥ S(5) ) = 1.00 V ( S(6) ≥ S(4) ) = 1.00 V ( S(2) ≥ S(6) ) = 1.00 V ( S(4) ≥ S(6) ) = 0.65 V ( S(6) ≥ S(5) ) = 1.00 Adım 3. W’ ağırlık vektörü bulunur.

W’ = (1.00, 0.70, 0.39, 0.36, 0.36, 0.70)T

Adım 4. W değerinin normalizasyonu ile normalize edilmiş ağırlık vektörü bulunur:

W = (0.28, 0.20, 0.11, 0.10, 0.10, 0.20)T

Böylece kriter ağırlık vektörü elde edilmiş olur.

3.2.3. Bulanık TOPSIS Yöntemi

Gençlerde madde bağımlılığı ve erken uyarı sistemi çalışmasında, çözüm yöntemi olarak seçilen bulanık TOPSIS yönteminde gerçekleştirilen analiz ise aşağıdaki adımlardan oluşmaktadır:

Adım 1.

x

ij i. alternatifin j. kriter değerini göstermek üzere, alternatiflerin kriter değerleri gösteren bulanık karar matrisi (𝐷̃) ve bulanık ağırlıklar matrisi (𝑊̃ ) oluşturulur (i = 1, 2,

…, 9; j = 1, 2, …, 6).

Kriterlerin önem ağırlığını belirlemek ve alternatifleri derecelendirmek için Çizelge 2.3’de verilen dilsel değişkenleri ve üçgensel bulanık sayıları kullanılmıştır. Bu amaçla Çizelge

3.19’da verilen karar matrisi Çizelge 3.32’de verilen bulanık karar matrisine

(A1) (0.25,0.50,0.75) (0.75,1.00,1.00) (0.00,0.00,0.25) (0.00,0.25,0.50) (0.00,0.00,0.25) (0.00,0.00,0.25) (A2) (0.50,0.75,1.00) (0.00,0.25,0.50) (0.75,1.00,1.00) (0.25,0.50,0.75) (0.25,0.50,0.75) (0.00,0.00,0.25) (A3) (0.00,0.00,0.25) (0.75,1.00,1.00) (0.00,0.25,0.50) (0.00,0.25,0.50) (0.00,0.25,0.50) (0.25,0.50,0.75) (A4) (0.00,0.25,0.50) (0.75,1.00,1.00) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.00,0.25,0.50) (0.00,0.00,0.25) (A5) (0.00,0.25,0.50) (0.75,1.00,1.00) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.50,0.75,1.00) (A6) (0.50,0.75,1.00) (0.75,1.00,1.00) (0.00,0.00,0.25) (0.50,0.75,1.00) (0.75,1.00,1.00) (0.75,1.00,1.00) (A7) (0.75,1.00,1.00) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.50,0.75,1.00) (0.75,1.00,1.00) (0.25,0.50,0.75) (A8) (0.75,1.00,1.00) (0.50,0.75,1.00) (0.25,0.50,0.75) (0.75,1.00,1.00) (0.75,1.00,1.00) (0.00,0.00,0.25) (A9) (0.50,0.75,1.00) (0.75,1.00,1.00) (0.25,0.50,0.75) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.00,0.25,0.50)

Chang (1992, 1996)’in Genişletme Analizi Tekniği kullanılarak elde edilen kriter ağırlıkları Çizelge 2.3’deki dilsel değişkenlere ve bulanık sayılara dönüştürülüp kullanılır.

Çizelge 3.33. Kriter Ağırlıkları

Adım 2. Bulanık harar matrisi normalize edilir.

Ardından matrisin nasıl normalize edildiğine örnek verecek olursak: ilk sütunda C1 kriteri maliyet kriteri olduğu için ilk bileşenlerin minimum değeri dikkate alınır. Bu sütunda maksimum değeri dikkate alınır. Bu sütunda 2 i2

i

Diğer sütunlar için de benzer şekilde normalize işlemi yapılarak Çizelge 3.34 elde edilir.

Çizelge 3.34. Normalize Edilmiş Bulanık Karar Matrisi

KRİTERLER

(C1) (C2) (C3) (C4) (C5) (C6)

ALTERNATİFLER

(A1) (0.00,0.00,0.00) (0.75,1.00,1.00) (0.00,0.00,0.25) (0.00,0.25,0.50) (0.00,0.00,0.25) (0.00,0.00,0.25) (A2) (0.00,0.00,0.00) (0.00,0.25,0.50) (0.75,1.00,1.00) (0.25,0.50,0.75) (0.25,0.50,0.75) (0.00,0.00,0.25) (A3) (0.00,1.00,1.00) (0.75,1.00,1.00) (0.00,0.25,0.50) (0.00,0.25,0.50) (0.00,0.25,0.50) (0.25,0.50,0.75) (A4) (0.00,0.00,1.00) (0.75,1.00,1.00) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.00,0.25,0.50) (0.00,0.00,0.25) (A5) (0.00,0.00,1.00) (0.75,1.00,1.00) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.50,0.75,1.00) (A6) (0.00,0.00,0.00) (0.75,1.00,1.00) (0.00,0.00,0.25) (0.50,0.75,1.00) (0.75,1.00,1.00) (0.75,1.00,1.00) (A7) (0.00,0.00,0.00) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.50,0.75,1.00) (0.75,1.00,1.00) (0.25,0.50,0.75) (A8) (0.00,0.00,0.00) (0.50,0.75,1.00) (0.25,0.50,0.75) (0.75,1.00,1.00) (0.75,1.00,1.00) (0.00,0.00,0.25) (A9) (0.00,0.00,0.00) (0.75,1.00,1.00) (0.25,0.50,0.75) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.00,0.25,0.50)

Adım 3. Normalize edilmiş bulanık karar matrisindeki her bir değer kriter ağırlığıyla çarpılarak ağırlıklandırılmış normalize edilmiş bulanık karar matrisi elde edilir.

Çizelge 3.35. Ağırlıklandırılmış Normalize Edilmiş Bulanık Karar Matrisi

KRİTERLER

(C1) (C2) (C3) (C4) (C5) (C6)

ALTERNATİFLER

(A1) (0.00,0.00,0.00) (0.19,0.50,0.75) (0.00,0.00,0.06) (0.00,0.00,0.13) (0.00,0.00,0.06) (0.00,0.00,0.19) (A2) (0.00,0.00,0.00) (0.00,0.13,0.38) (0.00,0.00,0.25) (0.00,0.00,0.19) (0.00,0.00,0.19) (0.00,0.00,0.19) (A3) (0.00,1.00,1.00) (0.19,0.50,0.75) (0.00,0.00,0.13) (0.00,0.00,0.13) (0.00,0.00,0.13) (0.06,0.25,0.56) (A4) (0.00,0.00,1.00) (0.19,0.50,0.75) (0.00,0.00,0.06) (0.00,0.00,0.06) (0.00,0.00,0.13) (0.00,0.00,0.19) (A5) (0.00,0.00,1.00) (0.19,0.50,0.75) (0.00,0.00,0.06) (0.00,0.00,0.06) (0.00,0.00,0.06) (0.13,0.38,0.75) (A6) (0.00,0.00,0.00) (0.19,0.50,0.75) (0.00,0.00,0.06) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.19,0.50,0.75) (A7) (0.00,0.00,0.00) (0.00,0.00,0.19) (0.00,0.00,0.06) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.06,0.25,0.56) (A8) (0.00,0.00,0.00) (0.13,0.38,0.75) (0.00,0.00,0.19) (0.00,0.00,0.25) (0.00,0.00,0.25) (0.00,0.00,0.19) (A9) (0.00,0.00,0.00) (0.19,0.50,0.75) (0.00,0.00,0.19) (0.00,0.00,0.06) (0.00,0.00,0.06) (0.00,0.13,0.38)

Adım 4. Bulanık ideal pozitif ve bulanık ideal negatif çözüm değerleri elde edilir.

𝐴+= [(0,0,0), (1,1,1), (1,1,1), (1,1,1), (1,1,1), (1,1,1)]

𝐴= [(1,1,1), (0,0,0), (0,0,0), (0,0,0), (0,0,0), (0,0,0)]

Adım 5 ve 6. Her alternatif için bulanık pozitif ideal çözüm ve bulanık negatif ideal çözümden uzaklıklar hesaplanır. Ardından her alternatifin yakınlık katsayısı (CCi) hesaplanır.

1

1

3[ (0.00 − 0.00)2+ (0.00 − 0.00)2+ (0.00 − 0.06)2] + 1

3[ (0.00 − 0.00)2+ (0.00 − 0.13)2+ (0.00 − 0.38 )2] = 1.93

Alternatiflerin yakınlık katsayısı değerleri:

CC1= 1.78

1.78 + 4.41= 0.29 CC2= 1.69

1.69 + 4.57= 0.27

CC9= 1.93

1.93 + 4.30= 0.31

Çizelge 3.36. Nispi Mesafeler

ALTERNATİFLER 𝐝𝐢+ 𝐝𝐢 𝐂𝐂𝐢

(A1) 4.41 1.78 0.29

(A2) 4.57 1.69 0.27

(A3) 4.97 1.68 0.25

(A4) 4.98 1.59 0.24

(A5) 4.70 1.93 0.29

(A6) 3.95 2.38 0.38

(A7) 4.48 1.78 0.28

(A8) 4.35 1.98 0.31

(A9) 4.30 1.93 0.31

Adım 7. CCi değerleri karşılaştırılır ve alternatiflerin sıraları belirlenir. Buna göre

“Keçiören İMKB Teknik ve Endüstri Meslek Lisesi” en riskli okul olarak bulunmuştur.

3.2.4. Bulanık VIKOR Yöntemi

Gençlerde madde bağımlılığı ve erken uyarı sistemi çalışmasında, çözüm yöntemi olarak seçilen bulanık VIKOR yönteminde gerçekleştirilen analiz ise aşağıdaki adımlardan oluşmaktadır:

Adım 1. Uygun alternatifler üretilir ve değerlendirme kriterleri karar vericiler tarafından belirlenir.

Adım 2. Chang (1992, 1996)’in Genişletme Analizi Tekniği kullanılarak elde edilen kriter ağırlıkları Çizelge 2.4’deki dilsel değişkenlere ve bulanık sayılara dönüştürülüp kullanılır.

Çizelge 3.37. Kriter Ağırlıkları

KRİTERLER

(C1) (C2) (C3) (C4) (C5) (C6)

Kriter

ağırlıkları 0,28 0,20 0,11 0,10 0,10 0,20

Kriter

ağırlıkları VH (0.75,1.00,1.00)

M (0.25,0.50,0.75)

VL (0.00,0.00,0.25)

VL (0.00,0.00,0.25)

VL (0.00,0.00,0.25)

M (0.25,0.50,0.75)

Adım 3. Karar vericilerin tercihleri ve fikirleri doğrultusunda Chang (1992, 1996)’in Genişletme Analizi Tekniği kullanılarak elde edilen kriter ağırlıkları bulanık VIKOR yönteminde kullanılmak üzere ele alnır. Ayrıca Çizelge 3.38’de de kullanılacak olan bulanık karar matrisi verilmiştir.

Çizelge 3.38. Karar Matrisi

ALTERNATİFLER

(A1) (A2) (A3) (A4) (A5)

KRİTERLER

(C1) Maliyet (0.25, 0.50, 0.75) (0.50, 0.75, 1.00) (0.00, 0.00, 0.25) (0.00, 0.25, 0.50) (0.00, 0.25, 0.50) (C2) Fayda (0.75, 1.00, 1.00) (0.00, 0.25, 0.50) (0.75, 1.00, 1.00) (0.75, 1.00, 1.00) (0.75, 1.00, 1.00) (C3) Fayda (0.00, 0.00, 0.25) (0.75, 1.00, 1.00) (0.00, 0.25, 0.50) (0.00, 0.00, 0.25) (0.00, 0.00, 0.25) (C4) Fayda (0.00, 0.25, 0.50) (0.25, 0.50, 0.75) (0.00, 0.25, 0.50) (0.00, 0.00, 0.25) (0.00, 0.00, 0.25) (C5) Fayda (0.00, 0.00, 0.25) (0.25, 0.50, 0.75) (0.00, 0.25, 0.50) (0.00, 0.25, 0.50) (0.00, 0.00, 0.25) (C6) Fayda (0.00, 0.00, 0.25) (0.00, 0.00, 0.25) (0.25, 0.50, 0.75) (0.00, 0.00, 0.25) (0.50, 0.75, 1.00)

ALTERNATİFLER Kriterin

Yönü (A6) (A7) (A8) (A9)

KRİTERLER

(C1) Maliyet (0.50, 0.75, 1.00) (0.75, 1.00, 1.00) (0.75, 1.00, 1.00) (0.50, 0.75, 1.00) (C2) Fayda (0.75, 1.00, 1.00) (0.00, 0.00, 0.25) (0.50, 0.75, 1.00) (0.75, 1.00, 1.00) (C3) Fayda (0.00, 0.00, 0.25) (0.00, 0.00, 0.25) (0.25, 0.50, 0.75) (0.25, 0.50, 0.75) (C4) Fayda (0.50, 0.75, 1.00) (0.50, 0.75, 1.00) (0.75, 1.00, 1.00) (0.00, 0.00, 0.25) (C5) Fayda (0.75, 1.00, 1.00) (0.75, 1.00, 1.00) (0.75, 1.00, 1.00) (0.00, 0.00, 0.25) (C6) Fayda (0.75, 1.00, 1.00) (0.25, 0.50, 0.75) (0.00, 0.00, 0.25) (0.00, 0.25, 0.50)

Adım 5. Bulanık en iyi değerler (fi) ve bulanık en kötü değerler (fi-) hesaplanır.

Çizelge 3.39. Kriterlerin Bulanık En İyi ve En Kötü Değerleri

Kriterin En İyi Değerleri Kriterlerin En Kötü Değerleri

KRİTERLER

(C1) (0.00, 0.00, 0.25) (0.75, 1.00, 1.00) (C2) (0.75, 1.00, 1.00) (0.00, 0.00, 0.25) (C3) (0.75, 1.00, 1.00) (0.00, 0.00, 0.25) (C4) (0.75, 1.00, 1.00) (0.00, 0.00, 0.25) (C5) (0.75, 1.00, 1.00) (0.00, 0.00, 0.25) (C6) (0.75, 1.00, 1.00) (0.00, 0.00, 0.25) Adım 6 ve 7. Sj,Rj değerleri ile S,S,R,R ve Q jdeğerleri hesaplanır.

Çizelge 3.40. 𝑆̃, 𝑅𝑗 ̃ ve 𝑄̃𝑗 𝑗 Değerleri

ALTERNATİFLER

(A1) (A2) (A3) (A4) (A5)

Sj (0.50,1.00,2.08) (1.00,1.63,2.42) (0.17, 0.25,0.75) (0.25,0.75,1.75) (0.08,0.38,1.08)

Rj (0.25,0.50,0.75) (0.50,0.75,1.00) (0.17, 0.25,0.25) (0.25,0.50,0.75) (0.08,0.25,0.33)

Q j (0.32,0.42 0.73) (0.74,0.79,1.00) (0.10,0.00,0.00) (0.20,0.33,0.63) (0.00,0.04,0.16) ALTERNATİFLER

(A6) (A7) (A8) (A9)

Sj (0.50,0.75,1.25) (1.17,1.75,2.25) (1.08,1.63,1.83) (0.75,1.13,2.08)

Rj (0.50,0.75,1.00) (0.75,1.00,1.00) (0.75,1.00,1.00) (0.50,0.75,1.00)

Q j (0.50,0.50,0.65) (1.00,1.00,0.95) (0.96,0.96,0.83) (0.62,0.63 0.90)

Adım 8. Üçgensel bulanık sayı Qjdurulaştırılır ve Qj indeksi elde edilir. Literatürde farklı durulaştırma prosedürleri bulunmaktadır. Bu çalışmada durulaştırma aşamasında Hsieh vd.

(2004) tarafından önerilen BNP (Best Nonfuzzy Performance Value) yöntemi kullanılmıştır. Burada uj üçgen bulanık sayının üst değerini, mjorta değerini, ljise alt değerini göstermek üzere 𝐴 = (𝑙𝑗, 𝑚𝑗, 𝑢𝑖 ) üçgen bulanık sayısı 𝐴𝑑 = (𝑢𝑗−𝑙𝑗)+(𝑚𝑗−𝑙𝑗)

3 + 𝑙𝑗

‘dir. (j için) şeklinde durulaştırılır.

Buna göre durulaştırılmış Qjdeğerleri ise şu şekildedir:

Q1 = (0.32, 0.42, 0.73) ise Q1 =(0.73 − 0.32) + (0.42 − 0.32)

3 + 0.32 = 0.49

Q2 = (0.74, 0.79, 1.00) ise Q2 =(1.00 − 0.74) + (0.79 − 0.74)

3 + 0.74 = 0.84

Q3 = (0.10, 0.00, 0.00) ise Q =3 (0.00 − 0.10) + (0.00 − 0.10)

2 Çizelge 3.41’deki bulanık 𝑆𝑗 ve 𝑅𝑗 değerleri BNP yöntemi kullanılarak durulaştırılıp yazılmıştır.

Alternatifler Q j Q j Alternatifler 𝑆𝑗 Alternatifler 𝑅𝑗

Q(A5) – Q(A3) = 0.07 – 0.03 = 0.06

Q(A4) – Q(A5) = 0.39 – 0.07 = 0.32 ≥ 0.13 Q(A1) – Q(A4) = 0.49 – 0.39 = 0.10

Q(A6) – Q(A1) = 0.55 – 0.49 = 0.06

Q(A9) – Q(A6) = 0.72 – 0.55 = 0.17 ≥ 0.13 Q(A2) – Q(A9) = 0.84 – 0.72 = 0.12 Q(A8) – Q(A2) = 0.92 – 0.84 = 0.08 Q(A7) – Q(A8) = 0.98 – 0.92 = 0.06

olduğundan A4 ve A9 alternatifleri C1 kriterini sağlayıp kabul edilebilir avantaja sahiptirler.

C2. “Karar vermede kabul edilebilir istikrar”:

A3, A4, A5, A7 ve A9 alternatifi, S ve/veya R değerleri ile aynı sıralamada yer alıp C2 kriterini sağladığı için karar vermede kabul edilebilir istikrara sahiptir.

Adım 10. Q değeri minimum alternatif en iyi alternatif olarak seçilir.

Uygulama en riskli okul bulunmaya çalışıldığından Q değeri maksimum olan alternatife bakılır. Gençlerde madde bağımlılığı ve erken uyarı sistemi çalışmasında ise

“Kalaba Anadolu Lisesi” 0.98 değeri ile en riskli okul olarak değerlendirilir.