• Sonuç bulunamadı

E E ON DARBOUX VECTORS OF A SPECIAL FRENET MOTION FOR A TIME-LIKE CURVE IN Bahaddin BÜKCÜ* İ N İ N DARBOUX VEKTÖRLER İ ÜZER İ NE E ’de TIME-LIKE B İ R E Ğ R İ İ Ç İ N ÖZEL B İ R FRENET HAREKET

N/A
N/A
Protected

Academic year: 2021

Share "E E ON DARBOUX VECTORS OF A SPECIAL FRENET MOTION FOR A TIME-LIKE CURVE IN Bahaddin BÜKCÜ* İ N İ N DARBOUX VEKTÖRLER İ ÜZER İ NE E ’de TIME-LIKE B İ R E Ğ R İ İ Ç İ N ÖZEL B İ R FRENET HAREKET"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

3

E ’de TIME-LIKE BİR EĞRİ İÇİN ÖZEL BİR FRENET

1

HAREKETİNİN DARBOUX VEKTÖRLERİ ÜZERİNE Bahaddin BÜKCÜ*

*Gaziosmanpaşa Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü, 60250- Taşlıçiftlik-Tokat,TÜRKİYE; e-mail: bbukcu@yahoo.com

ÖZET

Bir parametreli özel Frenet hareketi, Bottema tarafından 3-boyutlu Öklid uzayı E3 de verilmiştir [1]. Bu çalışmada, E3deki [1] Frenet hareketinin, E13, 3-boyutlu Minkowski uzayına bir genelleştirilmesi veriliyor. İlk olarak, E3deki bu hareket, time-like bir eğri için

13

E uzayında tanımlandı daha sonra, bu hareketin Darboux vektörleri [2] sabit ve hareketli uzaylar için hesaplandı.

Anahtar Kelimeler: Causal karakter, Darboux vektörleri, Özel Frenet hareketi, Time-like curve

ON DARBOUX VECTORS OF A SPECIAL FRENET MOTION FOR A TIME-LIKE CURVE IN E

13

ABSTRACT

A special Frenet motion with an one-parameter in E3has been given by Bottema [1]. In this study, we give a generalization of [1] to E13, Minkowski 3-space. Firstly, this motion inE3is defined inE13 for a time-like space curve and then Darboux vectors [2] of this motion is calculated for fixed and moving spaces inE13 .

Keywords: Causal character, Darboux vector, Frenet motion, Lorentz space, Time-like curve.

1. INTRODUCTION

An one-parameter motion of a body in Minkowski 3-space is generated by the transformation

⎢ ⎤

⎥⎡

⎢ ⎤

=⎡

⎥⎦

⎢ ⎤

1 1 0 1

x0

c A

X (1.1)

(2)

where A is a semi-orthogonal matrix , A∈SO(3,1), and c is the displacement vector of the origin. A ve c are C functions of a real parameter s. x0, X,c are n×1 matrices and

{

33 1

}

(3,1) T , det 1, ( 1,1,1) [3].

SO = AR A = εA ε A= ε =diag

x0 and X respectively correspond to the position vectors of the same point P, with respect to the orthogonal coordinate systems of the moving space H and the fixed spaceH ′. At the unital time

s = s

0 we consider the coordinate systems of H and H ′are coincident.

We define a special motion in terms of a timelike space curve α given in the fixed spaceH ′. This motion is such that the moving frame Oxyz moves with O along α while rotating so that the x and y axes always coincide with, respectively, the tangent and principal normal of α. This means that as O coincides with a point Q of α, the Oxyz frame coincides with the Frenet trihedron at Q : Qξηρ. This trihedron consists of the tangent Qξ, the principal normal Qη, and the binormal Qρ, which are three mutually orthogonal axes. Obviously, the geometry of this motion is completely defined by α. For our special motion, because O moves along α, X=c represents the time-like space curveα. We will use the arc length s of α as the motion parameter, and use primes to denote derivatives with respect to s.

The Lorentzian or Minkowski 3-space E13 is the Euclidean 3-space provided with the Lorentzian inner product

<x,y>:=−x1y1+x2y2+x3y3

where x=(x1,x2,x3) and y=(y1,y2,y3). An arbitrary vector x=(x1,x2,x3)in E13 may have one of three Lorentzian causal characters:

if<x,x>>0 or

x r = 0

, it is space-like, if <x,x><0 it is time-like and

if <x,x>=0 it is null ( light-like) [3].

Similarly, an arbitrary curve α=α(s) in E13 is locally space-like, time-like or null, for each sIR. Recall that the pseudo-norm of an arbitrary vector xr∈E13 is given by

>

<

= x x

x , , and that the velocity v of the curve α is v= α′(s) . Therefore, α is a unit speed curve if and only if <α′(s),α′(s)>=±1.

Denote by

{

T(s),N(s),B(s)

}

the moving Frenet frame along the curve α=α(s) parameterized by a pseudo-arclength parameter s, i.e. <α′(s),α′(s)>=±1. If

(3)

) , , (t1 t2 t3

T = ,N=(n1,n2,n3) and B=(b1,b2,b3)are the unit vectors along Qξ, Qηand Qρ, Lorentzian differential geometry gives us

T s( )=α′( )s ,N s( )=α′′( ) /s α′′ ,B s( )=T s( )∧N s( ), (1.2) where k= α′′ is the curvature of curveα and “∧” denotes vector product in E3. If

) α(s

α= is a time-like curve, i.e., if T is a time-like vector, then the Frenet formulae read

T′=kN, N′=kTB, B′=−τN (1.3) 0

, ,

, , 1 , ,

, 1

, >=− < >=< >= < >=< >=< >=

<T T N N B B T N T B N B ,

here, k the curvature and

τ

the torsion of the timelike curve α[4]. Then we have

⎥⎥

⎢⎢

=

3 3 3

2 2 2

1 1 1

b n t

b n t

b n t

A . (1.4)

It can be defined that an one-parameter special motion of a body in Lorentzian space H ′ is generated by the transformation

X=Ax0+c (1.5) where ASO(3,1) and

x

0

, X , c

are 3x1 real matrices [1].

2. DARBOUX VECTORS (MATRICES)

Theorem: Let the motion H/H′be represented by the equation (1.4). Then the

components of Darboux vectors of the motion H/H′, respectively, are )

, ,

(kb1 τt1 kb2 τt2 kb3 τt3

ω= − − −

and

) , 0 ,

( k

w= −τ . Proof: From (1.1) we obtain

x0 =A1(Xc) (2.1)

(4)

and as A1ATε and det A = + 1, we have from (1.4) ve (2.1), eliminating

x

0

X′=Ω(Xc)+c' (2.2) with Ω=AA1, or explicitly, by means of (1.2),

⎥⎥

⎢⎢

⎡−

⎥⎥

⎢⎢

⎥⎥

⎢⎢

⎡−

⎥⎥

⎢⎢

= Ω

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

3 2 1

3 2 1

3 2 1

3 3 3

2 2 2

1 1 1

b b b

n n n

t t t

b n t

b n t

b n t

⎥⎥

⎢⎢

⎥⎥

⎢⎢

= Ω

3 2 1

3 2 1

3 2 1

3 3 3

2 2 2

1 1 1

b b b

n n n

t t t

b n t

b n t

b n t

⎥⎥

⎢⎢

+ ′ + ′

− ′ + ′

+ ′

− ′

− ′

− ′

+ ′ + ′

− ′ + ′

+ ′

− ′

− ′

− ′

+ ′ + ′

− ′ + ′

+ ′

− ′

− ′

− ′

= Ω

3 3 3 3 3 3 2 3 2 3 2 3 1 3 1 3 1 3

3 2 3 2 3 2 2 2 2 2 2 2 1 2 1 2 1 2

3 1 3 1 3 1 2 1 2 1 2 1 1 1 1 1 1 1

b b n n t t b b n n t t b b n n t t

b b n n t t b b n n t t b b n n t t

b b n n t t b b n n t t b b n n t t

.

One can find as follows

T =N×B=(t1,t2,t3)=n3b2n2b3,n3b1n1b3,n1b2n2b1 (2.3)

B=T×N=(b1,b2,b3)=(n2t3n3t2,n1t3n3t1,n2t1n1t2) (2.4)

1 2 3 1 2 3

1 2 3 1 1 2 2 3 3

1 2 3 1 2 3

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , ).

T t t t kn kn kn

N n n n kt b kt b kt b

B b b b n n n

′= ′ ′ ′ = ⎫

′= ′ ′ ′ = + τ + τ + τ ⎪⎬

′= ′ ′ ′ = −τ −τ −τ ⎪⎭

. (2.5)

By using (2.3), (2.4) and (2.5), we get

⎥⎥

⎢⎢

+ ′ + ′

− ′ + ′

+ ′

− ′

− ′

− ′

′ +

′ +

′ +

′ +

+ ′ + ′

− ′ + ′

+ ′

− ′

− ′

− ′

= Ω

3 3 3 3 3 3 2 3 2 3 2 3 1 3 1 3 1 3

3 2 3 2 3 2 2 2 2 2 2 2 1 2 1 2 1 2

3 1 3 1 3 1 2 1 2 1 2 1 1 1 1 1 1 1

b b n n t t b b n n t t b b n n t t

b b n n t t b b n n t t b b n n t t

b b n n t t b b n n t t b b n n t t

(5)

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

− +

+ +

− +

+ +

+

− +

+ +

− +

+ +

+

− +

+ +

− +

+ +

+

= Ω

3 3

3 3 3 3 3 2

3

2 3 3 2 3 1

3

1 3 3 1 3

3 2

3 2 2 3 2 2

2

2 2 2 2 2 1

2

1 2 2 1 2

3 1

3 1 1 3 1 2

1

2 1 1 2 1 1

1

1 1 1 1 1

) (

) (

) ( )

(

) (

) ( )

(

) (

) (

) (

) (

) ( )

(

) (

) ( )

(

) (

) (

) (

) (

) ( )

(

) (

) ( )

(

) (

) (

b n

n b kt t kn b

n

n b kt t kn b

n

n b kt t kn

b n

n b kt t kn b

n

n b kt t kn b

n

n b kt t kn

b n

n b kt t kn b

n

n b kt t kn b

n

n b kt t kn

τ

τ τ

τ τ

τ

τ

τ τ

τ τ

τ

τ

τ τ

τ τ

τ

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

− +

+

− +

+ + −

− +

− +

+

− +

+ + −

− +

− +

+

− +

+

− +

− +

= Ω

3 3 3 3

3 3 3 3 2

3 2 3

2 3 2 1 3

3 1 3

1 3 1 3

3 2 3 2

3 2 3 2 2

2 2 2

2 2 2 1 2

2 1 2

1 2 1 2

3 1 3 1

3 1 3 1 2

1 2 1

2 1 2 1 1

1 1 1

1 1 1 1

b n n b

n t k t n k b

n n b

n t k t n b k

n n b

n t k t kn

b n n b

n t k t n k b

n n b

n t k t n b k

n n b

n t k t kn

b n n b

n t k t n k b

n n b

n t k t n k b

n n b

n t k t kn

τ τ

τ τ τ

τ

τ τ

τ τ τ

τ

τ τ τ

τ τ

τ

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎥⎥

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

⎢⎢

− +

− +

− +

− +

− +

− +

= Ω

0 )

(

) (

) (

) (

) (

) 0 (

) (

) (

) (

) (

) (

) 0 (

2 3 2 3

2 3 2 3 1

3 1 3

1 3 1 3

3 2 3 2

3 2 3 2 1

2 1 2

1 2 1 2

3 1 3 1

3 1 3 1 2

1 2 1

2 1 2 1

n b b n

t n n t k n

b b n

n t t n k

b n n b

n t t n k b

n n b

n t t n k

n b b n

n t t n k n

b b n

t n n t k

τ τ

τ τ

τ τ

) 6 . 2 ( ).

, ,

( 0

) (

) (

) (

0 )

(

) (

) (

0

3 3 2 2 1 1 1

1 2 2

1 1 3

3

2 2 3

3

t kb t kb t kb t

kb t kb

t kb t

kb

t kb t

kb

τ τ

τ ω

τ τ

τ τ

τ τ

=

⎥⎥

⎢⎢

= Ω

(6)

Ω is a semi skew–symmetric matrix as Ω = − Ωε Tε . Its components with respect to the moving frame follow from w=A1ω [5], and we obtain the vector

1 1

1 2 3

1 2 3 2 2

1 2 3 3 3

w AT

k b t

t t t

n n n k b t

b b b k b t

= ε ε ω

− τ

− − ⎡ ⎤

⎡ ⎤

⎢ ⎥

⎢ ⎥

= −⎢ ⎥⎢ − τ ⎥

⎢ ⎥

⎢− ⎥ − τ

⎣ ⎦ ⎣ ⎦

2 2 2

1 2 3 1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3

2 2 2

1 2 3 1 1 2 2 3 3

( ) ( )

( ) ( )

( ) ( )

t t t k t b t b t b

k n b n b n b n t n t n t

b b b k t b t b t b

⎡τ − + + − − + + ⎤

⎢ ⎥

=⎢ − + + − τ − + + ⎥

⎢τ − + + − − + + ⎥

⎣ ⎦

[ ]

, ,

, ,

, ,

( 1) 0 T

T T k T B

k N B T N

B B k T B

k τ < > − < >

⎡ ⎤

⎢ ⎥

=⎢ < > −τ < >⎥

⎢τ < > − < >⎥

⎣ ⎦

= τ −

and so

w=(−τ,0,k).

REFERENCES

[1] Bottema, O., and Roth, B. ’’Theoretical Kinematics’’, Lauwerier, H.A., and Koiter, W.T., North-Holland Publ. Com., New York, 301-304 (1979).

[2] Uğurlu, H.H., “On the Geometry Of Timelike Surfaces”, Communications, Ankara University, Faculty Of Sciences Dept. Of Math. Seeries A1,Vol.46 pp.211-223 (1997).

[3] O’Neill, B., ”Semi-Riemannian Geometry, Academic Pres”, New York, 278-292, (1983).

[4] Ekmekçi, N., and İlarslan, K., “Higher Curvatures in Lorentzian Space”, Jour. of Ins.

of Math. and Comp. Sci. (Math. Ser.), Vol.11, No.2, p.97-102, (1998).

[5] Bükcü, B., Cayley Formula and Its Applications in Lorentz Space, Ph.D. Thesis, Ankara University Graduate School and The Natural Science, (2003).

(7)

Referanslar

Benzer Belgeler

Oklüzal yüzeyleri uygun hale getirilen 16 adet dentin örneği, iki farklı hassasiyet giderici ajanın adeziv siman- tasyondaki bağlantıya etkisinin karşılaştırılmalı

Reseña publicada en The Sunday Times, 13 de febrero 1977.. BOLETÍN AEPE

Bu program, anne –çocuk cimnastiğinden gelen çocuklar ( 5 - 8 ) yaş cimnastik temel eğitimi programına katılırlar. Temel eğitimin alt yapısını oluştururken,

Bu amaçlara ulaşmak için Fakültemiz, verilmekte olan derslerin ve içeriklerinin bilimsel araştırmalara temel teşkil edecek kaliteye ulaştırılması ve sürekli

Yine 2008 Y E itim Plan nda yer alan ve Meslek Dan manl E itimi, 25 personelin kat yla 17 Kas m–4 Aral k 2008 tarihleri aras nda Ankara E itim Merkezinde gerçekle tirildi.. Di

Necmettin Erbakan Üniversitesi üst yönetimi tarafından belirlenen amaç ve ilkelere uygun olarak; yüksekokulun vizyonu, misyonu doğrultusunda eğitim ve öğretimi

Kilise de yanındaki ayazma gibi çeşitli dönemlerde yağma, saldırı, deprem ve ihmalkârlık nedeniyle tahrip edilmiş ve çeşitli onarımlar görerek gü- nümüze kadar

Votka, ev yapımı kabak püresi, limon suyu, simple şurup, yumurta akı Vodka, homemade pumpkin puree, lemon juice, simple syrup, egg white..