• Sonuç bulunamadı

1. Rumeli Sürdürülebilir Çevre İçin Enerji ve Tasarım Sempozyumu Bildiri Kitabı

N/A
N/A
Protected

Academic year: 2021

Share "1. Rumeli Sürdürülebilir Çevre İçin Enerji ve Tasarım Sempozyumu Bildiri Kitabı"

Copied!
246
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Ulusal Sempozyum / Uluslararası Katılımlı National Symposium with International Participation

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU Uluslararası Katılımlı

1st RUMELI ENERGY AND DESIGN FOR A SUSTAINABLE ENVIRONMENT SYMPOSIUM With International Participation

Editör Ahmet CAN

İstanbul Rumeli Üniversitesi Haliç Yerleşkesi Kongre Merkezi İSTANBUL TÜRKİYE 4 – 5 Şubat 2021

Istanbul Rumeli University Haliç Campus Congress Center ISTANBUL/TURKEY

February 4 – 5, 2021

(2)
(3)
(4)

Yayıncı / Publisher : Ġstanbul Rumeli Üniversitesi Mühendislik ve Mimarlık Fakültesi Yeni Mah. Mehmet Silivrili Cad. No:38

Silivri / ĠSTANBUL Tel: 0212 866 01 01

EDĠTÖR : Ahmet CAN

Hakemler / Reviewers: BUYRUK, Ertan; BĠLGEHAN, Mahmut; CAN, Ahmet; GALOVĠC, Antun; GÜMÜġ, Alev TaĢkın; HĠSARLIGĠL, Beyhan Bolak; HĠSARLIGĠL, Hakan; JUNGE, Stefan; KAHRAMAN, Nafiz; KARTUNOV, Stefan; KEREY, Ġlyas Erdal; KILIÇASLAN, Yılmaz; KĠZĠROĞLU, Ġlhami; OYMAEL, Sabit; SABOTKA, Ingo. YÜKSEL, Ġ.

ISBN 978-526-409-661-7

Makaleler ulusal ve uluslararası hakemler tarafından revize edilmiĢtir. Bu yayının hiçbir bölümü yayımcının izni olmadan hiçbir biçimde çoğaltılamaz.

The papers have been revised by national and international reviewers. No part of this publication may be reproduced in any form, without the permission of the Publisher.

Bibliyografya

CIP – Katalog Ġstanbul Rumeli Üniversitesi Kütüphane ve Dokümantasyon Daire BaĢkanlığı

Ulusal Sempozyum, 1. RUMELĠ SUCET Sempozyumu uluslararası katılımlı, Bildiriler Kitabı.

4-5 ġubat 2021, Silivri / ĠSTANBUL

National Symposium, 1st RUMELI SUCET Symposium with international participation, The Book of Proceedings.

ISBN

978-625-409-661-7

Elektronik Materyal/Cep belleği

Electronic Material / Flash memory

(5)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU 4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL ÖNSÖZ

Sürdürülebilir Çevre İçin Enerji ve Tasarım alanında Yeni Teknolojiler.

Sürdürülebilir Çevre İçin Enerji ve Tasarım (SUCET) Sempozyumu, İstanbul'da Rumeli Üniversitesi Mühendislik ve Mimarlık Fakültesi’nin her yıl bir araya gelen enerji ve çevre konularında bilim adamı ve uzmanların geleneksel bir bilimsel toplantıdır.

Bu yılki 1.SUCET 2021 Sempozyumu için yurtdışından 4, Türkiye’den 10 ve Mühendislik ve Mimarlık Fakültesinden 21 olmak üzere 35 kişilik akademisyen sunum yapmak üzere katılmıştır. Sempozyumun uluslararası katılımlı karakteri, Hırvatistan Zagreb Üniversitesinden ve Bulgaristan Gabrova Teknik Üniversitesinden olmak üzere iki yurt dışı ülkesinden akademisyenlerin katılımıyla ortaya konmuştur.

Türkiye için en önemli zorluklar sıralamasında, öğretimden sonra çevre koruma ve iklim değişikliğine karşı önlemler ikinci sırada yer almalıdır. Bu, Covid19 salgınına rağmen dünyanın hedeflediği 1,5 derecelik atmosfer sıcaklığı azaltılması hedefi gereklilik olmalıdır.

İklim koruma ilerlemesini hızlandırma yönünde Türkiye’de de toplumun 1,5 derecelik atmosfer sıcaklığı azaltılması hedefine ulaşmak için bilinçlendirilmesi ve hızlı bir çaba göstermesi gerekmektedir. 1,5 derecelik atmosfer sıcaklığı azaltılması hedefinin gerçekleştirilmesi için Avrupa Birliği ülkelerindeki gibi Türkiye’de de enerji üretiminin ve arzının dönüştürülmesi gerekmektedir.

Sanayi sektöründe enerji tasarruflu teknolojiler ile değişimi gerçekleştirmede iki tedbir öncelikli uygulanmalıdır. Birincisi, iklime zarar veren sübvansiyonların hızla azaltılmasıdır, ikincisi CO

2

emisyonlarının azaltılmasıdır. Özellikle iklime zarar veren ürünler daha yüksek vergilendirilmelidir. Mühendislik yaklaşımı, bireysel endüstrilerin enerji geçişi sırasında yeniden yapılandırılmasının kabul edilebilir olduğunu ortaya koymaktadır. Yeni teknolojiler sanayi sektöründe de böyle bir değişim de önemli bir role sahiptir. Bu durum özellikle yeni süreçlerin geliştirildiği CO

2

yoğun alanlarda geçerlidir. Buna örnek olarak, kimya endüstrisinde hammadde olarak CO

2

kullanılması verilebilir. Yeni teknolojilerin enerji verimliliğini artırdığını ve ekonominin enerji geçişinin başarısında enerji tüketimini azalttığını doğrulamaktadır. Ayrıca ulaşımda enerji tüketimini azaltmak ve yenilenebilir enerjilerin geliştirilmesine de öncelikli olarak önem vermek gerekmektedir.

Türkiye’de son yıllarda güneş ve rüzgar enerjisinin genişlemesi akılcı ve memnuniyet vericidir. Yenilenebilir enerjilerin genişlemesi daha iddialı hale gelmelidir. Şu anda mevcut olan “Yenilenebilir Enerji Kaynakları Yasası” ve bunda yapılacak değişiklikler somut uygulanabilir ve kontrol edilebilir hedefli olmalıdır. Bunun için rüzgar enerjisi ve güneş enerjili fotovoltaik hızlandırılmış genişleme gerektirmektedir. Şu an Türkiye’de, daha iddialı enerji geçiş ve iklim koruma önlemleri alınmaz ise sonra çok daha ciddi önlemler alınmak zorunda kalınabilir. Türkiye, sürdürülebilir çevre için enerji ve tasarım ile ilgili yurtdışından katma değerli ürün satın almak zorunda kalmamalıdır. Bunun için harcanacak para yenilenebilir enerjilerin genişlemesine ve enerji tasarruflu teknolojilere yönelik harcanmalıdır.

Bu aynı zamanda Türkiye ekonomisini de canlandıracaktır ve daha fazla iş olanağı

oluşturabilecektir. Bugün Türkiye enerji ve çevre koruma alanındaki hukuki ve alt hukuk

icraatları düzeyinde uygun yasalara sahiptir. Avrupa Birliği'ne katılma sürecinde bulunan

Türkiye, enerji tüketimi, enerji verimliliği ve yenilenebilir enerji kaynakları ve sera gazı

emisyonlarının uygulanması alanlarındaki hedefler paketine Avrupa üye ülkelerinin

(6)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU 4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL

benimsediği "20-20-20" hedefi ile Enerji ve Çevre Koruma alanında Avrupa Birliği'nin düzenlemesi yükümlülüğünü üstlenmelidir.

Yeni teknolojilerin ve uygulamalarının geliştirilmesi bu hedeflerin gerçekleştirilmesi için bir ön koşuldur. Bugün, dünya çapında yenilenebilir enerji kaynaklarının enerji planlamasında baskın bir rol oynadığı ve rüzgar enerjisinin kullanımının ilk sırada yer aldığı görülmektedir.

Ancak, geleneksel enerji kaynaklarının yakın gelecekte de tamamen yok olmayacağı gerçeği durmaktadır.

Soru, yenilenebilir enerji kaynaklarının konvansiyonel enerji kaynaklarının %100'ünü ne zaman karşılayacağıdır? Bu sorunun cevabı basit değildir. 2020 yılına kadar Avrupa Birliği devletlerinin enerji tüketimini verimli bir şekilde kullanarak enerji tüketimini azaltmaya yönelik ana planı uygulamışlardır. Bunun sonucu yenilenebilir enerji kullanımında öngörülen büyüme artmıştır ve uluslararası sözleşmelerde belirtildiği gibi sera gazı emisyonlarını azaltmışlardır (örneğin, 1992'den itibaren BM'nin iklim değişikliğinin azaltılmasının temellerini attığı Kyoto Protokolü). Enerji ve çevre koruma için yeni teknolojiler özetlenen programın gerçekleştirilmesi için önemli bir faktör olmuştur.

Türkiye'de de yenilenebilir enerji kaynaklarının kullanımında bir artış yaşanmaktadır.

Büyüme, yenilenebilir enerji kaynaklarından kurulu kapasite ve termal enerji ve elektrik üretiminde bir artış olarak kaydedilebilir. Yenilenebilir enerji kaynaklarının büyümesi için yatırımcılar ve girişimciler yenilenebilir enerji sistemlerine yatırım yapmaya devlet düzeyindeki bir tarife sistemi ile ve bankacıların finansal kaynakları bu yatırımlara taşımaları için teşvik edilmelidir.

Türkiye elektrik enerjisi tüketimi 2018 yılında bir önceki yıla göre %2,2 artarak 304,2 milyar kWh, elektrik üretimi ise bir önceki yıla göre %2,2 oranında artarak 304,8 milyar kWh olarak gerçekleşmiştir. Elektrik tüketiminin 2023 yılında baz senaryoya göre yıllık ortalama %4,8 artışla 375,8 TWh'e ulaşması beklenmektedir. 2018 yılında elektrik üretimimizin, %37,3'ü kömürden, %29,8'i doğal gazdan, %19,8'i hidrolik enerjiden, %6,6'sı rüzgârdan, %2,6’sı güneşten, %2,5'i jeotermal enerjiden, ve %1,4’ü diğer kaynaklardan elde edilmiştir. 2019 yılı Eylül ayı sonu itibarıyla Türkiye’nin kurulu gücü 90.720 MW'a ulaşmıştır. 2019 yılı Eylül ayı sonu itibarıyla kurulu gücün kaynaklara göre dağılımı; yüzde 31,4’ü hidrolik enerji, yüzde 28,6’sı doğal gaz, yüzde 22,4’ü kömür, yüzde 8,1’i rüzgâr, yüzde 6,2’si güneş, yüzde 1,6’sı jeotermal ve yüzde 1,7’si ise diğer kaynaklar şeklindedir. Ayrıca Türkiye’de elektrik enerjisi üretim santrali sayısı, 2019 yılı Eylül ayı sonu itibarıyla 8.069’a (Lisanssız santraller dahil) yükselmiştir. Mevcut santrallerin 669 adedi hidroelektrik, 68 adedi kömür, 262 adedi rüzgâr, 52 adedi jeotermal, 330 adedi doğal gaz, 6.435 adedi güneş, 253 adedi ise diğer kaynaklı santrallerdir.

İstanbul Rumeli Üniversitesi için özellikle önemli olan, böyle bir toplantının sürdürülmesidir ve deneyimlerin paylaşılmasıdır. Bu yıl ilk defa düzenlenen “1. Rumeli Sürdürülebilir Çevre için Enerji ve Tasarım Sempozyumu”, sürdürülebilir çevre için enerji ve tasarım sloganı altında gerçekleştirilmiş iki günlük bir toplantıdır. Bildiriler, sempozyum programının tematik alanlarına göre yapılan sunumlara uygun olarak düzenlenmiş 21 bildiriden oluşmaktadır.

Sempozyum Kitabında yayınlanan makaleler sürdürülebilir çevre için enerji kullanımı ve tasarımların yanı sıra yaşam kalitesinin yükseltilmesi ile birlikte çevre korumanın desteklenmesine katkıda bulunan bilimsel değerli bir içerik sunmaktadırlar.

Prof. Dr.-Ing. Ahmet CAN

(7)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU 4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL FOREWORD

New Technologies in Energy and Design for Sustainable Environment.

The Energy and Design for Sustainable Environment (SUCET) Symposium is a traditional scientific meeting of scientists and experts on energy and environmental issues that come together annually by the Faculty of Engineering and Architecture of Rumeli University in Istanbul.

35 academicians participated to make a presentation at 1

st

SUCET Symposium. Out of these 35 academicians 4 of them are from foreign universities, 10 from other universities in Turkey and 25 are from the Faculty of Engineering and Architecture at Istanbul Rumeli University. The internationally attended character of the symposium was demonstrated with the participation of academicians from two foreign universities, Zagreb University in Croatia and Gabrova Technical University in Bulgaria.

In the ranking of the most important challenges for Turkey, the environmental protection measures against climate change should take the second place after the education. Despite the Covid19 epidemic, the goal of reducing the world's atmospheric temperature of 1.5

o

C should be necessary. Turkey must accelerate the progress on the society's awareness on climate protection to reach atmosphere temperature of 1.5

o

C reduction targets and must show a quick effort. For the realization of 1.5

o

C atmospheric temperature reduction targets in Turkey and European Union countries must also transform their energy productions and supplies.

Two measures should be implemented with priority in realizing change with energy-saving technologies in the industrial sector. The first is the rapid reduction of climate-damaging subsidies, and the second is the reduction of CO

2

emissions. Especially products that harm the climate should be taxed higher. The engineering approach reveals that it is acceptable to restructure individual industries during the energy transition. New technologies also play an important role in such a change in the industrial sector. This is especially true in CO

2

-intensive areas where new processes are being developed. An example of this is the use of CO

2

as a raw material in the chemical industry. It confirms that new technologies increase energy efficiency and reduce energy consumption in the success of the economy energy transition. In addition, priority should be given to reducing energy consumption in transportation and developing renewable energies.

Expansion of solar and wind energy in Turkey in recent years is rational and satisfactory. The expansion of renewable energies should become more pretentious. The current "Renewable Energy Resources Law"

and the amendments to be made in this should be with concrete feasible and controllable targets. For this,

wind power and solar photovoltaic generators require accelerated expansion. If Turkey, does not take

measures for transition of energy and climate protection, today, it has to take more serious measures

tomorrow. Turkey should not be forced to buy energy-related value-added products from abroad and

design for a sustainable environment. The money to be spent for this should be spent on the expansion of

renewable energies and energy efficient technologies. This will also revive the Turkish economy and to

create more jobs. Today, Turkey has necessary regulations at the level of energy and environmental

protection fields with the appropriate laws. Turkey is in the process of joining the European Union and

should adapt energy consumption, energy efficiency and renewable energy sources and reducing

greenhouse gases target package of EU with the "20-20-20" target adopted by the European member

(8)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU 4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL

countries, it should undertake the European Union's regulation obligation in the field of Energy and Environmental Protection.

The development of new technologies and applications is a prerequisite for achieving these goals. Today, renewable energy sources appear to play a dominant role in energy planning around the world and the use of wind energy is in the first place. However, the fact remains that traditional energy sources will not be destroyed in the near future.

The question is that when will renewable energy sources meet 100% of conventional energy sources? The answer to this question is not simple. The European Union states implemented the master plan to reduce energy consumption by using energy efficiently until 2020. As a result, the projected growth in renewable energy use has increased and they have reduced greenhouse gas emissions as stated in international conventions (e.g., Kyoto Protocol, which the UN laid the foundations for climate change mitigation since 1992). New technologies for energy and environmental protection have been an important factor in the realization of the outlined program.

Turkey is also experiencing an increase in the use of renewable energy sources. The growth can be recorded as an increase in installed capacity from renewable energy sources and in thermal energy and electricity generation. For the growth of renewable energy sources, investors and entrepreneurs should be encouraged to invest in renewable energy systems through a state-level tariff system and bankers to move financial resources into these investments.

Turkey's electricity consumption increases 2.2% in 2018 compared to the previous year, 304.2 billion kWh, while electricity generation increased by 2.2% compared to the previous year and amounted to 304.8 billion kWh. Electricity consumption is expected to reach 375.8 TWh in 2023, with an annual average increase of 4.8% compared to the baseline scenario. In 2018, 37.3% of our electricity generation was from coal, 29.8% from natural gas, 19.8% from hydraulic energy, 6.6% from wind, 2.6% from the sun, 2%, 5 from geothermal energy and 1.4% from other sources. As of the end of September 2019, Turkey's installed capacity has reached 90.720 MW. Distribution of installed power according to resources as of the end of September 2019; 31.4 % hydraulic energy, 28.6 % natural gas, 22.4 % coal, 8.1

% wind, 6.2 % solar, 1.6 % geothermal and 1.7 % is in the form of other sources. In addition, the number of electric power generation plant in Turkey in September 2019 by the end of 8069 (including unlicensed stations) has increased. Number of existing power plants are 669 hydroelectric, 68 coal, 262 wind, 52 geothermal, 330 natural gas, 6.435 solar and 253 other source power plants.

Especially important for Istanbul Rumeli University is the continuation of such a meeting and the sharing of experiences. Organized for the first time this year, “1

st

Rumeli Energy and Design Symposium for Sustainable Environment” is a two-day meeting held under the slogan of energy and design for sustainable environment. 21 papers arranged in accordance with the presentations made according to the thematic areas of the symposium program. The articles published in the Symposium Book offer scientific valuable content that contributes to the use of energy and designs for a sustainable environment, as well as to increase the quality of life and to support environmental protection.

Prof. Dr.-Ing. Ahmet CAN

Istanbul-Silivri, February 2021

(9)

1. RUMELĠ SÜRDÜRÜLEBĠLĠR ÇEVRE ĠÇĠN ENERJĠ VE TASARIM SEMPOZYUMU 4 - 5 ġUBAT 2021 SĠLĠVRĠ - ĠSTANBUL

İçindekiler / Contents

ÖZEL OTURUM / PLENARY SESSION

Bildiri No Bildiri Adı Bildiri Yazarları Sayfa

Önsöz / Foreword Ahmet CAN

1.SUCET001 MAXIMUM HEAT FLOW RATE ANALYSIS OF COUNTERFLOW HEAT EXCHANGER IN A HEAT

EXCHANGER NETWORK

Antun GALOVIC Martina Rauch Saša Mudrinić

1

1.SUCET002 TREATMENT OF SOLID HOUSEHOLD AND HAZARDOUS WASTE BY PLASMA GASIFICATION. MANAGEMENT OF SPENT

FUEL FROM NUCLEAR POWER PLANTS

Stefan KARTUNOV 11

Teknik 1.Oturum / Technical Session I 1.SUCET003 TOPRAK KAYNAKLI ISI POMPASININ FARKLI

ÇALIġMA KOġULLARINDA PERFORMANS DEĞERLENDĠRMESĠ

Ertan BUYRUK Mustafa CANER

24

1.SUCET004 ENERJĠ ETKĠN BĠNALAR ĠÇĠN

TERMODĠNAMĠK YAKLAġIM

Ahmet CAN 32

1.SUCET005 TEKNOLOJĠNĠN EVRĠMĠNE PARAMETRĠK BĠR

BAKIġ Yılmaz KILIÇASLAN 44

1.SUCET006 SĠVAS ĠLĠ ÖZELĠNDE TOPRAK KAYNAKLI ISI POMPASI SĠSTEM ELEMANLARININ EKSERJĠ

VERĠMLERĠNĠN BELĠRLENMESĠ

Netice DUMAN Ertan BUYRUK Mustafa CANER

57

Teknik 2.Oturum / Technical Session II

1.SUCET007 MĠMARĠ TASARIMDA GÜNEġ KABUĞU YÖNTEMĠ:

ĠSTANBUL RUMELĠ ÜNĠVERSĠTESĠ MEHMET BALCI YERLEġKESĠ EĞĠTĠM YAPISI ÖRNEĞĠ

Hakan HĠSARLIGĠL Beyhan HĠSARLIGĠL

70

1.SUCET008 BÜYÜK ġEHĠRLERDE KAZISIZ TEKNOLOJĠ UYGULAMALARI

Fevzi YILMAZ HaĢim ÇAYIR

82

1.SUCET009 DOĞAL TARIM, GERĠ DÖNÜġÜM VE ÇEVRE KORUMASINDA MĠKROBĠYAL VE ENZĠMATĠK

ÇÖZÜM: SOLUCAN GÜBRESĠ ÜRETĠMĠNDE DOĞRULAR VE YANLIġLAR

Osman ÇAKMAK Uğur TUTAR Nazmi CEMALOĞLU

92

1.SUCET010 YENĠLENEBĠLĠR VE SÜRDÜRÜLEBĠLĠR ENERJĠ ĠÇĠN TÜRKĠYE’NĠN SU KAYNAKLARININ ANALĠZĠ VE DOĞU KARADENĠZ HAVZASI

ÖRNEĞĠ

Ġbrahim YÜKSEL 104

(10)

1. RUMELĠ SÜRDÜRÜLEBĠLĠR ÇEVRE ĠÇĠN ENERJĠ VE TASARIM SEMPOZYUMU 4 - 5 ġUBAT 2021 SĠLĠVRĠ - ĠSTANBUL

Teknik 3.Oturum / Technical Session III 1.SUCET011 IMPACT OF EARLY DESIGN DECISIONS ON THE

SUCCESS OF SUSTAINABLE SMART OFFICE PROJECTS

ġefik Emre ULUKAN 112

1.SUCET012 DEVELOPMENTS IN SOLUTION METHODS OF LAYOUT OPTIMIZATION:

A LITERATURE REVIEW

Fatma CAYVAZ Hatice GÜNER Ali Rıza GÜNER

123

1.SUCET013 ANTĠK KENT SURLARININ

SÜRDÜRÜLEBĠLĠRLĠĞĠ BAĞLAMINDA ARKEOPARKLARIN DEĞERLENDĠRĠLMESĠ

Hatice Çiğdem ZAĞRA Sibel ÖZDEN

135

1.SUCET014 SÜRDÜRÜLEBĠLĠRLĠK VE AKILLI ULAġIM

SĠSTEMLERĠ Ali Rıza GÜNER

Fatma CAYVAZ Hatice GÜNER

143

Teknik 4.Oturum / Technical Session IV

1.SUCET015 ĠÇMĠMARLIK MÜFREDATINDA

SÜRDÜRÜLEBĠLĠRLĠĞĠN YERĠ

Sevinç Alkan KORKMAZ Mergül Saraf YILDIZOĞLU Sibel ÖZDEN

149

1.SUCET016 HALEP’TE OSMANLI MĠMARĠ GELENEĞĠ VE SÜRDÜRÜLEBĠLĠRLĠĞĠ SAĞLAYAN

YÖNETĠCĠ BANĠLER

Kemal Hakan TEKĠN 156

1.SUCET017 TERSĠNE MÜHENDĠSLĠK VE VERĠ BĠLĠMĠ ĠLE SALGIN HASTALIKLARLA SÜRDÜRÜLEBĠLĠR

MÜCADELE

Abdullah YAVUZ Melike BEKTAġ Faruk BULUT

166

1.SUCET018 ĠRAN VE TÜRKĠYE’DEKĠ SÜRDÜRÜLEBĠLĠR MĠMARLIKTA YAPI MALZEMESĠ OLARAK

KERPĠÇ

Haydeh BENAM 173

Teknik 5.Oturum / Technical Session V 1.SUCET019 I. DERECE DOĞAL SĠT ALANLARINDA

EKOLOJĠK YAPI ÖNERĠLERĠ Hatice Çiğdem ZAĞRA Meryem SAĞLAM

185

1.SUCET020 SÜRDÜRÜLEBĠLĠR BĠR ÇEVRE ĠÇĠN YENĠDEN ÜRETĠM ÜZERĠNE BĠR LĠTERATÜR

ĠNCELEMESĠ

Hatice GÜNER Ali Rıza GÜNER Fatma CAYVAZ

196

1.SUCET021 MĠMARĠDE YAPISAL GÜÇLENDĠRME KAVRAMI ve

ÇEVRESEL ETKĠSĠNĠN KARġILAġTIRMALI ANALĠZĠ

Kıvanç ĠLHAN 202

(11)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU

4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL ________________ S

1 Martina Rauch

Saša Mudrinić Antun Galović

MAXIMUM HEAT FLOW RATE ANALYSIS OF COUNTERFLOW HEAT EXCHANGER IN A HEAT EXCHANGER NETWORK

Abstract

In this paper overall algorithm of analytical calculation of achieved maximum heat flow rate in counterflow heat exchanger as a part of heat exchanger network is presented. The algorithm is given in dimensionless form, so those variables which arise from the real work regime of a heat exchanger in a heat exchanger network appear as dimensionless variables. The paper also shows the criterion that needs to be fulfilled to achieve maximum heat flow rate. This maximum heat flow rate is also a local extremum and its value is higher than realised heat flow rate for each individual heat exchanger. Using the mentioned analytical algorithm, the case for calculation of dimensionless heat flow rate in dependence of the following variables: 2tot = 3.0; 0  2A  2tot; 0  3  1.0 and 0.5  M  2.0 is given. The essence of the problem comes down to finding the value 2A = 2Aopt in order to satisfy the condition of maximum heat flow rate as a local extremum of heat exchanger in a heat exchanger network. In addition, ratio of the achieved maximum heat flow rate to heat flow rate of individual heat exchanger is analysed for these cases. All these cases met the derived criterion for maximum heat flow rate. Also, the same analysis shows the case of dimensionless heat flow rate, 2tot = 1.0, which does not meet the derived criterion.

All these calculation results refer to the case when the heat capacity ratio 3 of both streams is the same for both individual heat exchanger and heat exchanger in a heat exchanger network.

Furthermore, the case of heat flow rate calculation for different ratios of heat capacity of streams is presented within the calculation results, where in the observed case it is shown that even under these conditions the maximum heat flow rate is achieved. For this case, given the number of increased variables, the previously emphasized criterion for achieving the maximum heat flow rate of heat exchanger in a heat exchanger network is no longer valid. All the results of the calculation are interpreted and presented in the corresponding diagrams.

Keywords: heat exchanger in a heat exchanger network, maximum heat flow rate, criterion relation, dimensionless display

1. Introduction

Recuperative heat exchangers are highly represented in a wide range of applications such as energy and process engineering, chemical industry, heating and cooling technology as well as air conditioning technology [1]. Historically, heat exchangers have experienced their rapid development especially lately in finding their optimal mode of operation. Heat exchanger network (HEN) belongs to a group of the most important systems in a process industry because it maximizes heat recovery in industrial processes and allows more rational energy consumption. There are many methods for HEN design, such as sequential synthesis [2] – [4] and simultaneous synthesis [5]. This article does not deal with the analysis and implementation of the heat exchanger network optimization by the mentioned methods. Idea of the mathematical model is to find the optimal mode of operation of two counterflow heat exchangers A and B which are integrated in the heat exchanger network, in order to achieve, for the given overall heat exchanger area, known mass flow rates of the streams and their inlet temperatures, maximum heat flow rate as a local extremum. This maximum heat flow rate is higher than the heat flow rates achieved separately in each individual heat exchanger with the same inlet parameters of streams and overall heat exchanger area, which is a desired benefit in the networking of these two heat exchangers.

2. The mathematical description of the problem

The elaboration of this mathematical model starts from the fact that total heat exchanger area

A0tot

consisting of two heat exchangers, A and B, is given. Mass flow rates and inlet temperatures of

streams are available from heat exchanger network. These input parameters are such that if there was

(12)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU

4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL ________________ S

2

only stream A or only stream B connected to a heat exchanger with given overall area, it would not be able to achieve the required heat flow rate. The solution then refers to checking whether the required amount of heat flow rate can be achieved by the simultaneous action of both stream A and stream B.

This means that such simultaneous action of both streams does not a priori allow a greater altered heat flow rate than in the case when these streams operate individually. Therefore, it is necessary to find a general criterion, which must be met in to order to achieve maximum heat flow rate. This refers to the maximum as a local extremum. Meeting this criterion means finding the position (connection) of stream A on the total heat exchanger area, to achieve, together with stream B, the maximum heat flow rate. Achieved value of this maximum heat flow rate should cover the required amount of heat flow rate. In the other words, within this mathematical model, the criterion of the existence of the maximum heat flow rate, as a local extremum, should be found, which should be higher in its amount than the heat flow rate achieved only with stream A or stream B. The obtained solution can be applied to another variant of the problem. If geometry of such a complex (networked) heat exchanger is given, then the criterion for obtaining the maximum heat flow rate is based on the correct choice of temperature and mass flow rates for heat exchanger A and heat exchanger B.

2.1 Case

3A =

3B =

3

The first case of the problem assumes that both streams A and B, see Figure 1., have equal heat capacities, which means 

3A

 

3B

 

3

.

 

A

0A

A

0B

A

0uk

= A

0A

+A

0B

C

2

; T

2

' C

2

; T

2

''

C

1

; T

1

'

B

C

1

; T

1

'

A

C

1

; T

1

''

B

C

1

; T

1

''

A

T ''

Figure 1. With an explanation of the problem

Assuming that the streams A and B, as weaker streams, have the same heat capacities, the expression for the heat flow rate can be expressed by the following equation

1B''

' B 1 '' A 1 ' A 1

1

T T T T

ΦC    (1)

Unknown temperatures T

1A''

i T

1B''

are obtained from the equations that define the efficiency of heat exchanger A or heat exchanger B, 6

' 2 ' A 1

'' A 1 ' A 1 A A

1

T T

T T

 

 

 (2)

* 2 ' B 1

'' B 1 ' B 1 B B

1

T T

T T

 

 

 (3)

The temperature T

''

is easily obtained from the energy balance of heat exchanger A

  

1A''

' A 1 1 ' 2 ''

2

T T C T T

C    (4)

By resolving the temperatures T

2*

, T

1A''

and T

1B''

from eq. (2) – (4) and returning them to eq. (1), the following expression for the heat flow rate is obtained

    

2'

'' A 1 1A ' 2 ' 1A A 1 B 1 3 ' 2 ' 1B

1B

T T T T T T

Φ            (5)

which is easily translated into a dimensionless form

(13)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU

4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL ________________ S

3

2'

1A

3 1B

1B

' B 1 1

1   

  

  M T T C

Φ (6)

In eq. (6), variables are defined as follows

' 2 ' B 1

' 2 ' A 1

T T

T M T

  (7)

) ) - exp(-(1 1

) ) - exp(-(1 1

A 2 3 3

A 2 3

1A

  

 

  (8)

2 1

3

C

C

 (9)

1 A 0 A

2

C

kA

 (10)

)) )(

- exp(-(1 1

)) )(

- exp(-(1 1

2A tot 2 3 3

2A tot 2 3

1B

   

 

  (11)

1 tot 0 uk

2

C

kA

 (12)

(Eq. (8) – (11) are taken from reference 6!)

Eq. (6) can be expressed in the following extended form

       

  

  

 

 

 

3 3 2tot 2A

A 2 tot 2 3 3

A 2 3 3

A 2 3 '

2 ' B 1

1

1 exp 1

1 exp 1 1

1 exp 1

1 exp 1

 

M

T T C

Φ

)) )(

- exp(-(1 1

)) )(

- exp(-(1 1

2A tot 2 3 3

2A tot 2

3

 

 (13)

The fundamental goal of this paper is to examine whether the desired maximum as a local extremum of eq. (13) exists for constant values 

3

and 

2tot

. Value of 

3

varies from 0 to 1, and for 

2A

from 0 to

2tot.

  0

d d

' 2 ' B 1 1 A 2

 

 

T T C

Φ

(14)

Due to the complexity of eq. (13) it is not possible to explicitly solve condition (14). The computer software package can be used for the solution, with the constant value 

3

. Therefore for 

3

= 0.5 the solution is



 

 



 

 

 

 

   

 

  

 

 

 

 

 

 2 ( 2 )

2 2 2 1

exp 2 2

exp 4 2

- ln 2

5 , 0 tot 2 tot

2

2Aopt

M

M M

M

M  

 (15)

An analytical explicit solution can be found for special cases of eq. (13), then for 

3

= 0.0, the eq. (13) takes form

2'

1 exp(-

2A

)

' B 1 1

T M

T C

Φ 1  exp(- ( 

2tot

 

2A

)) (16)

The condition 

3

= 0.0 physically means that the stronger stream 2 goes through a phase change, i.e.

the stronger stream evaporates or condenses. For this case, the condition given by eq. (16) transforms to following

2tot

2Aopt

ln

2

1 

  M  (17)

(14)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU

4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL ________________ S

4

By substituting equation (17) into equation (16), the expression for the non dimensional maximum heat flow rate is obtained

 

 

 

 

 

 1 - 2 exp - 2

2tot

max ' 2 ' B 1 1

MT M

T C

Φ (18)

The next special case of eq.(13) is the case of the so-called balanced heat exchanger where 

3

= 1.0, and the solution for the dimensionless heat flow rate has the following form

  1 1 1

2tot 2A

1

2A tot 2

2A tot 2

2A tot 2

2A 2A '

2 ' B 1

1

 

 

 

 

 

 

  

MT T C

Φ (19)

If eq. (19) is derived by 

2A

with inserting the criterion for maximum from eq. (14), following solution is obtained

 

1 2

1

2tot 2tot

Aopt

2

 

M M M

M  

 (20)

For M = 1.0 eq. (15), (18) and (20) give the same solution 2

tot 2 Aopt 2

   (21)

That means that the heat exchanger area A and B are equal to half of the total heat exchanger area.

Based on the previously obtained equations, it is possible to find a criterion expression that must be met in order to achieve the desired maximum heat flow rate.

In order for the maximum heat flow rate to occur for all values of 

3

the following criterion expression must be satisfied

 

 

 

  1 1

1 1

tot 2 2 2tot

tot 2

tot

2

 

M (22)

In order for the maximum to appear only on some intervals of 

3

, then the following criterion must be satisfied

 

1 1

- exp

tot 2 tot

2

  

M  

2tot

tot 2 2 2tot

tot

2

exp

1 1

U 

 

 

  M (23)

The maximum as a local extremum will not be reached if parameter M takes the value according to the following conditions

 -

2tot

exp

0  M   U M  exp  

2tot

 (24)

2.2 Case

3A

3B

It is important to emphasize that the current algorithm refers to the case of the same values

3A

= 

3B

= 

3

, which is not always the case in actual processes. In the case of different values of

3A

= C

1A

/C

2

3B

= C

1A

/C

2

, it is necessary to modify the previous expressions. For this case such modified equation is

2'

3A 1A

3B 1B

3B 1B

' 1B 2

1    

  

  M T T C

Φ (25)

In equation (25), variable M is defined by eq. (7) and variables

1A

and 

1B

take the following forms

 

 

 

3A 2A

3A

A 2 3A

1A

1 exp - 1 -

- 1 - exp 1

 

  (26)

(15)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU

4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL ________________ S

5

  

   

 

 

 

 

 

B 3

A 3 A 2 tot 2 3B 3B

B 3

A 3 A 2 tot 2 3B

1B

- 1 - exp 1

- 1 - exp 1

 

 

 (27)

with

1A 0tot

2tot

C

kA

 (28)

It is evident that eq. (25) together with eq. (26) – (28) represents a wider form of solution in relation to the solution given by eq. (13), which means that this equation system has more variables than the previous one. Including 

3A

= 

3B

= 

3

into eq. (25) – (28), eq. (6) is derived

2'

1A

3 1B

1B

' 1B 1

1   

  

  M T T C

Φ (6)

(It is important to emphasize that for the model described by eq. (25) – (28) criterion from eq. (22) and (23) are no longer valid since this last model is extended with one more variable!)

3. The results and discussion of the calculation cases

For the first set of calculation results 

2tot

= 3.0 is chosen, with variables as follows:

0  

2A

 

2tot

; 0

3  1,0 and 0.5  M  2.0. The choice of these quantities was such that the

criterion given by eq. (22) is fulfilled, which means that for each value 

3

= const. dimensionless heat flow rate reaches its maxima, as a local extremum.

Thus, the diagram in Figure 2 shows the values of dimensionless heat flow rate depending on

2A

and 

3

with M = 0.5 and

2tot

= 3.0.

3 = 0,80

3 = 0,0

3 = 0,20

3 = 0,40

3 = 0,60

3= 1,0

0 1 2 3

2A = kA0A/C1

0.2 0.4 0.6 0.8 1 1.2

/(C1(T1B' - T2'))

2tot = 3,0; M = 0,50 (1,153;1,184)

(1,050;1,084)

(0,950; 0,992)

(0,800; 0,908)

(0,550; 0,832) (0,450; 0,762)

2tot = 3.0 ; M = 0.50

0 0.2 0.4 0.6 0.8 1

C1/C2

0.8 1.2 1.6 2 2.4 2.8

maksB=2tot); maks=2tot)

0.4 0.6 0.8 1 1.2

2Aopt-> (C1(T1B' - T2'))maks

uk = 3,0; M = 0,50

2uk = 3.0 ; M = 0.50

Figure 2. Dependence of dimensionless heat flow rate on 2A and 3 with M = 0,50 and 2tot = 3,0 (left) Figure 3. Dependence of ratio of maks/(2B = 2tot) and maks/(2A = 2tot), 2Aopt/(C1(T1B - T2))maks on 3

with M = 0,50 and 2tot = 3,0 (right)

It can be seen from the diagram in Figure 2 that all parametric curves 

3

= const. achieve maximum heat flow rate values, which are as well as values of 

2Aopt

indicated in the diagram. It is evident that these maximum values are decreasing from 1.184 to 0.762 with the increase of 

3

from 0.0 to 1.0. On the other hand, 

2Aopt

decrease in value from 1.153 to 0.450 with an increase in the value of 

3

from 0.0 to 1.0.

Diagram in Figure 3 shows the ratios 

maks

/  ( 

2B

= 

2tot

) and 

maks

/  ( 

2A

= 

2tot

), left ordinate,

as a function of 

3

. It is obvious that 

maks

/  ( 

2B

= 

2tot

) is decreasing from 1.25 to 1.017 and the value

of 

maks

/  ( 

2A

= 

2tot

) is decreasing also from 2.493 to 2.032 with the increase of 

3

from 0.0 to 1.0. It

(16)

1. RUMELİ SÜRDÜRÜLEBİLİR ÇEVRE İÇİN ENERJİ VE TASARIM SEMPOZYUMU

4 - 5 ŞUBAT 2021 SİLİVRİ - İSTANBUL ________________ S

6

is further seen that in this case value 

maks

/  ( 

2A

= 

2tot

) is greater than the value 

maks

/  ( 

2B

= 

2tot

), what is physically justified according to eq. (7) since M is less than 1 (T

1A

’ < T

1B

’). On the other hand, the value of 

2Aopt

/(C

1

(T

1B - T2))maks

, right ordinate, also varies from value 1.15 to value 0.45 with an increase in 

3

from 0.0 to 1.0.

If the value of the variable M = 1.0, and the other values remain unchanged, then the results of the dimensionless heat flow rate calculation shown in Figure 4 are obtained. All lines are symmetric with respect to 

2Aopt

= 1.5 which is consistent with eq. (21). Values of both maximum and other heat flow rates decrease with the increase of the variable 

3

. The coordinates of the extrema points are indicated in the diagram above.

It is clear that in this case the ratios 

maks

/  ( 

2A

= 

2tot

) and 

maks

/  ( 

2B

= 

2tot

) are equal, so diagram in Figure 5 shows the dependence of these ratios on 

3

, while 

2Aopt

= 1.5 remains constant and independent of 

3

. The diagram also shows that the values 

maks

/  ( 

2B

= 

2tot

) and

maks

/  ( 

2A

= 

2tot

) on the left ordinate axis, continuously decrease from 1.635 to 1.12, with an increase in 

3

from 0.0 to 1.0, while the value of 

2Aopt

/(C

1

(T

1B - T2))maks

is constant and equals 1.5.

(1.50; 0.840)

3 = 0,80

3 = 0,0

3 = 0,20

3 = 0,40

3 = 0,60

3= 1,0 (1.50;1.554)

(1.50; 1.377)

(1.50; 1.216)

(1.50; 1.074)

(1.50; 0.949)

0 1 2 3

2A = kA0A/C1

0.6 0.8 1 1.2 1.4 1.6

/(C1(T1B' - T2'))

2tot = 3,0; M = 1,0

2tot = 3.0 ; M = 1.0

0 0.2 0.4 0.6 0.8 1

C1/C2 1

1.2 1.4 1.6 1.8

maks/tot) =maks/Btot)

1.4 1.5 1.6

2Aopt ->/(C1(T1B' - T2'))maks

2tot = 3.0; M = 1,0M = 1.0

Figure 4. Dependence of dimensionless heat flow rate on 2A and 3 with M = 1.0 and 2tot = 3.0 (left) Figure 5. Dependence of ratio of maks/(2B = 2tot) and maks/(2A = 2tot), 2Aopt/(C1(T1B - T2))maks on 3

with M = 1,0 and 2tot = 3,0 (right)

Diagrams in Figures 6 and 7 show the calculation results for M = 1.23. In this case all

3

= const. curves satisfy the criterion given by eq. (22). Maximum heat flow rate for 

3

= 1.0 is realized when 

2A

= 

2Aopt

= 

2tot

= 3.0.

(3.00; 0.923)

3 = 0,80

3 = 0,0

3 = 0,20

3 = 0,40

3 = 0,60

3= 1,0 (1.604;1.735)

(1.650;1.526)

(1.699;1.338)

(1.849;1.174)

(2.099;1.033)

0 1 2 3

kA0A/C1

0.6 0.8 1 1.2 1.4 1.6 1.8

/(C1(T1B' - T2'))

tot = 3.0; M = 1.23

0 0.2 0.4 0.6 0.8 1

C1/C2 1

1.2 1.4 1.6 1.8 2

maks/(2B =tot); maks/(2A =tot)

1.6 2 2.4 2.8 3.2

2Aopt -> (/(C1(T1B' - T2')))maks

tot = 3.0; M = 1.13M = 1.23

Referanslar

Benzer Belgeler

.1 *Bir şairin bütün gençliğini tü­ ketip onu olgunluk çağına erişti­ ren - lâkin temenni edelim ki, bu ça&amp;n bezgin sükûtuna götürmL yen _ bu

The effect of fluid flow rate on the performance of parallel flow heat exchangers in an extended plate with regard to thermal efficiency, overall heat transfer coefficient,

This brief and rather generalized picture of the orogenic and deposi- tional history of Southeast Turkey tries to convey the idea that, although the orogenic cycle was interrupted

 According to Ghazali, miracles are possible because the order of natural facts is not necessary.. The current natural order can be otherwise and such a change

The primary part of the volume of the flame tube (combustion zone) is directed to the primary air G I - such part of the total air flow G B ,which ensures the formation of a

Bebeklerin do¤um tart›s›, cinsiyeti, kardefl say›s›, bes- lenme flekli, anne yafl›, baba yafl› gibi parametrelerle de düzenli izlenmeleri aras›nda anlaml›

Convolutional codes, which are one of the oldest and most widely used error correction codes, have the advantage over recently discovered turbo codes and low-density parity- check

(Keywords: heat transfer;, heat exchanger; plate exchanger; plate-fin; Reynolds; geometry; measurement; test).. Caractrrisation du transfert de chaleur d'rchangeurs de chaleur