• Sonuç bulunamadı

In situ FT-IR spectroscopic investigation of gold supported on tungstated zirconia as catalyst for CO-SCR of NOx

N/A
N/A
Protected

Academic year: 2021

Share "In situ FT-IR spectroscopic investigation of gold supported on tungstated zirconia as catalyst for CO-SCR of NOx"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

CatalysisTodayxxx (2012) xxx–xxx

ContentslistsavailableatSciVerseScienceDirect

Catalysis

Today

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

In

situ

FT-IR

spectroscopic

investigation

of

gold

supported

on

tungstated

zirconia

as

catalyst

for

CO-SCR

of

NO

x

M.

Kantcheva

,

M.

Milanova,

S.

Mametsheripov

DepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received27February2012 Accepted23March2012 Available online xxx Keywords: Au/ZrO2–WOx

InsituFT-IRspectroscopy NOx+COsurfacereaction

CO-SCRofNOx

a

b

s

t

r

a

c

t

Thepossibilityforapplicationofgold supportedon tungstatedzirconiaascatalystintheselective catalyticreductionofNOxwithCO(CO-SCR)hasbeeninvestigatedbymeansofinsituFT-IR

spec-troscopy.Tungstatedzirconiacontaining18wt%ofWO3 waspreparedbyco-precipitation.Goldwas

depositedonzirconiaandtungstatedzirconiabycationicadsorptionusing[Au(en)2]Cl3 asa

precur-sor(en=ethylenediamine).TheFT-IRspectraobtainedduringtheinteractionofCOwithNOxspecies

adsorbedontheAu/ZrO2–WOx andAu/ZrO2 samplesrevealedtheformationofsurfaceisocyanates

attachedtothegoldparticles.ThegenerationofAu–NCOspeciesoccurredatlowtemperature(25–50◦C). TheW-containingsamplewascharacterizedbyhigheractivityinthead-NOx+COreactionthanthe

W-freeone.ItisshownthatthenitratespeciesoradsorbedNO2areessentialforthegenerationofsurface

isocyanatesandtheoxidationofNObyoxygenisanimportantstep.TheobtainedresultssuggestthatAu catalystssupportedontungstatedzirconiamightbeofinterestfortheselectivereductionofNOxwith

COatlowtemperatures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

TheselectivereductionofNOxinthepresenceofoxygenisa

verypromising technologytocontroltheemissionsfromdiesel andlean-burnengines.ReductionofNOxusingeithertheresidual

hydrocarbonsoron-boardfuelwouldbethemostideal technol-ogy.However,thetraditionalmaterialsdevelopedfortheselective reductionofNOxwithhydrocarbons(HC-SCR)donotshow

suffi-cientactivitiesundertheconditionsofleanexhaustespeciallyat lowtemperatures(<150–250◦C)[1–4].Oneofthetypical reduc-tantpresentinthecarexhaustisCO.RecentlyIr/SiO2,Ir/WO3and

Ir/WO3/SiO2catalystshavebeenreportedtobehighlyactiveinthe

selectivereductionofNOwithCO(CO-SCR)[5–11].However,these catalystsshowactivityin the260–400◦C temperaturewindow. Supportedgoldcatalystsareknowntobehighlyactiveinvariety ofreactionsatlowtemperatures[12,13].Inthepresentstudy,we reporttheresultsofFT-IRspectroscopiccharacterizationofgold catalystsupportedontungstatedzirconia.Inordertoevaluatethe potentialofanewmaterialasacatalystinadesiredprocess,itis importanttoinvestigatetheinteractionofthereactantswiththe surface.ForthispurposewestudiedtheadsorptionofCOandits co-adsorptionwithoxygenandNOoverAu-promotedandAu-free tungstatedzirconia.

∗ Correspondingauthor.

E-mailaddress:margi@fen.bilkent.edu.tr(M.Kantcheva).

2. Experimental 2.1. Samplepreparation

Thesamplepreparationisdescribedindetailelsewhere[14]. Inbrief,tungstatedzirconiawassynthesizedbyco-precipitation [15]withnominalcontentof18wt%ofWO3.Goldwasdeposited

ontungstatedzirconiabycationadsorptionfor2hfromaqueous solutionof[Au(en)2]3+complexatpH=9.6androomtemperature.

Afterdryingofthewashedsolidat80◦Cfor48h,thesamplewas calcinedfor1hat400◦C.Thecationicgoldprecursorwasprepared followingtheprocedureofBlockandBailar[16].Thesamplewas labeledasAu/18WZ-CP.

Inordertostudytheeffectoftungsten,goldwasdepositedon tetragonalzirconiaalsobycationadsorptionof[Au(en)2]3+

com-plexusingthesameconditionsappliedtotheW-containingsample.

2.2. Samplecharacterization

The samples were characterized by XRD, DR-UV–vis spec-troscopy,BETmeasurementsandchemicalanalysis,andtheresults werereportedearlier[14].

TheFT-IRspectrawererecordedusinga BomemHartman& BraunMB-102modelFT-IRspectrometerwithaliquid-nitrogen cooledMCTdetector ata resolutionof 4cm−1 (100 scans).The self-supportingdiscs(∼0.01g/cm2)wereactivatedin theIRcell

byheatingfor1hinavacuumat400◦C,andinoxygen(100Torr, 0920-5861/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

Physico-chemicalcharacterizationoftheinvestigatedsamples.

Sample SBET(m2/g) WO3(wt%) Auloading(wt%) AverageAuparticle

size(nm)

ZrO2 152 –

Au/ZrO2 143 – 1.43±0.03 8

18WZ-CP 116 18.0 –

Au/18WZ-CP 118 17.6 2.27±0.01 10

passedthroughatrapcooledinliquidnitrogen)atthesame tem-perature,followedbyevacuationfor1hat400◦C.Thespectraof adsorbedgaseswereobtainedbysubtractingthespectraofthe activatedsamplefromthespectrarecorded.Thesamplespectra werealsogas-phasecorrected.

3. Resultsanddiscussion

3.1. Structuralcharacterization

Table1summarizesthechemicalcompositionandBETsurface areasofthesamples.Theresultsofthechemicalanalysis[14]show thatthegolduptakeontungstatedzirconiaishigherthanthaton zirconia.Itiswellknownthattungstatedzirconiacontainsacidic protons[15,17–21]whichinbasicmediumcanundergo deproto-nation.ThiscanleadtotheformationofgreaternumberofM–O− anchoringsites(M=WandZr)forthe[Au(en)2]3+complex

result-inginhighergolduptake.

AccordingtotheXRDdata[14]thematerialshavethestructure oftetragonalzirconia.Theaveragesizeofgoldparticles(Table1)is calculatedbyusingScherrerequationandthemaingolddiffraction lineof2=38.2◦.TheDR-UV–visspectraofgoldcontaining sam-ples[14]exhibitbroadabsorptionwithmaximumat550–590nm characteristicoftheplasmonicoscillationmodeofnanosizedgold particles[22–24].

3.2. AdsorptionofCOatroomtemperature

TheanalysisoftheFT-IRspectraofCOadsorbedatroom tem-peratureonthesamplescanbeveryusefultoobtainqualitative informationonthenatureofsupportedgoldspecies.Fig.1 dis-plays the FT-IR spectra in the carbonyl region of CO (10Torr) adsorbedontheactivatedAu-containingsamples.Theabsorption at2194–2198cm−1 is assigned toCO adsorbed onZr4+ surface

sites[18,21,23,25–27].Thehigh-frequencyshiftexhibitedinthe WOx-containingmaterialisassociatedwiththeincreasedacidity

ofthecoordinativeunsaturatedZr4+sitescausedbythe

electron-withdrawing WOx groups [18,21]. The band corresponding to

theZr4+–COspeciesand thecomposedbandwithmaximumat

2113–2116cm−1areremovedupondynamicevacuationatroom temperature. Accordingto data from the literature [23,25–39], theabsorptionwithmaximumat2113–2116cm−1isassignedto COadsorbedonsmallthree-dimensionalgoldclusters, whereas theshoulderat2125–2130cm−1 couldbeattributedtoAuı+–CO species.Formationofpositivelypolarizedgoldis assumedtobe causedbythepresenceofadsorbedoxygenonthegoldparticles ortheirinteraction withthesupport[23,24,26,28,31,32,35–37]. Hadjiivanovandcoworkers[36,37]proposedthattheabsorption inthe2155–2130cm−1regioncouldbeattributedalsotoAu+–CO

speciesinwhichtheAu+cationresidesonthemetallicgold

parti-cles.Itshouldbenotedthatthelastactivationstepofthesamples consistedofevacuationat400◦Candadsorbedoxygencannotbe expectedundertheseconditions.Moreover,afterthereductionof thesamplesat400◦CwithCO,theabsorptionat2125–2130cm−1 isstillpresentinthespectraofCOadsorbedatroomtemperature. Therefore,itcouldbeproposedthatthefeatureat2125–2130cm−1

couldbeassociatedwiththepresenceofmoredefectivegoldsites locatedmostlikelyattheinterface.Itcannotbeexcludedthatthe absorptionat2125–2130cm−1isassociatedwiththepresenceof largerAuparticles.Thispropositioncouldbesupportedbythefact thatCOadsorbedonsmallgoldparticlesischaracterizedby(CO) modeatlowerwavenumbersandthe(CO)stretchingvibrationis blue-shiftedastheparticlesizeincreases[40].Recently, absorp-tionbandat 2130–2140cm−1 observed upon COadsorption on Au/Nb2O5 hasbeenattributedtoCOcoordinatedtolargergold

nanoparticles[41].

3.3. InsituFT-IRspectroscopicinvestigationoftheNO+O2+CO

reaction

3.3.1. NO+O2surfacereaction

Ingeneral,themechanismofSCRofNOxonvariousoxide

cata-lystsinvolvestheinteractionofstronglyadsorbedNOx−species(x

is2or3)withthereducer[2,42–46].Thereforewestudiedthe ther-malstabilityofNOxspeciesadsorbedonthesurfaceofthe18WZ-CP

andAu/18WZ-CPsamples.

NOxspecies onthesurface oftheAu/18WZ-CPsamplewere

createdby adsorptionof a (10TorrNO+25TorrO2)mixtureat

roomtemperaturefollowedbyevacuationfor20minatthesame temperature(Fig.2A,spectrum(a)).Theabsorptionbandsinthe 1700–1000cm−1 range are typicalof surface nitrates observed ontungstatedzirconia[45–47] and areidentified as monoden-tate(1582and1275cm−1)andbidentate(1629and1219cm−1) NO3− species. The broad absorption centered at 2140cm−1 is

2050 2100 2150 2200 2250 Absorbance Wavenumber (cm-1) Au/ZrO2 Au/18WZ-CP 0.02 2 116 2113 219 4 2198 2130 2125

Fig.1. FT-IRspectraofCO(10Torr)adsorbedatroomtemperatureonthesamples studied.

(3)

M.Kantchevaetal./CatalysisTodayxxx (2012) xxx–xxx 3 1000 1250 1500 1750 2000 2250 2500 d c Absorbance Wavenumber (cm-1) a b 0.5 1629 1582 1275 1219 2140

(A)

1500 1750 2000 2250 2500

(B)

NO 2 0.05 b c d

Fig.2.PanelA:FT-IRspectraoftheAu/18WZ-CPsampletakenaftertheadditionofa(10TorrNO+25TorrO2)mixturetotheIRcellfor10minatroomtemperaturefollowed

byevacuationfor20min(a),andafterheatingtheisolatedIRcellfor10minat100◦C(b),200◦C(c)and300◦C(d).PanelB:Gasphasespectracollectedat100◦C(b),200◦C (c)and300◦C(d).

characteristicofNO+species[45–47].HeatingtheisolatedIRcell

inthetemperaturerange100–300◦C,leadstogradualdecreasein theintensitiesofthenitratebands.Thespectraofthegasphase (Fig. 2B) showthat themajor productof decomposition ofthe surfacenitratesisNO2.TheAu-free18WZ-CPsamplecontains

anal-ogoustypeofadsorbedNOxspecieswhichweregeneratedbythe

samewayasdescribedabove(thespectraarenotshown).However, thesurfacenitratesontheAu-containingsampledisplayhigher thermalstability.

Therearereportsintheliterature[35,37],showingthata mix-tureof NO+O2 cancause oxidation of supportedmetallic gold

particlestocationicgoldspeciesandthisprocesscanoccuratroom temperature.Inordertofindtheeffectofco-adsorptionofNO+O2

mixtureontheoxidationstateofgoldintheAu/18WZ-CPsample, weinvestigatedtheadsorptionofCOonthecatalystcontaining pre-adsorbedNOxspecies.Itiswellknownthatthespectral

fea-turesofadsorbedCOcanprovideinformationabouttheoxidation stateoftheadsorptionsite[34].Surfacenitratespecies(absorption bandsbetween1700and1000cm−1)weregeneratedbybringing incontacttheAu/18WZ-CPsamplewithamixtureof10Torrof NOand25TorrofO2for10minatroomtemperaturefollowedby

evacuationatthesametemperaturefor20min(Fig.3,spectrum (a)).Tothesampletreatedinthisway,10TorrofCOwereadded. Thespectrumdetectedatroomtemperatureafter5mincontainsa strongbandwithmaximumat2185cm−1(Fig.3,spectrum(b)).The intensityofthissignalincreasessignificantlyafter10minofcontact withtheCO(Fig.3,spectrum(c)).Weakabsorptionat2130cm−1is observedaswellwhoseintensityincreasesinparallelwiththemain bandat2185cm−1.Thelattersignalfallsintherangeofreported (CO)stretchingvibrationsofAu+–COspecies(2197–2160cm−1

[31–37]).However,theincrease intheintensityof thebandat 2185cm−1 duringthecontactwithCO contradictstheobserved instabilityoftheAu+–COspeciesinCOatmosphere[31–33,35]due

toreductionofAu+adsorptionsitesbyCO.

Inordertoensuremoreefficientoxidationofgold,the cata-lystpelletwastreated witha(10Torr NO+25TorrO2)mixture

at300◦Cfor30min.Thenthetemperaturewasloweredto200◦C andthegasmixturewasremovedfromtheIRcellupondynamic

evacuationwhilecoolingtoroomtemperature.Subsequent adsorp-tionofCO(10Torr)atroomtemperatureresultsintheformation ofweakabsorptionbands at2190and2165cm−1 (Fig.4, spec-trum(a)).Thespectruminthenitrateregion(notshown)displays thesamesetofnitratebandsasshowninFig.2A,althoughwith weakerintensity.Thebandat2190cm−1resiststheevacuationat roomtemperature(Fig.4,spectrum(b))anddisappearsupon out-gassingat100◦C(Fig.4,spectrum(d)).Theobservedbehaviorof theabsorptionat2190cm−1istypicalofAu+–COspecies[34].The

COadsorbedonAu+sitesisstabilizedbythesynergismbetween

the␴-dativeand␲back-bondingcomponentsoftheAu+ CObond

[34–37]andthecarbonylcomplexcanbedestroyedat temper-aturehigherthan25◦C.Theabsorptionat2165cm−1 disappears uponevacuationatroomtemperature(Fig.4,spectrum(b))and couldbeattributedtoAuı+–COspeciesorCOadsorbedonlarge

1000 1200 1400 1600 1800 2000 2200 2400 Absorbance Wavenumber (cm-1) a b c 2185 1622 1582 12 75 1227 0. 5 2130

Fig.3. FT-IRspectraoftheAu/18WZ-CPcatalystcollectedaftertheadsorptionof a(10TorrNO+25TorrO2)mixturefor10minatroomtemperaturefollowedby

evacuationfor20minatroomtemperature(a)andadsorptionof10TorrCOatroom temperaturefor5min(b)and10min(c).

(4)

2100 2125 2150 2175 2200 2225 2250 2275 Absorbance Wavenumber (cm-1) 21 9 0 216 5 a b c d 0. 02

Fig.4. FT-IRspectraoftheAu/18WZ-CPsamplecollectedaftertheadsorptionofa (10TorrNO+25TorrO2)mixturefor30minat300◦Cfollowedbydynamic

evacu-ationfrom200◦Ctoroomtemperatureandsubsequentadsorptionof10TorrofCO

for10min(a),evacuationfor15minatroomtemperature(b),50◦C(c)and100C

(d).

goldparticles.Thisbandisfoundathigherfrequencythanthe cor-respondingbandobservedontheactivatedAu/18WZ-CPsample (seeFig.1)indicatingthateithertheAuı+sitesbearagreater pos-itivechargeorthereisagglomerationofthegoldparticlesafter thehigh-temperaturetreatmentwithNO+O2mixture.Itislikely

thatthespeciesgivingrisetothebandat2165cm−1couldbeAu+

adsorptionsitesdispersedonthesurfaceofmetallicgoldparticles asproposedin[36,37].

Spectrum(a)inFig.4differsfromthespectrumofadsorbed COonthesampletreatedwithNO+O2mixtureatroom

temper-ature(Fig.3,spectrum (c)).It seemsthat theoxidationof gold particlesbytheNO+O2 mixturetakesplaceathigher

tempera-ture(300◦C)andtheabsorptionbandat2185cm−1detectedduring theCOadsorptiononthesampletreatedwithNO+O2mixtureat

roomtemperature(Fig.3,spectra(b)and(c))cannotbeascribedto Au+–COspecies.Thisconclusionissupportedalsobythefactthat

thecoloroftheAu/18WZ-CPsampleafterthepre-treatmentwith NO+O2mixtureatroomtemperatureremainedthesameasthatof

theactivatedsample,i.e.gray-black.However,thetreatmentwith NO+O2mixtureat300◦Ccauseschangesinthecolorofthesample

fromgray-blacktopale-violet.

Takingintoaccountthatthecompoundsadsorbedatroom tem-peratureontheAu/18WZ-CPsampleareCOandNOxspecies,it

couldbeproposedthat thestrongbandat 2185cm−1 in Fig.3 couldbeattributedtoNCOspeciesformedonmetallicgoldsites. Accordingtothe literature[38,48,49] theAu–NCO species give rise to absorption bandat 2180–2190cm−1. In order to verify this assumption we performed13CO adsorption onthe sample

treatedwith NO+O2 mixtureat roomtemperature (Fig. 5).The

bandat2185cm−1isshifteddownby57cm−1andispositionedat 2128cm−1on13Csubstitution.Theobservedvalueisconsistent

withthatreportedbyCelioetal.[50]fortheisotopicshiftdetected onsubstituting13Cfor12CinNCOspeciesadsorbedonCu(100).

Fromtheseresultsitcanbeconcludedthattheweakabsorptionat about2130cm−1inFig.3,spectrum(c)belongstothe13COsatellite

ofthebandat2185cm−1.

Thebehavioroftheabsorptionat2185cm−1 inthepresence ofwatervaporcanbeusedasadditionalevidencesupportingthe assignmentofthisfeaturetoAu–NCOspecies.Itiswellknownthat theNCOspeciescanreactwithwaterproducingammoniaandCO2

throughtheformationofHNCO[11,51].Thespeciescharacterized

2050 2100 2150 2200 2250 Absorbance Wavenumber (cm-1) 2185 2128 a b 0. 5

Fig.5.FT-IRspectraof10TorrofCO(a)and10Torrof13CO(b)adsorbedatroom

temperatureontheAu/18WZ-CPsample.

bytheabsorptionbandat2185cm−1aregeneratedbyadsorption ofCO(10Torr,for10min)onthesampletreatedwithNO+O2

mix-tureatroomtemperatureasdescribedaboveandthenthegaseous COwasevacuatedfor15min(Fig.6A,spectrum(a)).Theaddition of0.1Torrofwatervaporatroomtemperaturecausessignificant decreaseintheintensityofthebandat2185cm−1(Fig.6A, spec-trum(b))andappearanceofCO2andHNCO(as(NCO)at2266cm−1

[51])in thegasphase(Fig.6B, spectrum(b)).The formationof thelattercompoundsconfirmsunambiguouslytheassignmentof thebandat2185cm−1 toAu–NCO species.Increasingthe tem-perature to100◦C resultsin furtherdecreasein theamountof isocyanates(Fig.6A,spectrum(c))andtheydisappearcompletely at200◦C(thespectrumisnotshown).Noammoniawasdetectedin thegasphasemostlikelybecauseofitslowconcentrationand/or adsorptiononthecatalystsurface.ThesamplespectraintheNH stretchingregionarenoisyandarenotrepresentative.The bend-ingmodesofcoordinatedammoniaandNH4+ionfallintheregion

ofstretchingvibrationsof thenitratesand ifformed,they can-notberesolved.ItshouldbenotedthattheadsorptionofCOon theNOx-precoved18WZ-CPsampledoesnotleadtotheformation

ofNCOspecieswhichonoxidessurfacesproduceabsorptionsin the2280–2200cm−1region[38,46,48,49,52].TheabsenceofNCO speciescoordinatedtothesupportinthecaseofAu/18WZ-CP sam-plecanbeexplainedbyunavailabilityofadsorptionsiteswhichare blockedbythenitratespecies.

TheAu–NCOspeciesobservedontheAu/18WZ-CPsampleare characterizedbyhighthermalstabilityandtheyareremovedby dynamicevacuationat350◦C(Fig.7).

3.3.2. NOx+COsurfacereaction

TheaimofthisexperimentistoinvestigatethepossibilityofCO toactasreducingagenttowardtheNOxspeciesadsorbedonthe

(5)

M.Kantchevaetal./CatalysisTodayxxx (2012) xxx–xxx 5 2000 2100 2200 2300 2400 Absorbance Wavenumber (cm-1) 0.2 5 2185

(A)

a b c 2000 2100 2200 2300 2400 2500

(B)

2266 CO2 0. 05 b c HNCO

Fig.6.PanelA:FT-IRspectraoftheAu/18WZ-CPcatalystcollectedaftertheadsorptionofa(10TorrNO+25TorrO2)mixturefor10minatroomtemperaturefollowed

byevacuationfor20minatroomtemperature,adsorptionof10TorrCOatroomtemperaturefor10minandevacuationofthegaseousCOfor15min(a),andsubsequent additionof0.1Torrofwatervaporfor10minatroomtemperature(b)and100◦C(c).PanelB:Gasphasespectracorrespondingtothesamplespectra(b)and(c). surfaceoftheAu/18WZ-CPcatalyst.Adsorbednitratespecieswere

createdbyadsorptionofmixtureof10TorrNOand25TorrO2atRT

for10minfollowedbyevacuationfor20minatRT(Fig.8A, spec-trum(a)).ThenCO(10Torr)wasadded(Fig.8A,spectrum(b))and

2100 2120 2140 2160 2180 2200 2220 2240 3500C 3000C 2500C 2000C 1500C 1000C Absorbance Wavenumber (cm-1) RT 0. 25 2185

Fig.7. FT-IRspectraoftheAu/18WZ-CPcatalystcollectedaftertheadsorptionofa (10TorrNO+25TorrO2)mixturefor10minatroomtemperaturefollowedby

evacu-ationfor20minatroomtemperature,adsorptionof10TorrCOatroomtemperature for10minandevacuationofthegaseousCOfor15minatvarioustemperatures (RT=roomtemperature).

theisolatedIRcellwasheatedfor10minatvarioustemperatures. Thesharpbandat2185cm−1assignedtoAu–NCOspeciesincreases inintensityat50◦C(Fig.8A,spectrum(c))anddisappearsat200◦C (Fig.8A,spectrum(f))simultaneouslywiththeNO2observedinthe

gasphase(Fig.8B,spectrum(f)).ItcanbeconcludedthattheNCO speciesreactwiththeNO2leadingtotheformationofCO2andN2.

SomeamountsofN2OandNOaredetectedaswell.Thefactthat

intheabsenceofCO,theNO2ispresentinthegasphase(Fig.2)

supportstheassumptionthattheNO2isreducedbyCOthrough

theintermediacyofAu–NCOspecies.

The spectra shown in Fig. 9 illustrate the reactivity of the Au–NCO species generated ontheAu/18WZ-CP sample toward NO2.TheabsenceofCOinthegasphasepreventstheformation

ofadditionalAu–NCOspeciesat50◦C(seeFig.8A,spectrum(c)) and allowsmonitoringtheonsettemperature oftheNCO+NO2

reaction.TheNCOspecies havebeenobtainedbyadsorptionof 10TorrofCOontheNOx-precoveredAu/18WZ-CPsamplefollowed

byevacuationfor20minatroomtemperature(Fig.9,spectrum (a)).Aftertheadmissionof0.4TorrofNO2 atroomtemperature

(Fig.9,spectrum(b)),theisolatedIRcellwasheatedbetween25 and250◦Cfor 10minateach temperature.Theexposureofthe sampletoNO2atroomtemperature(Fig.9,spectrum(b))causes

strongdecreaseintheintensityofthebandat2185cm−1indicating thattheNCO+NO2reactiontakesplacealreadyat25◦C.The

sur-faceconcentrationoftheNCOspeciesdecreasesrapidlywiththe temperatureandtheydisappearat250◦C(Fig.9,spectrum(g)). Thegasphasespectra(notshown)containCO2andNO2thathas

beentakeninexcess.Asshownabove,theAu–NCOspecieshave highthermalstabilityandleavethesurfaceupondynamic evacu-ationat350◦C(Fig.7).Theseresultsconfirmthehighreactivityof theisocyanatesformedonthegoldparticlesandsuggestthatthe Au/18WZ-CPcatalystmayhavethepotentialforlow-temperature reductionofNOxwithCOinthepresenceofoxygen.

Inordertoobtaininformation abouttheroleofWOxspecies

intheNOx+COsurfacereaction,westudiedtheinteractionofCO

withnitratespeciespre-adsorbedontheAu/ZrO2 catalyst.Also

inthiscase,nitratespecies(bandsbetween1700and1000cm−1) werecreatedbyadsorptionofmixtureof10TorrNOand25Torr O2 at RT for 10min followed by evacuation for 20min at RT

(6)

1000 1250 1500 1750 2000 2250 2500

(B)

Absorbance Wavenumber (cm-1) 2185 0. 5 2140 a b c d e f g

(A)

1400 1600 1800 2000 2200 2400 CO2 CO NO NO2 0.05 b c d e f g N 2O

Fig.8. PanelA:FT-IRspectraoftheAu/18WZ-CPcatalystcollectedaftertheadsorptionofa(10TorrNO+25TorrO2)mixturefor10minatroomtemperaturefollowedby

evacuationfor20minatroomtemperature(a),subsequentadsorptionof10TorrCOatroomtemperaturefor10min(b)andheatingtheisolatedIRcellfor10minat50◦C

(c),100◦C(d),150C(e),200C(f)and250C(g).PanelB:Gasphasespectracollectedat25C(b),50C(c),100C(d),150C(e),200C(f)and250C(g).

(Fig.10A,spectrum(a)).Aftertheadditionof10TorrofCOatroom temperature,theisolatedIRcellwasheatedfor10minatvarious temperatures.AswiththeAu/18WZ-CPsample,thesharpbandat 2184cm−1 ischaracteristicof NCOspeciesadsorbedonAu.The

2100 2120 2140 2160 2180 2200 2220 2240 Absorbance Wavenumber (cm-1) a b c d e f g 0. 2 5 2185

Fig.9. FT-IRspectraoftheAu/18WZ-CPcatalystcollectedafterthegenerationofthe Au–NCOspecies(a)(fortheconditionsseeFig.7,spectrum(RT))andsubsequent additionof0.4TorrofNO2for10minat25◦C(b),50◦C(c),100◦C(d),150◦C(e),

200◦C(f)and250C(g).

comparisonof thespectrashownin Figs.8and 10leadstothe conclusionthattheWOx-containingcatalystshouldhavehigher

activitybecausetheadsorbedNCOspeciesandNO2 disappearat

200◦Cwhereas inthecase ofAu/ZrO2 sampletheyarepresent

atthistemperature.Despite ofthehigherconcentrationof sur-facenitratesontheAu/ZrO2 sample,theamountofevolvedNO2

islower.Thissuggeststhatthesurfacetungstateslowerthe stabil-ityofthenitrateions.Inaddition,theweakabsorptionsat1450and 1420cm−1observedinthespectrumofAu/ZrO2detectedat250◦C

indicatetheformation of stablepolydentate carbonates [53,54] whichmayhavenegativeeffectonthecatalyticactivity.Nosuch speciesarefoundinthecaseoftheAu/18WZ-CPsample.

Finally,itshouldbenotedthat theAu-free18WZ-CPsample doesnotcatalyzetheinteractionbetweenadsorbedNOxspecies

andCO:theevolvedNO2ispresentinthegasphasebetween25

and350◦C(thedataarenotshown).

3.3.3. Interactionofa(10TorrNO+14TorrCO)mixturewith Au/18WZ-CP

The aim of this experiment is to show the role of NO+O2,

respectivelyNO2,fortheformationofAu–NCOspecies.Thespectra

(Fig.11)arecollectedinthepresenceofNO+COreactionmixtureat varioustemperatures.Thebandat2230cm−1observedinthe spec-trumtakenatroomtemperature(Fig.11A,spectrum(a))istypical ofadsorbedN2OwhichispresentasimpurityinthegaseousNO

(Fig.11B).Theabsorptionat2198cm−1 corresponds toZr4+–CO

whereasthesignalat 2118cm−1 is assignedtoAu0–COspecies

(Fig.11A).ThespectrumrecordedatRTcontainsabsorptionbands whichareattributedtobidentateHCO3−(1606and1222cm−1),

bidentate(1555and1305cm−1)andpolydentatecarbonates(1456 and1420cm−1)[53,54].Theassignmentoftheabsorptionsinthe 1700–1000cm−1regiontocarbonatespeciesisconfirmedbythe FT-IRspectraofadsorbedCOtakeninthe25–250◦Ctemperature range.Thedataarenotshownforthesakeofbrevity.The intensi-tiesofthebandsat2230,2198and2118cm−1decreasewiththe temperatureandtheseabsorptions arenolongerpresentinthe spectrumtakenat150◦C(Fig.11A,spectrum(d)).OnlyZr4+–NO

(7)

M.Kantchevaetal./CatalysisTodayxxx (2012) xxx–xxx 7 1000 1250 1500 1750 2000 2250 2500

(B)

Absorbance Wavenumber (cm-1) 0. 5 14 5 0 142 0 2184 b c d e f g a

(A)

1400 1600 1800 2000 2200 2400 CO2 CO NO NO2 0.05 b c d e f g

Fig.10.PanelA:FT-IRspectraoftheAu/ZrO2catalystcollectedaftertheadsorptionofa(10TorrNO+25TorrO2)mixturefor10minatroomtemperaturefollowedby

evacuationfor20minatroomtemperature(a),subsequentadsorptionof10TorrCOatroomtemperaturefor10min(b)andheatingtheisolatedIRcellfor10minat50◦C (c),100◦C(d),150◦C(e),200◦C(f)and250◦C(g).PanelB:Gasphasespectracollectedat25◦C(b),50◦C(c),100◦C(d),150◦C(e),200◦C(f)and250◦C(g).

1000 1200 1400 1600 1800 2000 2200 f e d Absorbance Wavenumber (cm-1) a b c 22 30 2198 2118 0.1 160 6 15 5 5 1305 1222 11 78 1937 14 56 142 0

(A)

1500 1750 2000 2250 2500

(B)

f e d c b CO 2 N 2O CO NO 0.0 2 a

Fig.11.PanelA:FT-IRspectraoftheAu/18WZ-CPcatalystcollectedaftertheadsorptionofa(10TorrNO+14TorrCO)mixturefor10minatroomtemperature(a)and subsequentheatingtheisolatedIRcellfor10minat50◦C(b),100C(c),150C(d),200C(e)and250C(f).PanelB:Gasphasespectracollectedat25C(a),50C(b),100C

(c),150◦C(d),200C(e)and250C(f).

identifiedasNOxspeciesadsorbedatroomtemperature.Nosurface

nitratesandAu–NCOspeciesareformedevenathigher tempera-tures.ThisfactindicatesthatthenitratespeciesoractivatedNO2

areessentialfortheformationofAu–NCOspeciesandthatthe oxi-dationofNObyoxygenisanimportantstep.Thegasphasespectra (Fig.11B)showthattheamountofN2Oincreaseswiththe

tem-peraturebeingthehighestat250◦C(spectrum(f))whentheNO− speciesareremovedcompletelyfromthesurface.TheCO2detected

in thegas phase at 200◦C (Fig.11B, spectrum (e)) most likely appearsasaresultofdecompositionofthesurfacecarbonates.

4. Conclusions

Goldcatalystspreparedbycationicadsorptionofaqueous solu-tionof[Au(en)2]Cl3complexonzirconiaandtungstatedzirconia

havebeeninvestigatedbyinsituFT-IRspectroscopy.The adsorp-tionofCOshowsthepresenceofpositivelycharged(orlargegold clusters)andneutralgoldparticlesonbothsupports.Detailed FT-IRinvestigationoftheinteractionbetweenCOand NOxspecies

pre-adsorbedonAu/ZrO2 andAu/ZrO2–WOx samplesrevealthe

(8)

(25–50◦C). The gold isocyanates display highthermal stability. However,theyreactreadilywithNO2atroomtemperature.

Dur-ingthead-NOx+COreactionovertheAu/ZrO2–WOxsample,the

goldisocyanatesdisappearat200◦CsimultaneouslywiththeNO2

thatisgeneratedinthegasphasebydecompositionofthesurface nitrates.ThisprocessontheAu/ZrO2catalysttakesplaceathigher

temperature(250◦C).ItisconcludedthattheincorporationofW tozirconiadecreasesthestabilityoftheadsorbednitrates.The Au-freetungstatedzirconiadoesnotcatalyzetheinteractionbetween adsorbednitratesandCO:theevolvedNO2 ispresentinthegas

phasebetween25and350◦C.

NoformationofsurfacenitratesandAu–NCOspeciesisdetected duringtheNO+CO adsorptiononAu/ZrO2–WOx catalyst inthe

25–250◦Ctemperaturerange.Thisresultimpliesthatthenitrate speciesoradsorbedNO2areessentialforthegenerationofgold

isocyanatesandtheoxidation ofNObyoxygenisanimportant step.IntheabsenceofCO,gaseousNO2overbothAu-containing

catalystsisobservedinthe25–350◦Ctemperaturerange.Thisfact supportstheconclusionthatNO2isreducedbyCOwiththe

inter-mediacyofAu–NCOspeciesleadingtotheformationofN2andCO2.

TheresultsofinsituFT-IRspectroscopicinvestigationpresumethat Ausupportedontungstatedzirconiamightbepotentialcandidate forthedevelopmentoflow-temperaturecatalystfortheselective reductionofNOxwithCO.

Acknowledgments

ThisworkwasfinanciallysupportedbytheScientificand Tech-nologicalResearchCouncilofTurkey(ProjectTBAG-109T854)and BilkentUniversity.ThefinancialsupportofNATOgrantESP.CLG. No.984160isgreatlyappreciated.

References

[1]M.Iwamoto,in:A.Corma,F.V.Melo,S.Mendioroz,J.L.G.Fierro(Eds.),Stud.Surf. Sci.Catal.,vol.130,2000,pp.23–47.

[2]R.Burch,J.P.Breen,F.C.Meunier,AppliedCatalysisB39(2002)283–303. [3]R.Burch,CatalysisReviews:ScienceandEngineering46(2004)271–334. [4]M.C.Kung,H.H.Kung,TopicsinCatalysis28(2004)105–110.

[5]M.Haneda,T.Yoshinari,K.Sato,Y.Kintaichi,H.Hamada,Chemical Communi-cations(2003)2814–2815.

[6]M.Shimokawabe,N.Umeda,ChemistryLetters33(2004)534–535. [7]A.Takahashi,I.Nakamura,M.Haneda,T.Fujitani,H.Hamada,CatalysisLetters

112(2006)133–138.

[8]H.Inomata,M.Shimokawabe,M.Arai,AppliedCatalysisA332(2007)146–152. [9]M.Haneda,H.Hamada,ChemistryLetters37(2008)830–831.

[10]T.Nanba,S.Shinohara,J.Uchisawa,S.Masukawa,A.Ohi,A.Obuchi,Chemistry Letters53(2006)450–451.

[11]T.Nanba,K.-IWada,S.Masukawa,J.Uchisawa,A.Obuchi,AppliedCatalysisA 380(2010)66–71.

[12]M.Haruta,N.Yamada,T.Kobayashi,S.Iijima,JournalofCatalysis115(1989) 301–309.

[13]M.Haruta,M.Date,AppliedCatalysisA222(2001)427–437.

[14]M.Kantcheva,M.Milanova,I.Avramova,S.Mametsheripov,CatalysisToday (2012),http://dx.doi.org/10.1016/j.cattod.2012.02.027,inpress.

[15]J.G.Santiesteban,J.V.Vartuli,S.Han,R.D.Bastian,C.D.Chang,JournalofCatalysis 168(1997)431–441.

4722–4725.

[17]R.A.Boyse,E.Ko,JournalofCatalysis171(1997)191–207.

[18]M.Scheithauer,R.K.Grasselli,H.Knozinger,Langmuir14(1998)3019–3029. [19]D.G.Barton,M.Shtein,R.D.Wilson,S.T.Soled,E.Iglesia,JournalofPhysical

ChemistryB103(1999)630–640.

[20]E.I.Ross-Medgaarden,W.V.Knowles,T.Kim,M.S.Wong,W.Zhou,C.J.Kiely,I.E. Wachs,JournalofCatalysis256(2008)108–125.

[21]M.Kantcheva,C.Koz,JournalofMaterialsScience42(2007)6074–6086. [22] R.Zanella,A.Sandoval,P.Santiago,V.A.Basink,J.M.Saniger,JournalofPhysical

ChemistryB110(2006)8559–8565.

[23] F.Boccuzzi,G.Cerrato,F.Pinna,G.Strukul,JournalofPhysicalChemistryB102 (1998)5733–5736.

[24] R.Kydd,J.Scott,W.Y.Teoh,K.Chiang,R.Amal,Langmiur26(2010)2099–2106. [25]J.-D.Grunwald,M.Maciejewski,O.S.Becker,P.F.Fabrizioli,A.Baiker,Journalof

Catalysis186(1999)458–469.

[26]M.Maciejewski,P.Fabrizioli,J.-D.Grunwald,O.S.Becker,A.Baiker,Physical ChemistryChemicalPhysics3(2001)3846–3855.

[27]M.Manzoli,A.Chiorino,F.Boccuzzi,SurfaceScience532–535(2003)377–382. [28] F.Boccuzzi,A.Chiorino,JournalofPhysicalChemistryB104(2000)5414–5416. [29] F.Vindigni,M.Manzoli,A.Chiorino,F.Boccuzzi, GoldBulletin42(2009)

106–112.

[30]D.Guillemot,V.Y.Borovkov,V.B.Kazansky,M.Polisset-Thfoin,J.Fraissard, Jour-naloftheChemicalSociety,FaradayTransactions93(1997)3587–3591. [31]S.Minico,S.Scire,C.Crisafulli,A.M.Visco,S.Galvagno,CatalysisLetters47

(1997)273–276.

[32]M.Li,Z.Wu,Z.Ma,V.Schwartz,D.R.Mullins,S.Dai,S.H.Overbury,Journalof Catalysis266(2009)98–105.

[33]M.A.Dekkers, M.J.Lippits, B.N.Nieuwenhuys,CatalysisLetters 56(1998) 195–197.

[34]K.I.Hadjiivanov,G.N.Vayssilov,AdvancesinCatalysis47(2002)307–511. [35] T.Venkov,K.Fajerwerg,L.Delannoy,H.Klimev,K.Hadjiivanov,C.Louis,Applied

CatalysisA301(2006)106–114.

[36]M.A.Centeno,K.Hadjiivanov,T.Venkov,H.Klimev,J.A.Odriozola,Journalof MolecularCatalysisA:Chemical252(2006)142–149.

[37] M.Mihaylov,B.C.Gates,J.F.Fierro-Gonzales,K.Hadjiivanov,H.Knözinger, Jour-nalofPhysicalChemistryC111(2007)2548–2556.

[38]M.Kantcheva,O.Samarskaya,L.Ilieva,G.Pantaleo,A.M.Venezia,D.Andreeva, AppliedCatalysisB88(2009)113–126.

[39] D.Andreeva,M.Kantcheva,I.Ivanov,L.Ilieva,J.W.Sobczak,W.Lisowski, Catal-ysisToday158(2010)69–77.

[40]R.Meyer,C.Lemire,S.K.Shaikhutdinov,H.-F.Freund,GoldBulletin37(2004) 72–124.

[41] K.Musialska,E.Finocchio,I.Sobczak,G.Busca,R.Wojcieszak,E.Gaigneaux,M. Ziolek,AppliedCatalysisA384(2010)70–77.

[42]V.A.Sadykov,V.V.Lunin,V.A.Matyshak,E.A.Paukshtis,A.Y.Rozovskii,N.N. Bulgakov,J.R.H.Ross,KineticsandCatalysis(Eng.)44(2003)379–400. [43] M.Kantcheva,A.S.Vakkasoglu,JournalofCatalysis223(2004)364–371. [44] M.Kantcheva,I.Cayirtepe,CatalysisLetters115(2007)148–162.

[45]B.Tsyntsarski,V.Avreyska,H.Kolev,T.Marinova,D.Klissurski,K.Hadjiivanov, JournalofMolecularCatalysisA:Chemical193(2003)139–149.

[46] T.Weingand,S.Kuba,K.Hadjiivanov,H.Knözinger,JournalofCatalysis209 (2002)539–546.

[47]M.Kantcheva,I.Cayirtepe,JournalofMolecularCatalysisA:Chemical247 (2006)86–98.

[48]F.Solymosi,T.Bansagi,T.SuliZakar,PhysicalChemistryChemicalPhysics5 (2003)4724–4730.

[49]F.Solymosi,T.Bansagi,T.SuliZakar,CatalysisLetters87(2003)7–10. [50]H. Celio, K. Mudalige, P. Mills, M. Trenary, Surface Science 394 (1997)

L168–L173.

[51]G.Piazzesi,O.Kröcher,M.Elsener,A.Wokaun,AppliedCatalysisB65(2006) 55–61.

[52]F.Solymosi,T.Bánsági,JournalofPhysicalChemistry83(1979)552–553. [53] B.Bachiller-Baeza,I.Rodriguez-Ramos,A.Guerrero-Ruiz,Langmuir14(1998)

3556–3564.

[54]K.Pokrovski,K.T.Jung,A.T.Bell,Langmuir17(2001)4297–4303.

[55]M. Kantcheva, E.Z. Ciftlikli,Journal of Physical Chemistry B 106 (2002) 3941–3949.

Şekil

Fig. 1. FT-IR spectra of CO (10 Torr) adsorbed at room temperature on the samples studied.
Fig. 2. Panel A: FT-IR spectra of the Au/18WZ-CP sample taken after the addition of a (10 Torr NO + 25 Torr O 2 ) mixture to the IR cell for 10 min at room temperature followed by evacuation for 20 min (a), and after heating the isolated IR cell for 10 min
Fig. 4. FT-IR spectra of the Au/18WZ-CP sample collected after the adsorption of a (10 Torr NO + 25 Torr O 2 ) mixture for 30 min at 300 ◦ C followed by dynamic  evacu-ation from 200 ◦ C to room temperature and subsequent adsorption of 10 Torr of CO for 10
Fig. 6. Panel A: FT-IR spectra of the Au/18WZ-CP catalyst collected after the adsorption of a (10 Torr NO + 25 Torr O 2 ) mixture for 10 min at room temperature followed by evacuation for 20 min at room temperature, adsorption of 10 Torr CO at room tempera
+3

Referanslar

Benzer Belgeler

In this study, we describe the isolation and genome sequencing of two SARS-CoV-2 isolates from infected humans in Turkey, viral replication kinetics in Vero E6 cells and outcome

Then, we numerically show that G-CMAB achieves bounded regret in a real-world movie recommenda- tion problem, where the action corresponds to recommending a set of movies,

In many Muslim countries like Turkey, Malaysia, Indonesia, and Gulf countries, the omnipresence or resurgence of Islam and religious values in shaping identities and

A new array signal processing technique, called as CAF-DF, is proposed for the estimation of multipath channel parameters in- cluding the path amplitude, delay, Doppler shift

Drawing on the concept of legitimacy in institutional theory and Bourdieu’s conceptu- alization of homologies between fields, I investigate de-legitimation, its consequences for the

ve tm.-ı sipâhîyan İsveti Nikola k.-der zmt.. ve tm.-ı sipâhîyan Nikoliçe

Customers who are willing to pay a higher price for the resource (henceforth referred to as class 1 customers) arrive later on the sales horizon, and the decision maker deter-

Table 2.5: Target detection accuracies and false alarm rates achieved using RC and region codifference methods with the distance metric defined in Eq.. The normalization is done