• Sonuç bulunamadı

Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: a combination of atomic layer deposition and hydrothermal growth

N/A
N/A
Protected

Academic year: 2021

Share "Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: a combination of atomic layer deposition and hydrothermal growth"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

B:

Environmental

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Enhanced

photocatalytic

activity

of

homoassembled

ZnO

nanostructures

on

electrospun

polymeric

nanofibers:

A

combination

of

atomic

layer

deposition

and

hydrothermal

growth

Fatma

Kayaci

a,b

,

Sesha

Vempati

a,∗

,

Cagla

Ozgit-Akgun

a,b

,

Necmi

Biyikli

a,b

,

Tamer

Uyar

a,b,∗∗

aUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara,06800,Turkey bInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara,06800,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10December2013

Receivedinrevisedform24February2014 Accepted4March2014

Availableonline14March2014

Keywords: Photocatalysis ZnO

Electrospinning Atomiclayerdeposition Hydrothermal

a

b

s

t

r

a

c

t

Wereportonthesynthesisandphotocatalyticactivity(PCA)ofelectrospunpoly(acrylonitrile)(PAN) nanofibrousmatdecoratedwithnanoneedlesofzincoxide(ZnO).Apartfromadetailed morphologi-calandstructuralcharacterization,thePCAhasbeencarefullymonitoredandtheresultsarediscussed elaboratelywhen juxtaposedwiththe photoluminescence.Thepresenthierarchal homoassembled nanostructuresareacombinationoftwotypesofZnOwithdiverseopticalqualities,i.e.(a)controlled depositionofZnOcoatingonnanofiberswithdominantoxygenvacanciesandsignificantgrain bound-ariesbyatomiclayerdeposition(ALD),and(b)growthofsinglecrystallineZnOnanoneedleswithhigh opticalqualityontheALDseedsviahydrothermalprocess.Theneedlestructure(∼25nmindiameter withanaspectratioof∼24)alsosupportsthevectorialtransportofphoto-chargecarriers,whichiscrucial forhighcatalyticactivity.Furthermore,itisshownthatenhancedPCAisbecauseofthecatalytic activ-ityatsurfacedefects(onALDseed),valenceband,andconductionband(ofZnOnanoneedles).PCAand durabilityofthePAN/ZnOnanofibrousmathavealsobeentestedwithaqueoussolutionofmethylene blueandtheresultsshowedalmostnodecayinthecatalyticactivityofthismaterialwhenreused.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Photocatalysisis one ofthewidely researched[1–11]topics

becauseofitsimportanceinwaterandenvironmentalpurification

inthebackground ofunavoidable andever increasing

industri-alization[12].Photocatalysts(PCs) aregenerallynanostructured

semiconductors which are employed either directly [1,2,5,10],

dopedformat[7],defect-induced [3,4,13–15]orcombined with

another material to yield a synergy effect. Such combinations

exploitplasmoniceffect[6]orpropertiesofothersemiconductors

[7–9,11]depictingrelativelyhigherphotocatalyticactivity(PCA)

thantheirpristinecounterparts.DespitethehigherPCAthose

com-binationsalsoincreasethecomplexityoftheprocessandattheend

theyshouldbecompatiblewiththeenvironment[10].Metal-doped

semiconductorscanbeunstableandcorrodeafterlongtermusage

∗ Correspondingauthor.Tel.:+903122903533. ∗∗ Correspondingauthor.Tel.:+903122903571.

E-mailaddresses:svempati01@qub.ac.uk(S.Vempati),

tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

causingagradualdecayinthePCA[12],apartfromthedifficulties

intheirpreparationandcharacterization[16].Ofcoursethisdoes

notapplytonoblemetals[17]whicharestableinthecontextof

photo-oxidation;ontheotherhand,ifAunanoparticlesarelarger

thanacriticalsize,thentheymayactase/hrecombinationcenters

whichreducethePCA[17].Inanycase,themainaimistoengineer

aPCpossessingenhancedPCAaswellasstability overadecent

periodoftime.

Among alist ofsemiconductors employedin photocatalysis,

ZnOnanostructureshaveattractedalotofattention[1,2,4–6,15,18]

duetotheireasyprocessabilityviaavarietyofmethods[5,19–21],

versatilityinnanostructuring[5,19–21],non-toxicity,abundance,

low cost, etc. Having listed the properties which make the

nanostructured-ZnOahighlysuitablecandidateasaPC,weshould

agreewiththefactthatideallydefect-free-ZnOcanuseonlyUV

region(3–4%)ofthesolarspectrumbecauseofitswiderbandgap

andtherefore44–47%ofvisiblelightisleftunused.Hence,it

obvi-ouslyisawisechoicetoharnessthevisibleaswellasUVregion

ofsolarenergytoachievesignificantlyhigherPCA.Wealsonote

that themorphology and crystal structure of ZnO at nanoscale

aredetrimentalonvariouspropertiesincludingoptical[15,19–21],

http://dx.doi.org/10.1016/j.apcatb.2014.03.004

(2)

photostability[22,23]and PCA[14,15,24].Inordertoinitiateor

improvethelightabsorptioninthevisibleregiononecanengage

thenativedefectsofZnO[13,15],whichformsub-bandgapstates

[21].Forexample,oxygenvacancies(VOs)areinducedinZnOand

recentlyshowntoimprovePCA[3,4,25],alongsideofothersimilar

studies[13–15]. On the otherhand, VOsnot only create

inter-mediatebands,butalsoactasself-dopantsandinducedbandgap

reduction[25].Therefore,byconsideringthevariouspropertiesof

nanostructured-ZnO,itisconvincingandlogicaltodesignasmart

andefficientZnOcatalystdepictinghighPCAisoffundamentalas

wellastechnologicalimportance.Herewedemonstrateanovel

hybridapproach,in which wecombinechemical vapor

deposi-tion(CVD)andliquidphasedeposition(LPD)techniques.Atomic

layerdeposition(ALD)and hydrothermalgrowth arecombined

to fabricate a hierarchy of nanostructured-ZnO onelectrospun

poly(acrylonitrile)(PAN)nanofibers.TheresultingZnO

nanostruc-turesdepictsynergyeffectandshowenhancedPCA.PANnanofibers

arewelladoptableinwaterfiltrationwheretheiruniqueproperties

suchashighsurfacearea,nanoporousstructure,lowbasisweight,

easypermeability,goodstabilityandchemicalresistanceareworth

mentioning[26–29].Inourpreviousstudy[2]electrospun

poly-mericnanofibersweresubjectedtovaryingALDparameterswhere

wehavestudiedhow thePCAisinfluencedwhennanoparticles

transformintocontinuousfilm.Wehadinferredthathighlydense

nanoparticlesshowrelativelyhigherPCAduetotheincreased

sur-faceareaconsistingofoxygenvacancyandotherrelateddefects.

Webelievethathavingpolycrystallinefilmaloneisnotadequate

toyieldhighPCA,henceinthisstudy,wehavegrownsingle

crys-tallineZnOnanoneedlesontheALD-seedcoating.Notethatthe

singlecrystallineZnOnanoneedlescandepictthelowestpossible

defectdensity.Furthermore,previousstudies[3,4,13–15,25]have

introducedVOsthroughoutthecatalyst,however,incontrastwe

havecombinedtwomaterialsoneofwhichisdominantinoxygen

relateddefects,whiletheotherisvirtuallydefect-freesinglecrystal.

WealsoshowthatthepresentcombinationyieldsenhancedPCAin

thepresenceofhighaspectratioZnOnanoneedleswithanaverage

diameterandlengthof∼25nmand∼600nm,respectively.Wenote

thatsurfaceareatovolumeratiocannotequivalentlyimprovethe

PCA[10]whereasonedimensionalsemiconductorshavealready

showntodepictvectorialtransportofphotogeneratedcharge

car-riersandhelpingtoimprovethePCA[30,31].Whilemaintaining

adelicatebalancebetweentheadvantages[13–15,25]and

limi-tations[10]ofthenanostructureswehaveachievedasignificant

PCAwiththepresentcombination.Sincenanoneedlesweregrown

onthethinfilmwhichisonthepolymericfibrousmat,theymay

notbeeasilydislodgedwithoutasignificantmechanicalfatigue.

Thismakesthemeasiertohandleandrecycleinaqueous

environ-mentunlikethecasewithnanosizedparticles[6,14,15,25,32].Of

courseonecanemploytheexpensiveindiumtinoxide/fluorinetin

oxidesubstratebasedcatalysts[10,33].Asanadditionaladvantage,

nanoneedlesareboundtothesurfaceoftheZnOfilmonthe

poly-mericfiberandtheyarewellseparatedfromeachotherduringand

aftertheprocessincontrasttonanoparticle-basedcatalystswitha

significantdrawbackofagglomeration.

2. Experimental

2.1. Materials

PAN(Mw:∼150,000)waspurchased fromScientificPolymer

Products,Inc.N,N-dimethylformamide(DMF,Pestanal,Riedel)was

usedasasolvent.ALD ofZnOwasperformedusingdiethylzinc

(DEZn,Sigma–Aldrich)and HPLCgradewater (H2O) asthezinc

precursorandoxidant,respectively.Forhydrothermalprocesszinc

acetatedihydrate(ZAD,≥98%,Sigma–Aldrich)andhexamethylene

tetramine(HMTA,≥99%,AlfaAesar)wereused.Methyleneblue

(MB,Sigma–Aldrich,certifiedbytheBiologicalStainCommission)

wasusedasamodelorganicdyetotestPCAofthePANnanofibers

andPAN/ZnOnanofibrousmats.Allmaterialswereusedwithout

anypurification.De-ionized(DI)waterisobtainedfromMillipore

Milli-Qsystem.

2.2. ElectrospinningofPANnanofibers

Inbrief,wehaveoptimizedthePANconcentration(12%(w/v)

inDMF)toyielduniformandbead-freenanofibers.Priorto

elec-trospinning,PANsolutionwasstirredfor3hatroomtemperature

(RT)toobtainhomogeneousandclearsolution.Well-stirred

solu-tionwastakenina5mLsyringefittedwithametallicneedleof

∼0.8mmofinnerdiameter.Thesyringewasfixedhorizontallyon

thesyringepump(KDScientific,KDS101)withafeedratesetto

1mL/h.Ahighvoltageof15kVisapplied(Matsusada,AUSeries)

betweenthesyringeneedleandastationarycylindricalmetal

col-lector(wrappedwithacleanaluminumfoil)locatedat12cmfrom

theendofthetip.Theelectrospinningprocesswascarriedoutat

∼25◦Cand22%relativehumidityinanenclosedchamber.

2.3. PreparationofZnOseedstructurebyALD

ZnO deposition on electrospun PAN nanofibers was carried

outat∼200◦CinaSavannahS100ALDreactor(Cambridge

Nan-otech Inc.). N2 was used as a carrier gas at a flow rate of

∼20sccm.400cycleswereappliedviaexposuremode(a

trade-mark of Ultratech/CambridgeNanotech Inc.) in which dynamic

vacuum was switched to static vacuum before each precursor

pulse.This is achieved by closing the valve betweenthe

reac-tion chamber and the pump. After a predetermined exposure

time,thevacuumwasswitchedbacktodynamicmodefor

purg-ing excess precursor molecules and gaseous byproducts. One

ALD cycle consists of the following steps: valve OFF/N2 flow

setto 10sccm/H2O pulse (0.015s)/exposure (10s)/valveON/N2

purge(20sccm,10s)/valveOFF/N2flowsetto10sccm/DEZnpulse

(0.015s)/exposure(10s)/valveON/N2purge(20sccm,10s).

2.4. GrowthofZnOnanoneedlesbyhydrothermalmethod

ZnOcoatedPANnanofibers(PAN/ZnOseed)wereusedasaseed

substrateforthegrowthofZnOnanoneedles.∼3.6mgofPAN/ZnO

seednanofibrousmatwasimmersedinto∼33mLaqueoussolution

ofequimolarZAD,HMTA(0.02M)andmildlystirredovernightat

RT.Thissolutionisthenheatedto90◦Candkeptfor5h. When

thecruciblecooleddowntoRT,thenanofibrousmatwas

thor-oughlyrinsedwithDIwatertoremoveanyresidualsaltsanddried

invacuumovenat∼40◦Cfor12h.

2.5. Characterizationtechniques

Themorphologyofthesampleswasstudiedusingascanning

electronmicroscope(SEM,FEI–Quanta200FEG)withanominal

5nm of Au/Pd sputter coating. These images are used to

esti-matetheaveragefiberdiameter(AFD).Fortransmissionelectron

microscopy(TEM)imaging,samplesweresonicatedinethanolfor

5minandthedispersioniscollectedonholeycarboncoatedTEM

grid.TEM(FEI–TecnaiG2F30)andelementalanalysis(energy

dis-persiveX-rayspectroscopy,EDX)wasperformedonthePAN/ZnO

seed nanofibers. Selected area electron diffraction (SAED)

pat-ternsofthePAN/ZnOseednanofiberswerealsoobtained.X-ray

diffraction(XRD)patternsfromthepristinePAN,PAN/ZnOseed

andPAN/ZnOneedlesampleswerecollected(2=10◦–100◦)using

PANalyticalX’PertProMPDX-rayDiffractometerusingCuK

radi-ation(=1.5418 ˚A).Forsurfaceanalysis,samplesweresubjected

(3)

underAlK␣(h=1486.6eV)linewithachargeneutralizer.Pass

energy, stepsize and spotsizewere 30eV,0.1eV and 400␮m,

respectively.Peak deconvolution wasperformedwithAvantage

softwarewhere thenumber ofpeaks waschosenbased onthe

physicsofthematerialwhilethespectrallocationandfullwidth

athalfmaximum(FWHM)wereallowedtovary.

Photolumines-cence(PL)measurementswereperformedusingHoribaScientific

FL-1057TCSPCatanexcitationwavelengthof360nm.

2.6. Photocatalyticactivityofthenanofibers

ThePCAsofthePANnanofibers,PAN/ZnOseedandPAN/ZnO

needlesampleswereanalyzedthroughphotoinduced

degrada-tionofMBinaqueousmedium(18.8␮M).Thenanofibrousmats

(weight: 3.6mg) were immersed in quartz cuvettes containing

theMBsolution.ThecuvetteswereexposedtoUVlight(300W,

Osram,Ultra-Vitalux,sunlightsimulation)placedatadistanceof

∼15cm.Dyeconcentrationsinthecuvettesweremeasuredusinga

UV–Vis-NIRspectrophotometer(VarianCary5000)atregulartime

intervals.Thenanofibrousmatswerepushedtothebottomofthe

cuvettesduringtheUV–Visspectroscopy.TheweightofPAN/ZnO

seedsamplebeforeandaftertheneedlegrowthwas∼3.6mgand

∼3.9mgrespectivelywhichisequivalenttoanincreaseof∼8wt%.

ThentheweightofPAN/ZnOneedlesamplewascorrectedtoequate

PAN/ZnOseedsample(3.6mg).Hencethe3.6mgofPAN/ZnO

nee-dlewasfoundtocontain3.32mgofseedand0.28mgofneedles.

Therateofdyedegradationwasquantifiedviafirstorder

exponen-tialfit(y=y0+Ae-x/t)foreachdataset.Thisfitwasperformedunder

automatedroutinewithOrigin6.1,wherealltheparametersareset

asfreeuntilconvergence.WehavealsorepeatedthePCA

experi-menttwice(i.e.2ndand3rdcycles)forPAN/ZnOneedlesample

(∼3.3mg)todeterminethereusabilityversusperformance.

3. Resultsanddiscussion

ZnO nanoneedles were hydrothermally grown on the ZnO

seed-coatedpolymericnanofiberswhichwerefabricatedthrough

combiningelectrospinning and ALD.Theprocess for fabricating

thehierarchicalpolymer/ZnOnanofiberisillustratedinFig.1and

variousstepsareannotatedontheimage.

Therepresentative SEM imagesofPAN nanofibersare given

in Fig. 2(a1 and 2). The nanofiber morphology was optimized

against several PAN concentrations (results not shown here).

About 12% (w/v) was found to be the optimum for the

cho-senparameters yielding bead-free morphology withan AFD of

∼655±135nm.Inelectrospinning,itisverytypicaltoobtainfibers

inarangeofdiametersasreportedbyus[34,35]andmany

oth-ers[36,37].Acloseinspectionofthemorphologyrevealsatexture

likestructure,which issometimesobservedfor certain

electro-spunpolymericnanofibersduetothetypeofsolventused[36–38].

Thesenanofiberswereemployedforthesecondstepofseeding

withALD[39–41]byapplying400cyclesat200◦Cusingexposure

mode(Section2.3).AftertheALDprocess,wehaverecordedthe

SEMimageswhichareshowninFig.2(b1and2)wheretheAFD

is∼715±125nm.ThismeasurementsuggestedanincreaseinAFD

becauseofALDcoating.Thefiberstructurewasnotdestroyed

dur-ingtheALDprocesswhereawelldefinedandstablefiberstructure

suggeststhesuitabilityofthechosenparameters.Itisimportant

topointouttheneedofcompatibilitybetweentheprecursorand

polymerastheformercandegradethelatterbychemically

react-ingwithit;seethecasewithALDprocessingofAl2O3 [42].On

theotherhand,inthecaseofpoly(propylene)fibersAl2O3base

layerisemployedtodepositZnO,wheretheformerprotectsthe

diffusion of DEZn into the polymer [43]. Despite these

limita-tions,ALDcoatingcanyieldcoral[44],core–shell[45]likecomplex

nanostructures. Such structures are potentialfor photocatalytic

applications[46].Inthepresentcasethemorphologicalchanges

aresimilartoourearlierobservation[1,2].Itisclearfromtheimage

(Fig.2(b2))thatthesurfaceroughnessisincreasedafterALD

pro-cess,whichismostprobablyduetothegrainystructureofZnO[1,2].

Inourearlierinvestigation[2],wehaveshownthegrainformation

underALDfordifferentstagesofprocessingcycles.Thecloselyand

uniformlypackedgrainsactedastheseedlayerforthesubsequent

growthofnanoneedlesofZnOinhydrothermalprocess.Notethat

thisgrainystructureisnotundesired,ontheotherhandithelpsto

enhancethePCA,wherewecanexpecttheformationofdepletion

layerwithinthegrainboundaries[47,48].Such depletionlayers

areextremelyhelpfulandwewilladdresstheminthecontextof

PCAlatterinthisarticle.Subsequently,thehydrothermalmethod

wasemployedtogrowZnOnanoneedlesontheZnOseed-coated

polymericnanofibers.Fig.2(c1and 2)shows therepresentative

SEMimagesoftheresultingnanoneedleassemblies(PAN/ZnO

nee-dle).ItcanbeseenthatnanoneedlescoverthesurfaceoftheZnO

seed-coatedPANnanofibers.Thenanoneedleswerestraightandno

branchingwasobserved.Branchinggenerallyoccursbecauseofthe

irregularityintheseedwhereitcanpromotethegrowthofmore

thanoneneedle.Notably,inthepresentcontexttheseedsgrown

throughALD-processwereuniformanddidnotinitiateorsupport

multi-needlegrowth.SEMimagesofPAN/ZnOneedlesatdifferent

magnificationsaregiveninFig.S1ofSupportingInformation.By

analyzingtheSEMimageswehaveestimatedtheaverage

diam-eterandlengthofthenanoneedlestobe∼25nmand ∼600nm,

respectively(Fig.2(c2)).Detaileddiscussiononthemechanismof

thegrowthofZnOnanoneedlescanbefoundintheliterature[15].

SeedingofZnOwithALDprocessandsubsequenthydrothermally

grownnanorodsof∼50nmdiameterwithalengthof∼0.5–1␮m

canbeseenintheliterature[49,50].

ThemorphologiesofthePAN/ZnOseednanofiberswere

fur-therinvestigatedbyTEMandshowninFig.3(a1).Theconformal

coatingofZnOcanbeevidencedfromtheimagewithauniform

thickness(∼50nm)inspiteoftherelativelylargesurfaceareaofthe

nanofibers.Notablythissupportstheearlierargumenton

unifor-mityofthegrainswhicharenotfavorableformulti-needlegrowth.

ALDiswellsuitableforthehighsurfaceareasubstratessuchasa

non-wovennanofibersmatasshownbyusearlier[1,2].Growthof

ZnOonthePANnanofiberswascalculatedtobe∼1.25 ˚A/cycleinthe

presentALDconditions.Inourpreviousstudy[1]weobservedthat

ALDofZnOwith0.015spulsesand10spurgesunderthedynamic

vacuumconditionsresultsinuniformcoatingsonlyaftera

cer-tainnumber ofALDcycles.In contrast,herewehaveemployed

exposuremode(seeSection2.3)whichalsoresultedina

continu-ousanduniformZnOcoatingwithouttheneedofhighnumberof

ALDcycles.Exposuremodekeepstheprecursormoleculesinside

thereactionchamberfor acertainperiod oftime whichallows

themtodiffuseintothesubstrate.Thelocalcrystalstructureof

theALD-ZnOisinvestigatedthroughSAEDpattern,andshownin

Fig.3(a2).ThepatternrevealsthepolycrystallinenatureofZnO

seed.Moreover,thebrightspotsonthepolycrystallinediffraction

ringsindicatethepresenceofwellcrystallinegrains[2].Various

diffractedplanesareannotatedontheimageandareconsistent

withtheliterature[20,21].EDXanalysis(Fig.S2ofSupporting

Infor-mation,leftpanel)onthePAN/ZnOseednanofibershasshownzinc,

oxygen,carbon,nitrogenandcopper(fromTEMgrid)elements.Zn

andOoriginatefromZnOseed,whereasCandNareduetothe

polymericcorestructureofPAN.Alsothequantification(Fig.S2of

SupportingInformation,rightpanel)ofZnandOatomic

percent-agessuggeststhatthematerialisnominallyoxygenrich,within

thedetectionlimitofEDX.Thisisbecauseoftheveryhighsurface

areayieldingdefectivesites(oxygenvacancies)wheremolecular

oxygencanbeadsorbed.Itisnotablethatoxygenvacanciesare

typicalforZnOinotherprocessingtechniquesaswell,whichwere

(4)

Fig.1.Schematicrepresentationsof(a)electrospinningofPANsolution,(b)ALDofZnOseedontoPANnanofiber,and(c)fabricationprocessforhierarchicalPAN/ZnOneedle nanofiber.

thattheoxygendeficiencyisconsistentwiththePLofZnO.

Fur-thermore,HRTEMimagedemonstratedasinglecrystallinenature

ofZnOnanoneedles(Fig.3(b1)).Thelatticespacingwasmeasured

tobe∼0.525nmcorrespondingtothec-axisofZnO,whichisthe

preferentialgrowthdirectionofthenanoneedles.Itisimportant

todeterminethegrowthdirectionwherethepolarplanesofZnO

haveshowntodepictrelativelyhigherPCA[13].ThefastFourier

transform(FFT)imageisshowninFig.3(b2)alsodemonstratesthe

singlephase[32]structure.

TheXRDpatternsofpristinePAN,PAN/ZnOseedandPAN/ZnO

needlenanofibersareshowninFig.4.TheXRDpatternofpurePAN

nanofibersshowsapeakat∼16.93◦correspondingto

orthorhom-bicPAN (110) reflection[51] withan FWHM of∼2.282◦.Also

abroad andless intensepeak-like structurecanbeseen inthe

range of 20–30◦ which corresponds to the (002) reflection of

PAN [52]. Afterthe ALD process the(110) planehasshown a

significantreduction in the FWHM (to ∼0.761◦)and the broad

peak(2=20◦–30◦ indicatedwith‘*’ontheimage)hasstabilized

at ∼29.69◦ and became more sharp (FWHM ∼0.776). This is

becauseofthereorganizationofthepolymericchainsat∼200◦C

(ALDprocessingtemperature)equivalenttotypicalannealing.

Fur-thermore,sincethenanoneedlesweregrownatslightlyelevated

temperature (∼90◦C) for substantial period of time, there is a

nominalincreaseintheFWHMofthePANdiffractionpeaks((110)

and(002))becauseoftheincompatibleprocessingtemperature.

However the relative intensity of this peak was considerably

subduedbecauseoftheZnOnanoneedles.

MovingontothepeakscorrespondingtotheZnO,wehave

anno-tatedthereflectionsontheimageforthesamplesPAN/ZnOseed,

andPAN/ZnOneedle(Fig.4a).PAN/ZnOseedandneedlesamples

exhibiteddiffractionpeaksofhexagonalwurtzitestructureofZnO

(ICDD01-074-9940)revealing thesuccessful depositionof ZnO

seedas wellasnanoneedles onelectrospunPAN nanofibersby

ALDandhydrothermaltechnique,respectively.TheXRDpatterns

ofPAN/ZnOseedandPAN/ZnOneedlematchwiththereference

patternintermsofpeakpositions.Alsothesepeakpositionsmatch

withtheliterature,whenZnOispreparedthroughdifferent

meth-ods[19–21,48].However,acloseobservationof(100),(002)and

(101)reflections(Fig.4b)revealvitalinformation.Ifwecompare

theFWHMvaluesofthesepeaksacrossseedandneedlesamples,

wecanseethattheformerislesscrystallinethanthelatter.There

isalsoashiftinthepositionofthepeakstowardshigher2value

uponneedleformation.ForthediffractionpatternofPAN/ZnO

nee-dle,wecanseeashoulder-likestructure(denotedwithsinFig.4b)

whichcorrespondstothePAN/ZnOseed,whileamoreintensepeak

correspondingtothehighlycrystallineZnOnanoneedle.Peakshift

isgenerallyassociatedwiththeresidualstress(defect-induced)in

thematerial.Thestressmightbeoriginatedfromtheoxygen

vacan-ciesinthelattice[25]orthesubstrate(PANnanofibers)[53].Since

thepeakshiftisnoticedfor(100),(002)and(101)reflectionswe

canexpectthatthesampleisundercompressivestraininthesaid

crystaldirections[53].Notably,theXRDpatternofPAN/ZnOseed

isconsistentwithSAEDpattern.Furthermore,theintensityratios

of(002)polarplaneto(100)nonpolarplaneisestimatedandit

turnsouttobethecasethatseed(∼0.78)samplehaslargefraction

ofpolarplanesthanneedle(∼0.65)sample,wherelargerfraction

indicatespossiblyhigherPCA[15].Inthiscontext,itisnotablethat

theXRDisastatisticalaverageofplanesfromsurfaceaswellas

sub-surfaceregions.Hence,thereisapossibilitythatthepolarplanes

(5)

Fig.2.RepresentativeSEMimagesof(a1and2)pristinePAN,(b1and2)PAN/ZnOseed,and(c1and2)PAN/ZnOneedlenanofibersatdifferentmagnifications.

The ionic state of oxygen generally determines the optical

emission properties in visible region [19–21] (associated with

oxygenrelated defects)andhencethephotocatalyticproperties

[3,4,13–15].TheO1sXPSspectrumcanbedeconvolutedintotwo

peaksasshowninFig.5,withthepeakpositionsannotated on

theimage.Thepeak at∼530.5eVcorrespondstotheoxygenin

ZnO,whichisnominallyatthesamespectralpositionforboththe

samples.Theotherpeakseenat∼531.8eVand∼532.2eVforseed

andneedlesamplerespectivelycorrespondstothechemisorbed

oxygenoftwodifferentchemicalorigins.Thepeaksat531eVand

531.5eVareattributedtoO-xions(O-andO-2ions)intheoxygen

deficientregions,whilepeaksat532.3eVand532.7eVare

gener-allyascribedtothepresenceofoxygenrelatedspeciessuchas–OH,

–CO,adsorbedH2OorO2onthesurfaceofZnO[25,54,55].

Dur-ingthehydrothermalgrowthoftheneedles,grainboundariesand

oxygendeficientregionsareexposedtohydroxylions.Theseions

perhapsoccupysomeoftheoxygendeficientregionsasreflected

withapeakat∼532.2eV.Apartfromthedifferenceinthespectral

location,thenumberdensityofsuchoccupanciesisseenin the

areaofthepeakwhereforPAN/ZnOseedthearearatiois(∼49%)

significantlyhigherthanneedlecase(∼22%).Itisnotablethatthe

signalfromPAN/ZnOseedsamplecanbeattributedtothesample

directlywithoutanyambiguity, however,forthePAN/ZnO

nee-dlecase,itcanbeanintegralspectrumofseedaswellasneedle.

Despitethelatterambiguity,theabovegiveninterpretationisstill

wellapplicableandwewillseethatitisinlinewithopticaland

PCAmeasurements.Finally,alargeoxygen-deficientstateofthe

surfacelayer[25,54]canbeseenforPAN/ZnOseed,whilein

con-trast,PAN/ZnOneedlesamplehasshownsignificantlylessoxygen

vacancies.NeedlesresultedinamorestableZnOenrichmenton

PANnanofiberswhencomparedtoPAN/ZnOseed[54].

ThevalencebandspectraforPAN/ZnOseedaswellneedleis

showninFig.S3ofSupportingInformation,wheretheintensity

axisisnormalizedagainstthemaximumcountsandplottedwith

referencetothebindingenergyineV.Inzincoxide,theconduction

(6)

Fig.3. Representative(a1)TEMimageand(a2)SAEDpatternofPAN/ZnOseednanofibers;(b1)HRTEMimageand(b2)FFTimageofZnOneedle.

orbitals,respectively.Asawhole,both thesampleshaveshown

thedensityofstateswhicharetypicaltozincoxide[25].Alsothe

featuresandtheirspectrallocationforboththesamplesareexactly

retraced(Fig.S3ofSupportingInformation).Thisisincontrasttoan

earlierobservation[25]inwhichVOshaveshowntoinduceaband

gapnarrowingbyexpandingtheminimumofCB.However,here

theVOsdidnotinduceanysuchtailingofCBthoughevidencedin

O1sXPSanalysis.Theenergeticlocationofoxygenvacancydefects

withinthebandgapwillbediscussedinthecontextofPL.

Asmentionedearlier,thesurfacedefectsplayacrucialrolein

determiningthePCA; we caninfer theinformation aboutsuch

defectsthroughPLspectroscopy.ThePLspectraofPAN/ZnOseed

andPAN/ZnOneedlenanofibersshowninFig.6awereobtainedat

RT.Asshowninearlierinvestigations[19,21,48],thevisible

emis-sionfromZnOcanbedecomposed(fittingsnotshown)intovarious

plausibletransitionswhichwillbediscussedaswegoalong.Itis

knownthatthetypicalexcitionemissionbandliesintheUVregion

forZnO, whilethedefect related emissionin thevisibleregion

[19–21,47,48,56].Basedontheliteraturethepossibletransitions

andthecorrespondingemissionwavelengthsareschematizedin

Fig.6b,whicharecross-annotatedonFig.6awitharrowsonthe

wavelengthaxis.

Westartwiththepeakscorrespondingtotheinterband

tran-sition(excitonicrecombination)whichistheleastcontroversial

emission.Asexpected,relativelybettercrystallinePAN/ZnOneedle

hasshownaclearpeakat∼3.25eV,whileincontrast,onlya

sig-natureofsuchemissionisnoticedforPAN/ZnOseedsample.This

emissionpeakisconsistentwiththeliteratureintermsofspectral

location[21],yieldingabandgapof3.31eV[21]whenanexcition

bindingenergyof60meVisassumed.Therelativeintensityofthis

interbandtransitionisenhancedupon needleformationonALD

seedlayer,whichsuggestsanimprovementintheoveralloptical

qualityofthematerial.Intheliterature[18,64,65],wecansee

nee-dle/rodlikestructure,however,thesamplesdepictedbroadnear

UVemissionandalmostnegligiblevisibleemission.However,in

contrast,wehavecomparativelysharpUVemissionand

signifi-cantvisibleemission,whereweareaimedtoharnessthedefect

relatedPCA.NotethattheemissionfromPAN/ZnOneedleisthe

integralresponseoftwocomponents,oneofwhichisfromthe

nee-dleitself,whiletheotherisfromPAN/ZnOseed.AsPAN/ZnOseed

didnotshowanyclearexcitionemission,thepeakseeninneedle

samplearisesfromtheZnO-nanoneedle.InthecaseofPAN/ZnO

seedbecauseofthelargegrainboundariesfromthefilmlike

struc-tureonthecylindricalperipheral,asignificantamountofsurface

recombinationtakesplacegivingthepredominantvisible

emis-sion.VariousplausibleemissionsareschematizedinFig.6band

shownwithnumerals(1)though(7)wheretheenergeticlocations

ofthedefectshavebeenobtainedfromthecorresponding

refer-ences;(1)[57],(2)[58],(3)[59,60],(4)[61],(5)[47,48],(6)[62]and

(7)[63].Violetemissionscenteredatabout410nmarebroader,

andnotasprominentasgreenemissioncenteredaround520nm,

whichwereinterpretedtoberelatedtothedefectssuchaszinc

interstitials(Zni)andVOs,respectively.Violetemissioncanresult

fromanintegralresponseofthreetransitions[57–60]asdenoted

onFig.6bwithAthroughE.Inthevisibleregionofthespectrum,

boththesampleshaveexhibitedabroademissionwhichisagain

anintegralresponseofthedefectsoftwodifferentorigins.Also,a

slightthoughnoticeableblueshiftcanbenoticedinthecenterof

thepeak(peakpositionsareannotatedontheimage)forPAN/ZnO

(7)

Fig.4. (a)XRDpatternsofnanofibersofPAN,PAN/ZnOseedandPAN/ZnOneedle,and(b)magnifiedXRDpatternsintherangeof31–37.5◦.

(∼0.02eV),whenitcomestothedensityofthedefects,itplaysa

crucialroleindeterminingthePCAofthematerial.Theoptical

qual-ityofthesemiconductorcanbeestimatedbytakingtheintensity

ratiosofUVtovisibleemission[19–21].Itisworthnotingthatthe

ratiooftheintensityofbandtobandtransition(∼381nm)tothe

intensityofthedefectlevelemission(∼520nm)istentimeshigher

forthePAN/ZnOneedlethanPAN/ZnOseed.Thishighratio

indi-cateshigheropticalqualityofthePAN/ZnOneedlesample.Unlike

thevioletemission,greenemissionisslightlycomplex[47,48].In

thebulkgrainregion(BGR)singlypositivelychargedVOcaptures

anelectronfromCBandformsaneutralVO(i.e.VO+→VO*).Inthe

depletionregion(DR)ifthesinglypositivelychargedVOcaptures

aholefromtheVB,itformsdoublypositiveVO(i.e.VO+→VO++).

Hence,thegreenemissionisacombinationoftransitionsfromVO*

totheVBandCBtoVO++emittingFandGwavelengths,

respec-tively (Fig. 6b)[47,48]. Also, relatively lowerintense interband

emissionsuggeststhatthephoto-generatedelectronsandholesare

capturedbyVO+emittingphotonsinthevisibleregionofthe

spec-trum.ThisinterpretationwillbeemployedtoexplainthePCAofthe

samples.

WehavecomparativelyinvestigatedthePCAofPANnanofibers,

PAN/ZnOseedandPAN/ZnOneedlebyanalyzingthetime

depen-dentdecompositionofMBinaqueousmediumunderillumination.

ToevaluatethedegradationrateofMB,itscharacteristicabsorption

peak(∼665nm)ismonitoredagainstUV-exposuretime.Therate

ofdegradationisdefinedasC/CowhereCoandCrepresentthe

ini-tialconcentrationofMBbeforeandafterirradiationatagiventime

respectively.ThepristinePANnanofibersareporoustoadsorb(not

degrade)thedyeuptoanoticeablelevel(resultsnotshown)until

equilibriumbetweenadsorptionanddesorptionisattained.Hence

wehavetakenthesurfaceadsorptionasreferenceandanalyzed

thePANnanofiberseffectondyedegradation,wherenoeffectis

seen(Fig.7a).Thisisconsistentwiththeliterature[66].On the

otherhand,itis notablethatALD unveilsconformalcoatingon

electrospunnanofibersandhencetheexposureofPANnanofibers

directlytothedyecanbeveryunlikely.InthecaseofPAN/ZnO

seedandneedlecaseswehaveobservedanonlinearbehavior,and

theelectrontransferbetweendonorstatesandthedyegoverns

thedegradationratio[67,68].Hencewehaveaddressedthenature

ofdegradationinthecontextofeachsampleindependently.When

thecatalystsareimmersedintheMBsolution,thePCAwithrespect

toUVirradiationtimeisdepictedinFig.7aalongwiththe

pris-tineMBsolutionwhichwassubjectedtothesameUVtreatment.

AccordingtotheLangmuir–Hinshelwoodmodeltheexponential

relationshipof(C/Co)againsttimeindicatesthatMBdegradation

followspseudo-first-orderkinetics.Wehaveperformed

exponen-tialfittotheeachdatasetandthedecayconstantsaregivenonthe

(8)

Fig.5.Peakdeconvolutionofcore-levelXPSspectraofO1sfromPAN/ZnOseedandPAN/ZnOneedlesamples.Thespectrallocationsofthepeaksareannotatedontheimage.

Inthecase ofUV exposuretopristinesolutionthedatahas

showndecayconstantof∼157min.Notablythoughtothenaked

eye,thedegradationoftheMB(withoutnanofibers)isnotclearly

observeduponexposuretoUVradiationfor210min(seeFig.S4

ofSupportingInformationfordigitalphotographs).ForPAN/ZnO

seed,∼47%ofMBdecomposedinnominal60minyieldinga

degra-dationrateof∼113min.Animprovementof∼28%isnoticedwhen

comparedtothedegradationrateinthecaseofnocatalyst.

Even-tually,thebluesolutionwasalmostdecolorizedafter∼210minof

UVirradiation(Fig.S4ofSupportingInformation).Inthecaseof

PAN/ZnOneedle,thedecompositionofMBwas∼93%in∼60min.

Interestingly,in thecase ofPAN/ZnO needles,at a degradation

rateof∼15minhasshownimprovementof∼91%and∼87%for

no catalyst and PAN/ZnO seed samples, respectively. PCA was

Fig.6.(a)PLspectraofPAN/ZnOseedandneedlecounterpart,and(b)depictsvariouscrystaldefectsandpossibletransitions[21].Theenergeticlocationofeachdefectlevel (denotedbynumerals)isobtainedfromthecorrespondingreferences(1)[57],(2)[58],(3)[59,60],(4)[61],(5)[47,48],(6)[62]and(7)[63].Thealphabetsstandforemission energiesinnanometer,whereA=395,B=437,C=405,D=440,E=455,F=∼500,andG=564.VZnislocated0.30eVabovetheVB,whileZniisat0.22eVbelowtheCB.Inthe

(9)

Fig.7.(a)DegradationrateofMBinaqueousenvironmenttestedforpristine,inthepresenceofPANnanofibers,PAN/ZnOseedandPAN/ZnOneedle(1stcycle)cases,(b) plausiblemechanismofphotocatalysisinvolvingoxygenvacancies,where(i)and(ii)standforprocessesacceptor→acceptor–anddonordonor+respectively,and(c)PCA

ofPAN/ZnOneedlenanofibersfor1st,2ndand3rdcycles.

relativelyhigherforthePAN/ZnOneedlethanPAN/ZnOseed,which

isbecauseofnotonlyrelativelyhighersurfaceareabut alsoits

highercrystalqualityoftheneedle-morphology.Aspointedin

Sec-tion2.6,ZnO-seedcontentinPAN/ZnOneedlesampleislessthan

PAN/ZnOseed,wheretheneedlescompensatetheremainderof

theweight.Althoughtheneedlesareabout0.02mginPAN/ZnO

needletheyshowsignificanteffectonPCA.Asanasidethe

improve-mentinthesurfaceareaisabout30times,where∼1200–1500

needlesareapproximatedonfiber(∼800nmand715nmoflength

anddiameterrespectively).Inourpreviousstudy[2]highdensity

nanoparticleshaveshown∼1.2timeshigherPCAthan

nanocoat-ing case. It needs tobe emphasizedthat within this study we

haveachievedanimprovementofdyedegradationrateofnearly8

timesforneedlecasewhencomparedtoseedcase.Inthe

follow-ing,weestablishtheargumentforPCAandlattercorrelatewith

eachofthesamples.Undersuitableilluminationelectronscanbe

excitedfromtheVBtoreachtheCB,leavingbehindholesintheVB

[21,48].Iftheseseparatedchargescanmigratetothesurfaceofthe

semiconductorbeforetheyrecombine,thentheyhaveachanceto

participateintheredoxreactions[69].Formationofhydroxyl

rad-ical(˙OH)is thekey forthePCA,inwhich holes[70] aswellas

electrons(whichmaybecapturedbymolecularoxygenforming

superoxideanions[71],˙O2-)areinvolvedatVBandCB,

respec-tively.Becauseofthepresenceofhighlyoxidativeholeaswellas

˙OHradicalstheorganicdyecanbedecomposedeitherpartiallyor

completely.Wehaveshownthepossiblemechanism[10,70,71]in

Fig.S5ofSupportingInformation.Intheliterature[10,72],itis

dis-cussedthatPCAtakesplaceattheVBandthedefectstate(formed

eitherbydoping[72]orintrinsic[10]e.g.VOs),wherethelatter

capturesafreeelectronfromtheCB.However,underillumination,

O2cancaptureanelectronfromCBpromotingthePCA.Thebasis

forthisargumentistheinterbandtransitionseeninthePL

spec-trumfromPAN/ZnOneedle samplewhichsuggestsapossibility

ofphoto-electrons recombiningwithholesin CB,bypassingthe

defectstate.Hence,atagiventime,underilluminationelectrons

arepopulatedinCBtobecapturedbyO2.Ontheotherhand,the

photo-electronscanalsobecapturedbyO2atVOsproducing

super-oxideradicalanions.ItisalsoshownearlierthattheVOscanactas

activesitesforPCAinZnOnanostructures[13,25,73].SincetheVOs

arelocatedonthesurface(interfacesofthegrainsanddepletion

regions)[47,48]theydirectlyinvolveinPCA[74].Notably,VOis

treatedaselectronacceptors[74]bycapturinganelectronfromCB

[21,47,48]andhencetherecombinationprocessisdelayed[10].In

thePCAatheterojunction(e.g.ZnO/ZnSe[32],ZnO/Cu2O[33])(i)

acceptor→acceptor– and(ii)donordonor+ processesoccurat

CBofZnOandVBofZnSe(orCu2O),respectively,wherethecharge

migrationacrosstheheterojunctiondelaystherecombination

pro-cess.InthecontextofPt–ZnOnanocomposite[74],awelldefined

emissionfrominterbandtransitioninPLisnotseenbecauseofthe

lowrecombinationrateofe/hpairswhichisinducedbyPt.

Inthebackgroundoftheabovediscussion,forahypothetical

caseofvirtuallydefectfreenanoneedle(i.e.highopticalquality,

Fig.7b,needleonly),PCAisbecauseof(i)and(ii)processestaking

placeatCBandVBofZnOnanoneedlerespectively.Inthecaseof

PAN/ZnOseed,thereisjustasignatureofinterbandtransitioninPL,

hencethePCAthattakesplaceatCBandVBisnotdominant,which

isdenotedwith(i)*and(ii)*,respectively(Fig.7b,seed).Thedefect

siteVO+islocatedinthebulkofthegrain[19,21,47,48](Fig.6b)

andhenceitisnotaccessibleforPCA,unlessthecapturedelectron

migratestothesurface.Thismaybeaveryunlikelycaseasthese

statesarehighlylocalized.Furthermore,thePCAassociatedwith

VO+ isrelativelyweakandisdenotedwith(i)**.Incontrast,the

defectsiteVO++,whichislocatedinthedepletionregion(e.g.grain

boundaries[19,21,47,48],Fig.6b),iswellaccessibleforPCAandis

denotedwith(ii).Inprinciple,thepresentALDgrownZnOfilmis

evidencedtobegrainywithlargeportionsofgrainboundaries.For

PAN/ZnOneedlecase,thePCAisanintegraleffectofVOs((ii),from

PAN/ZnOseedsample)aswellasthecatalysistakingplaceatCB(i)

andVB(ii)ofneedle(Fig.7b,seed/needle).Thecombinedeffectof

alltheseprocessesyieldedsignificantlyhigherPCA.Wehavealso

seenthattheseedsamplehaslargefractionofpolarplanesthan

needlesample(analysisfromXRD),henceitisexpected[15]that

seedsampleshouldhaveshownbetterPCA.Althoughitappearsto

benotthecasehere,acarefulunderstandingofthebothmaterials

revealsthatthepresentresultsareinlinewithRef.[15].Itiswell

agreedthatthesamplewithlargerfractionofpolarplanesyield

higherPCA(owingtotheirVOs)whatweseeisasynergyeffectof

theneedleandtheseed,hencetheseresultsarenotincontrastto

anearlierobservation[15].

The structuraldurability of thePAN/ZnO seedand PAN/ZnO

needle nanofibers was also examined through SEM after the

photocatalysis(Fig.S6ofSupportingInformation).Wenotethat

the stability as well as durability plays a vital role because of

their potential application in water purification of the organic

pollutants. Asoutlinedin theintroduction,we characterize the

materialintermsoftheircatalyticefficiencyanddurabilitywith

reference to recycling. We have repeated the PCA experiment

twiceforthePAN/ZnOneedle(Fig.7c).Thereisaslightdecreasein

theefficiencyofPCAfrom1stcycletothefollowingcycles,where

(10)

Thedeteriorationcouldhaveoccurredfromvariousfactors.Firstly,

asmallquantity(∼0.3mg)ofnanofibrousmatwasusedforSEM

analysisafterthe1stcycle,leavingbehindlessamountofcatalytic

materialforthe2ndand3rdcycles.Secondly,byconsideringthe

SEM imagesof thelatter cycles(after 1st cycle, Fig.S6b; after

3rdcycle,Fig.S6cofSupportingInformation),itisclearthatthe

densityofnanoneedles isdecreased toa certaindegree.Thisis

becauseofthemechanicalfatiguewhileinsertingthenanofibrous

matthroughatinyholeofthecuvetteandUV–Visspectroscopy.

Ifthenanofibrousmathasbeenhandledcarefullythenwebelieve

thattheperformanceofcatalystafterthe2ndcyclewillbeasgood

asoratleastcomparablewiththatofafreshsample.

4. Conclusions

Herewehavereportedtheresultsofaninvestigationon

ZnO-basedphotocatalystsynthesizedonelectrospunPANnanofibers.

ThiscatalystharnessesPCAatthreedifferentenergeticlocations

withintheband gapof ZnO, namely, oxygenvacancy sites,VB

and CB. In order toachieve this, morphologically well defined

PAN nanofibersareproduced via electronspinning,followed by

ALDtodepositZnOin awellcontrolledmanneryieldinga thin

andconformalcoatingonthenanofibers.Thelaststepconsistsof

hydrothermalgrowthofZnOsinglecrystalneedlelikestructures

ontheALDseedcoating.Thepresentinvestigationalsore-iterates

theflexibilityofvarioustechniquesandacombinationofALDand

hydrothermalgrowth.TheALDparametersareoptimizedinsuch

awaythattheseedsdonotinitiatemulti-needlegrowthwhichin

turnimprovesthesubsequentprocessingofhydrothermalgrowth

asinthepresentcaseorothermethodssuchassol–gel.The

struc-turalinvestigation(XRD)revealedthestressrelatedinformationof

thewurtzitestructuredPAN/ZnOseedaswellasPAN/ZnOneedle.

Thestressinthematerialmighthavebeenoriginatedduetothe

polymericnanofibroussubstrateandtheassociatedhighsurface

area.Investigationonlocalcrystalstructure(TEM)alsosupported

thewurtzitestructureandhintedoxygendeficiencyinALD-ZnO.

However,asexpectedhydrothermallygrownZnOhappenedtobe

insinglecrystallinestateandnomultiplephaseswereobservedin

theFFTimage.Theoriginofthedefectandtheoxygendeficiency

canbeidentifiedwithXPSratherprecisely,wherewehavenoticed

thatPAN/ZnOseedsampleconsistsofO-xtypeions,whilePAN/ZnO

needlesampleconsistsof–OH,–CO,H2O,orO2adsorbedatthe

defect site. The former furthersupports theexistence of grain

boundaries in the PAN/ZnO seed and less defective PAN/ZnO

needle.BeingverycrucialforPCA,theresultsfromPLsuggestedan

oxygendeficientPAN/ZnOseedwhilethePAN/ZnOneedlesof

rel-ativelybetteropticalquality.Wenotetheconsistencybetweenthe

PLandXPSmeasurements.Basedontheliterature,various

emis-sionbandshavebeenascribedtotheirplausibleorigin.Wehave

suggestedamechanismfortheimprovedPCAofPAN/ZnOneedle

sample,whencomparedwithPAN/ZnOseed.Wehaveinterpreted

the PCA in conjunction with PL, where we point out the fact

thatoxygenvacancycapturesaholefromtheCBandhencethe

recombinationprocessisdelayed.Alsothiscapturedholecantake

partinPCAasitislocatedwithinthegrainboundaryregion.The

improvementisattributedtothecollectiveeffectwhichenabled

theactiveparticipationofdefectstateandthecatalysistakingplace

atCBaswellasVB.Ifphotocatalysisconsistsofonlydefectrelated

activity,orthattakesplaceatCBandVBisnotsufficienttoachieve

higherPCA.Ontheotherhand,thediscussiononPCAassumesthat

thesurfacedefectsonnanoneedlesarenegligibleatanacceptable

levelbygivenitscrystallinity,andtherelativeintensityofvisible

emissionhasinfactsubduedwhencomparedtotheUVemission.

Furthermore,thesamplesaresubjectedtorecyclingandnominally

thePAN/ZnOneedledepictedacomparableperformancewiththe

freshsample.Since thecatalystis synthesizedonflexible

poly-mericnanofibers,themembranecanbehandledrathereasily(Fig.

S7ofSupportingInformation).Finallyitisconvincingthatthese

ZnOnanostructuresarewellsuitedandpotentialcandidatesfor

wastewatertreatmentwithsolarenergywheretheirperformance,

structuralstabilityandreusabilityareworthmentioning.

Acknowledgements

S.V.thanksTheScientific&TechnologicalResearchCouncilof

Turkey(TUBITAK)(TUBITAK-BIDEB2216,ResearchFellowship

Pro-grammeforForeignCitizens)forpostdoctoralfellowship.F.K.and

C.O.-A.thanksTUBITAK-BIDEBforaPhDscholarship.N.B.thanks

EU FP7-Marie Curie-IRG for funding NEMSmart

(PIRG05-GA-2009-249196).T.U.thanksEU FP7-MarieCurie-IRG(NANOWEB,

PIRG06-GA-2009-256428)andTheTurkishAcademyofSciences

–OutstandingYoungScientistsAwardProgram(TUBA-GEBIP)for

funding. Authorsthank M.Gulerfor technicalsupport for TEM

analysis.

AppendixA. Supplementarydata

Supplementary data associated with this article can be

found, in the online version, at http://dx.doi.org/10.1016/

j.apcatb.2014.03.004.

References

[1]F.Kayaci,C.Ozgit-Akgun,I.Donmez,N.Biyikli,T.Uyar,ACSAppl.Mater. Inter-faces4(2012)6185–6194.

[2]F.Kayaci,C.Ozgit-Akgun,N.Biyikli,T.Uyar,RSCAdv.3(2013)6817–6820.

[3]Z.Pei,L.Ding,J.Hu,S.Weng,Z.Zheng,M.Huang,P.Liu,Appl.Catal.B.143–143 (2013)736–743.

[4]T.-T.Chen,I.-C.Chang,M.-H.Yang,H.-T.Chiu,C.-Y.Lee,Appl.Catal.B.142–143 (2013)442–449.

[5]H.U.Lee,S.Y.Park,S.C.Lee,J.H.Seo,B.Son,H.Kim,H.J.Yun,G.W.Lee,S.M.Lee, B.Nam,J.W.Lee,Y.S.Huh,C.Jeon,H.J.Kim,J.Lee,Appl.Catal.B.144(2014) 83–89.

[6]Y.Zuo,Y.Qin,C.Jin,Y.Li,D.Shi,Q.Wu,J.Yang,Nanoscale5(2013)4388–4394.

[7]M.Pelaez,N.T.Nolan,S.C.Pillai,M.K.Seery,P.Falaras,A.G.Kontos,P.S.M. Dun-lop,J.W.J.Hamilton,J.A.Byrne,K.O’Shea,M.H.Entezari,D.D.Dionysiou,Appl. Catal.B.125(2012)331–349.

[8]S.Hotchandani,P.V.Kamat,J.Phys.Chem.96(1992)6834–6839.

[9]N.Chouhan,C.L.Yeh,S.-F.Hu,R.-S.Liu,W.-S.Chang,K.-H.Chen,Chem.Commun. 47(2011)3493–3495.

[10]F.Xu,Y.Shen,L.Sun,H.Zeng,Y.Lu,Nanoscale3(2011)5020–5025.

[11]D.-X.Xu,Z.-W.Lian,M.-L.Fu,B.Yuan,J.-W.Shi,H.-J.Cui,Appl.Catal.B.142–143 (2013)377–386.

[12]M.R.Hoffmann,S.T.Martin,W.Choi,D.Bahnemann,Chem.Rev.95(1995) 69–96.

[13]J.Wang,P.Liu,X.Fu,Z.Li,W.Han,X.Wang,Langmuir25(2009)1218–1223.

[14]Y.Zheng,C.Chen,Y.Zhan,X.Lin,Q.Zheng,K.Wei,J.Zhu,Y.Zhu,Inorg.Chem. 46(2007)6675–6682.

[15]G.R.Li,T.Hu,G.L.Pan,T.Y.Yan,X.P.Gao,H.Y.Zhu,J.Phys.Chem.C112(2008) 11859–11864.

[16]X.Liu,L.Pan,T.Lv,Z.Sun,C.Sun,RSCAdv.2(2012)3823–3827.

[17]V.Subramanian,E.E.Wolf,P.V.Kamat,Langmuir19(2003)469–474.

[18]T.J. Athauda, U. Butt, R.R. Ozer, RSC Adv. (2013), http://dx.doi.org/ 10.1039/c1033ra43672a.

[19]S.Vempati,A.Shetty,P.Dawson,K.Nanda,S.B.Krupanidhi,J.Cryst.Growth343 (2012)7–12.

[20]S.Vempati,A.Shetty,P.Dawson,K.K.Nanda,S.B.Krupanidhi,ThinSolidFilms 524(2012)137–143.

[21]S.Vempati,J.Mitra,P.Dawson,NanoscaleRes.Lett.7(2012)470.

[22]D.Chu,Y.Masuda,T.Ohji,K.Kato,Langmuir26(2010)2811–2815.

[23]N.Kislov,J.Lahiri,H.Verma,D.Y.Goswami,E.Stefanakos,M.Batzill,Langmuir 25(2009)3310–3315.

[24]T.J.Sun,J.S.Qiu,C.H.Liang,J.Phys.Chem.C112(2008)715–721.

[25]S.A.Ansari,M.M.Khan,S.Kalathil,A.N.Khan,J.Lee,M.H.Cho,Nanoscale5 (2013)9238–9246.

[26]N.Scharnagl,H.Buschatz,Desalination139(2001)191–198.

[27]S.Yang,Z.Liu,J.Membr.Sci.222(2003)87–98.

[28]L.Zhang,J.Luo,T.J.Menkhaus,H.Varadaraju,Y.Sun,H.Fong,J.Membr.Sci.369 (2011)499–505.

[29]Y.Mei,C.Yao,K.Fan,X.Li,J.Membr.Sci.417(2012)20–27.

[30]X.Zhang,V.Thavasi,S.G.Mhaisalkar,S.Ramakrishna,Nanoscale4(2012) 1707–1716.

(11)

[31]H.Tong,S.Ouyang,Y.Bi,N.Umezawa,M.Oshikiri,J.Ye,Adv.Mater.24(2012) 229–251.

[32]S.Cho,J.-W.Jang,J.S.Lee,K.-H.Lee,Nanoscale4(2012)2066–2071.

[33]T.Jiang,T.Xie,L.Chen,Z.Fu,D.Wang,Nanoscale5(2013)2938–2944.

[34]T.Uyar,R.Havelund,J.Hacaloglu,X.Zhou,F.Besenbacher,P.Kingshott, Nano-technology20(2009)125605.

[35]S.Vempati,J.B.Veluru,R.G.Karunakaran,D.Raghavachari,T.S.Natarajan,J. Appl.Phys.110(2011)113718.

[36]S.Ramakrishna,K.Fujihara,W.Teo,T.Lim,Z.Ma,AnIntroductionto Elec-trospinningandNanofibers,WorldScientificPublishingCompany,Singapore, 2005.

[37]J.H.Wendorff,S.Agarwal,A.Greiner,Electrospinning:Materials,Processing, andApplications,Wiley-VCH,Germany,2012.

[38]J.V. Nygaard,T.Uyar, M.Chen,P.Cloetens,P.Kingshott,F. Besenbacher, Nanoscale3(2011)3594–3597.

[39]S.M.George,Chem.Rev.110(2009)111–131.

[40]M.Leskelä,M.Ritala,Angew.Chem.Int.Ed.42(2003)5548–5554.

[41]C.Detavernier,J.Dendooven,S.P.Sree,K.F.Ludwig,J.A.Martens,Chem.Soc. Rev.40(2011)5242–5253.

[42]C.J.Oldham,B.Gong,J.C.Spagnola,J.S.Jur,K.J.Senecal,T.A.Godfrey,G.N. Par-sons,J.Electrochem.Soc.158(2011)D549–D556.

[43]W.J.Sweet,J.S.Jur,G.N.Parsons,J.Appl.Phys.113(2013)194303.

[44]P.Heikkilä,T.Hirvikorpi,H.Hilden,J.Sievänen,L.Hyvärinen,A.Harlin,M. Vähä-Nissi,J.Mater.Sci.47(2012)3607–3612.

[45]E.Santala,M.Kemmel,M.Leskela,M.Ritala,Nanotechnology20(2009)035602.

[46]I.M.Szilagyi,E.Santala,M.Heikkila,V.Pore,M.Kemmel,T.Nikitin,G.Teucher,T. Firkala,L.Khriachtchev,M.Rsanen,M.Ritala,M.Leskala,Chem.Vap.Deposition 19(2013)149–155.

[47]J.D.Ye,S.L.Gu,F.Qin,S.M.Zhu,S.M.Liu,X.Zhou,W.Liu,L.Q.Hu,R.Zhang,Y. Shi,Y.D.Zheng,Appl.Phys.A:Mater.Sci.Process.81(2005)759–762.

[48]S.Vempati,S.Chirakkara,J.Mitra,P.Dawson,K.K.Nanda,S.B.Krupanidhi,Appl. Phys.Lett.100(2012)162104.

[49]B.Gong,Q.Peng,J.-S.Na,G.N.Parsons,Appl.Catal.A407(2011)211–216.

[50]A.Sugunan,V.K.Guduru,A.Uheida,M.S.Toprak,M.Muhammed,J.Am.Ceram. Soc.93(2010)3740–3744.

[51]P.Liu,Y.Zhu,J.Ma,S.Yang,J.Gong,J.Xu,Colloid.Surf.A436(2013)489–494.

[52]Z.Zhang,L.Zhang,S.Wang,W.Chen,Y.Lei,Polymer42(2001)8315–8318.

[53]B.D.Cullity,S.R.Stock,ElementsofX-rayDiffraction,3rded.,PrenticeHall, 2001.

[54]M.Chen,X.Wang,Y.Yu,Z.Pei,X.Bai,C.Sun,R.Huang,L.Wen,Appl.Surf.Sci. 158(2000)134–140.

[55]A.St˘anoiu,C.E.Simion,S.Som˘acescu,Sens.ActuatorsB:Chem.186(2013) 687–694.

[56]A.Djuriˇsi ´c,W.C.Choy,V.A.L.Roy,Y.H.Leung,C.Y.Kwong,K.W.Cheah,T.Gundu Rao,W.K.Chan,H.FeiLui,C.Surya,Adv.Funct.Mater.14(2004)856–864.

[57]C.H.Ahn,Y.Y.Kim,D.C.Kim,S.K.Mohanta,H.K.Cho,J.Appl.Phys.105(2009) 013502.

[58]E.G.Bylander,J.Appl.Phys.49(1978)1188.

[59]B.Lin,Z.Fu,Y.Jia,Appl.Phys.Lett.79(2001)943.

[60]P.S.Xu,Y.M.Sun,C.S.Shi,F.Q.Xu,H.B.Pan,Nucl.Instrum.Meth.B199(2003) 286–290.

[61]H.Zeng,G.Duan,Y.Li,S.Yang,X.Xu,W.Cai,Adv.Funct.Mater.20(2010)561.

[62]K.Vanheusden,W.L.Warren,C.H.Seager,D.R.Tallant,J.A.Voigt,B.E.Gnade,J. Appl.Phys.79(1996)7983.

[63]A.V.Dijken,E.A.Meulenkamp,D.Vanmaekelbergh,A.Meijerink,J.Lumin.90 (2000)123–128.

[64]T.J.Athauda,P.Hari,R.R.Ozer,ACSAppl.Mater.Interfaces5(2013)6237–6246.

[65]T.J.Athauda,R.R.Ozer,Cryst.GrowthDesign13(2013)2680–2686.

[66]C.Prahsarn,W.Klinsukhon,N.Roungpaisan,Mater.Lett.65(2011)2498–2501.

[67]S.Baruah,S.S.Sinha,B.Ghosh,S.K.Pal,A.K.Raychaudhuri,J.Dutta,J.Appl.Phys. 105(2009)074308.

[68]S.S.Warule,N.S.Chaudhari,B.B.Kale,M.A.More,Cryst.Eng.Commun.11(2009) 2776–2783.

[69]N.Daneshvar,D.Salari,A.R.Khataee,J.Photochem.Photobiol.A162(2004) 317–322.

[70]R.W.Matthews,J.Catal.97(1986)565–568.

[71]I.Izumi,W.W.Dunn,K.O.Wilbourn,F.R.F.Fan,A.J.Bard,J.Phys.Chem.84(1980) 3207–3210.

[72]Y.Yang,Y.Li,L.Zhu,H.He,L.Hu,J.Huang,F.Hu,B.Hec,Z.Ye,Nanoscale5 (2013)10461–10471.

[73]J.Wang,Z.Wang,B.Huang,Y.Ma,Y.Liu,X.Qin,X.Zhang,Y.Dai,ACSAppl. Mater.Interfaces4(2012)4024–4030.

[74]C.Yu,K.Yang,Y.Xie,Q.Fan,J.C.Yu,Q.Shu,C.Wang,Nanoscale5(2013) 2142–2151.

Referanslar

Benzer Belgeler

This paper is organized as follows: Section 2 describes the proxies for merger motives used to model the merger choice, and introduces the multinomial logistic and ANN models used

Recently, a DFT-based acceleration algorithm [13] was used in conjunction with stationary (for example, the forward-backward method (FBM)) and nonstationary (for example,

The corrosion at the source side under a +3 V DC potential was emphasized by comparing the intensity of the Au4f peaks recorded at a particular position d = 0.5 mm corresponding to

distances and angles of the carbazole ring systems (Table 1) are in agreement with each other, as well as with those of related dicarbazoles reported in the literature (Baker et

The purpose of this work was to investigate (1) the time-dependent rheological behavior of kaolinite-silicon oil pastes and (2) the influences of die dimensions, particle

Table 1 shows the fuel cell power requirement, fuel cell current, and fuel cell voltage from the reference numbers, simple VSC, MIL model, and the vehicle dynamometer test for

3. You must understand the health care system. Health care systems are not just manufacturing sys- tems with untreated patients as "raw materials" and treated patients

This discussion shows that, when the wind speed is constant, and A> )'1 initially, then the feedback law given by (13) brings the system back to the optimal operating point, and