• Sonuç bulunamadı

a photo differential scanning calorimetric study Producing critical exponents from gelation for various photoinitiatorconcentrations; Progress in Organic Coatings

N/A
N/A
Protected

Academic year: 2021

Share "a photo differential scanning calorimetric study Producing critical exponents from gelation for various photoinitiatorconcentrations; Progress in Organic Coatings"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Progress

in

Organic

Coatings

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / p o r g c o a t

Producing

critical

exponents

from

gelation

for

various

photoinitiator

concentrations;

a

photo

differential

scanning

calorimetric

study

Zekeriya

Do˘gruyol

a

,

Nergis

Arsu

b,∗

,

Sevnur

Keskin

Do˘gruyol

b

,

Önder

Pekcan

c,∗∗

aDepartmentofPhysics,YıldızTechnicalUniversity,Davutpas¸aCampus,34220Istanbul,Turkey bDepartmentofChemistry,YıldızTechnicalUniversity,Davutpas¸aCampus,34220Istanbul,Turkey cFacultyofArtsandScience,KadirHasUniversity,Cibali,34320Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27December2010

Receivedinrevisedform15October2011 Accepted12December2011

Available online 24 February 2012 Keywords: Criticalexponent Epoxyacrylate Photo-DSC Photoinitiatorconcentration

a

b

s

t

r

a

c

t

Photoinitiated radical polymerization of an 80wt% epoxy diacrylate (EA) and 20wt% tripropy-leneglycoldiacrylate(TPGDA)mixture withvarious 2-Mercaptothioxanthone(TX-SH)photoinitiator concentrationswasstudiedbyusingphoto-differentialscanningcalorimetric(Photo-DSC)technique. Photopolymerizationreactionswerecarriedoutunderthesameconditionsoftemperatureandlight intensity.Itwasobservedthatallconversioncurvesduringgelationatvariousphotoinitiator concentra-tionpresentnicesigmoidalbehaviorwhichsuggestsapplicationofthepercolationmodel.Thecritical time,wherepolymerizationreachesthemaximumrate(Rpmax)iscalledtheglasstransitionpoint(tg).

Thegelfractionexponents,ˇwereproducedfromtheconversioncurvesaroundtg.Theobservedcritical

exponentswerefoundtobearound0.55,predictingthatthegelsystemobeysthepercolationmodel. Rpmaxandfinalconversion(Cs)valueswerefoundtobeincreasedasthephotoinitiatorconcentration

wasincreased.Ontheotherhandtgvaluesdecreasedasphotoinitiatorconcentrationwasincreased,

indicatinghigherTX-SHconcentrationcausesearlyglasstransitionduringradicalpolymerization. © 2011 Elsevier B.V. All rights reserved.

1. Introduction

Photopolymerizableformulationsconsistofthreemajor com-ponents:apre-polymer,monomerasadiluentandaphotoinitiator. Inadditiontothesecomponents,additives(pigments,co-initiators, etc.)arealsooftenapartof thesesystems.Themostexpensive partoftheformulationsandplayingakeyroleinUV-curable sys-temsisaphotoinitiatorcapableofabsorbinglightoftheappropriate wavelengthandproducingreactivespecies,ions,orradicalspecies, whichareabletoinitiatepolymerizationofthemultifunctional monomersoroligomers[1,2].Photoinitiatedradical polymeriza-tionmaybeinitiatedbybondcleavage(TypeI)andH-abstraction type(TypeII) initiators[3].TypeIIphotoinitiatorsarebasedon compoundswhosetripletexcitedstatesreadilyreactwith hydro-gendonors,therebyproducinginitiatingradicals(Scheme1)[4–6]. Becauseof thebimolecular radicalgenerationprocess,theyare generallyslowerthanTypeIphotoinitiators,whichformradicals unimolecularly.

Typical Type II photoinitiators include benzophenone and derivatives,thioxanthones,benzyl,andquinones,whilealcohols,

∗ Correspondingauthor.Tel.:+902123834186;fax:+902123834134. ∗∗ Correspondingauthor.Tel.:+902125336532;fax:+902125336515.

E-mailaddresses:narsu@yildiz.edu.tr(N.Arsu),pekcan@khas.edu.tr(Ö.Pekcan).

ethers,aminesandthiolsareusedashydrogendonors.AmongType II photoinitiators, thioxanthone (TX) derivatives in conjunction withtertiaryaminesareefficientphotoinitiatorswithabsorption characteristicsthat comparefavorablywithbenzophenones[7]. Wehavereported[8]theuseofathiolderivativeofthioxanthone (TX-SH)asaphotoinitiatorforfreeradicalpolymerization.Amajor advantageofthisinitiatorisrelatedtoitsonecomponentnature.It canserveasbothtripletphotosensitizer[9]andahydrogendonor [10].Thus,thisphotoinitiatordoesnotrequireanadditional co-initiator,i.e.,aseparatemolecularhydrogendonor.Themechanism ofthephotoinitiationisbasedontheintermolecularreactionofthe triplet3TX-SH*withthethiolmoietyofgroundstateTX-SH.The

resultingthiylradicalinitiatesthepolymerization(Scheme2). Therateofphotoinitiationisdirectlyproportionaltothesquare rootofthephotoinitiatorconcentration,anincreaseinthelevel ofphotoinitiator would beexpected toenhance thecurespeed offormulation. Severalreports claimthat thecurerateand the degreeofpolymerizationofaformulationwillatfirstincreasewith increasingphotoinitiatorconcentration,andafterpassingthrough amaximumoroptimumconcentration,theeffectwillrapidlyfall off.Thiseffectwilllargelydependupontheabsorbance charac-teristicsofthephotoinitiatorandthatofthecurableformulation [11].

AthigherphotoinitiatorconcentrationstheabsorbanceofUV lightappearstogeneratea higherconcentrationoffreeradicals

0300-9440/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.porgcoat.2011.12.007

(2)

nearthesurfaceofthefilm.Thishigherconcentrationof photoini-tiatorandthereforefreeradicalsatthesurfaceisthoughttoblock sufficientenergyfrompenetratingfilm,preventingphotoactivation belowagiventhickness.Belowthislevelaninsufficientnumber offreeradicalsaregeneratedinordertoinitiateandsustainthe polymerizationprocess,andthereforetherateofpolymerization decreases.

Photoinitiatorswhichhaveahighmolarextinctioncoefficient wouldbeexpectedtogiverisetothisunevendistributionmore readilythanphotoinitiatorswhichhavealowextinctioncoefficient anddonotabsorbUVlightintensity.Thephotoinitiated polymer-izationofacrylatesandmethacrylatesisoneofthemostefficient processesfortherapidproductionofpolymericmaterialswithwell definedproperties.Thesematerialshavefoundwidespreaduseas coatings,imagingmaterials,photoresistsandpolymericmaterials formanyotherapplications.Thephotoinitiatorplaysakeyrolein UV-curablesystemsbygeneratingthereactivespecies,freeradicals orions,whichwillinitiatethepolymerizationofthe multifunc-tionalmonomersandoligomers[3–6,21].

Thebulk freeradicalcross-linking copolymerization(FCC) is dividedintothreestages:lowconversionstage,geleffectstageand glasseffectstage[12–14].Itwasobservedthatmonomer conver-sionfirstincreasesveryslowlybutthenitacceleratesbecauseof thegeleffect[15].Whenthereactiontemperatureislowerthanthe glasstransitionpointofthepolymertheglasseffectstageoccursas thelaststageofpolymerization.Theglasstransitiontemperature ofpolymersiscustomarilydefinedasthetemperatureatwhich therelaxationtimeonthemonomerscalereaches100s[16]. Rad-icalchainpolymerizationsareoftencharacterizedbythepresence ofanauto-accelerationinthepolymerizationrateasthereaction proceeds[17].

NorrishandSmith[18] postulatedthat theincreased viscos-itycausedbymonomersbeingconvertedtopolymerresultedin adecreaseinthemobilityofthegrowingchains,makingitmore difficultforthemtodiffusetogetherandterminate.Thetermgel effectwasusedduetothecharacteristicriseinviscosity accompa-nyingthedramaticincreaseinpolymerconversion[19].Burnett and Melville [19], Schulz and Harbort[20] each independently

Scheme 2.Photoinitiated free radical polymerization by using 2-Mercapto-thioxanthone(TX-SH).

averagedvalueforthecriticalexponentˇwasfoundtoobeythe percolationmodel,predictingtheuniversalbehaviorholdsnearthe glasstransitionpoint.Theproducedglasstransitionpointtg,

max-imumconversionrateRpmaxandfinalconversionvaluesCswere

foundtobestronglycorrelatedwiththeintroducedphotoinitiator concentration.

Ingeneralgelationprocesshasbeenknownasageometrical phasetransitionratherthanathermalphasetransitionandownsa universalclassbyitself.However,asfarasthecriticalphenomenon isconcernedbehaviorofgelationmaybemadeanalogoustosecond orderphasetransition.

Understandingthegelationphenomenonwasfirstintroduced byFloryandStockmayer[23,24]onaspeciallatticecalledBethe latticeonwhichtheclosedloopswereignored.Analternativeto theclassical theoryisthe latticepercolationmodel [25] where monomersarethoughttooccupythesitesofaperiodiclatticeand thechemical bondsascorrespondingtotheedgesjoiningthese sitesrandomlywithsomeprobabilityp,whichistheratioofactual numberofbondsthathavebeenformedbetweenthemonomers, tothetotalpossiblenumberofsuchbonds.Thegelpointcanbe identifiedwiththepercolationthresholdpc,where,inthe

thermo-dynamiclimit,theincipientinfiniteclusterstartstoformandthe systemexhibitsviscoelasticrigidity[26,27].

Fromthepointoftheuniversality,thepredictionsofthesetwo theoriesaboutthecriticalexponentsforthegelationarequite dif-ferent.ThecriticalexponentˇforthegelfractionG(thestrength oftheinfinitenetworkinpercolationlanguage)nearthegelpoint, canbedefinedasEq.(1),

G˛(p−pc)␤, p→p+c(abovepercolation) (1)

where the Flory–Stockmayer theory (so-called the classical or mean-fieldtheory)gives,ˇ=1independentofthedimensionality, whilethepercolationstudiesbasedoncomputersimulationsgive ˇaround0.43inthree-dimension[25,28].Thesetwouniversality classesforgelationproblemareseparatedbyaGinzburgcriterion [29]thatdependsuponthechainlengthbetweenthebranchpoints aswellastheconcentrationofthenon-reactingsolvent.The vul-canizationoflonglinearpolymerchainsbelongstothemean-field class. Criticalpercolation describesthepolymerizationof small multifunctionalmonomers[25,27].

2. Materialsandmethods 2.1. Materials

2-Mercaptothioxanthone[8](TX-SH)wassynthesized accord-ing tothe previously described procedure. Dimethylformamide (DMF, 99+%, Aldrich) was distilled over CaH2 under reduced

pressure.Epoxydiacrylate(EA)andTripropyleneglycoldiacrylate (TPGDA)wereobtainedfromCognisFrance.

(3)

Fig.1.HeatflowspectraofphotopolymerizationofEA/TPGDAwithvarious pho-toinitiator(TX-SH)concentrationsirradiatedat25◦CbyUVlightwithanintensity

of40mW/cm2.

2.2. Photodifferentialscanningcalorimetry(Photo-DSC)

ThephotoinitiatedpolymerizationofEA/TPGDAinthepresence ofvarying(0.01,0.02,0.05,0.10,0.25,0.50and0.75wt%)TX-SH concentrationwasperformedinaPhoto-DSCsetup(TA-DSCQ100). UVlightwasappliedfromamediumpressuremercurylampwith 40mW/cm2light intensityfor5min.Theweightofthesamples

2±0.1mgwasplacedintoanopenaluminumliquidDSCpan.The measurementswerecarriedoutunderidenticalconditions(i.e.an isothermalmodeatroomtemperature(24.92◦C)andanitrogen flowof50mL/min).

Thereaction heat liberatedin thepolymerizationis directly proportionaltothenumberofacrylatesreactedinthesystem.By integratingtheareaundertheexothermicpeak,theconversionof theacrylategroups(C)ortheextentofthereactionwasdetermined accordingtoEq.(2):

C= Ht

Htheory

0

(2) whereHtisthereactionheatevolvedattimetandH0theoryis

thetheoreticalheatforcompleteconversion.Areactionheatforan acrylatedoublebondpolymerizationofHtheory

0 =86kJ/molwas

used[30].Therateofpolymerization(Rp)isdirectlyrelatedtothe heatflow(dH/dt)byEq.(3):

Rp=



dC dt



= (dH/dt) Htheory 0 (3)

3. Resultsanddiscussion 3.1. Photo-DSCresults

Photo-DSCmeasurements supply thereactiondatain which themeasuredheatflowcanbeconverteddirectlytotheultimate percentageconversionandpolymerizationrateforagiven formu-lation.Atypicalheatflowandrateofpolymerizationcurvesversus reactiontimefordifferentinitiatorconcentrationsarepresentedin Figs.1and2,respectively.

Conversioncurves produced fromFig.2 areshown in Fig.3 againstreactiontime.ItisseeninFigs.1–3,that,withincreasing initiatorconcentration,theextentofheatflow,therateof polymer-izationandconversionincreased.

Increasedinitiatorconcentrationsprovidehigherefficiencyfor initiation,leadingtomoreformedprimaryradicalsinthesolution. Thisenhancesboththepolymerizationrateandfinalconversion

Fig.2. RateofpolymerizationspectraofphotopolymerizationofEA/TPGDAwith variousphotoinitiator(TX-SH)concentrationsirradiatedat25◦CbyUVlightwith anintensityof40mW/cm2.

ratio.Thereductionoftheinductionperiodisalsofavoredbya highconcentrationofphotoinitiator.

3.2. Kineticassessmentofphotopolymerization

Theeffectsofphotoinitiatorconcentrationonthe photopoly-merization kineticswerepresented as shown inFigs. 4–6.It is interestingtonotethattgvaluesdecreaseasthephotoinitiator

con-centrationincrease,followingtheoppositebehaviorofRpmaxand

finalconversion,Cs.

Onenaturallymayexpectthatthehigherphotoinitiator concen-trationshouldreducethetimerequiredtoachieveglassformation andtheirpercolationduringgelationprocess.Ontheotherhand, asexpected,bothRpmaxandCsincreaseasthephotoinitiator

con-centrationisincreased.

3.3. Criticalexponentsduringgelation

Theaboveexperimentalfindingscanbequantifiedintermsof gelationtheoriesasfollows:ingelationtheorytheconversion fac-tor,p,alonedeterminesthebehaviorofthegelationprocess,though pmaydependontemperature,concentrationofmonomers,and time.Ifthetemperature,lightintensityandconcentrationarekept constant,thenpwillbedirectlyproportionaltothereactiontime,

Fig.3.ConversionspectraofphotopolymerizationofEA/TPGDAwithvarious pho-toinitiator(TX-SH)concentrationsirradiatedat25◦CbyUVlightwithanintensity

(4)

Fig.4.Theeffectofphotoinitiator(TX-SH)concentrationontgvalueforEA/TPGDA.

Fig.5.Theeffectofphotoinitiator(TX-SH)concentrationontherateof photopoly-merizationforEA/TPGDA.

t.Thisproportionalityisnotlinearoverthewholerangeofreaction timebutitcanbeassumedthatinthecriticalregion,i.e.aroundthe criticalpoint|p−pc|islinearlyproportionaltothe|t−tc|.

There-fore,belowthecriticalpoint(i.e.,fort<tc)conversionmeasures

theweightaveragedegreeofpolymerization.Abovetc,however

Fig.6.Theeffectofphotoinitiator(TX-SH)concentrationonthefinalconversionof photopolymerizationforEA/TPGDA.

Fig.7. Doublelogarithmicplotoftheconversionversustimecurvesabovetgfor

variousphotoinitiator(TX-SH)concentrations.

conversionmeasuressolelythegelfractionG,thefractionofthe monomersthatbelongtothemacroscopicnetwork.

Nowourexperimentalfindingswereinterpretedbyconsidering thequasi-staticpropertiesofthegelneartheglasstransitionpoint inthelanguageofpercolation[31].Thedoublelogarithmicplot oftheconversionversus|t− tc|wasanalyzed,whichproducedthe

criticalexponent,ˇfromtheslopeofthestraightlineduringfitting thedatainFig.7.

Heretheimportantproblemwastheprecisedeterminationof theglasstransitionpointand thecriticalregion.Inparticular,a smallshiftintc resultsin alargeshiftin thecriticalexponent.

Suchalog–logplotrevealsthatdatashouldbeparticularlyaccurate nearthecriticalpoint.Usuallythecriticalpointcanthenbe deter-minedbyvaryingtcinsuchawayastoobtaingoodscalingbehavior

overthegreatestrangein|t−tc|,iftheexperimentsareperformed

againsttime.Thetimecorrespondingtothemaximumrateof poly-merizationwaschosenasthecriticaltime,tcwhichmaybenamed

astheglasstransitionpoint,tgforthephotoinitiatedgelationunder

consideration.Theplotoflog(conversion)versuslog|t−tc|above

tgforthegelationofEA/TPGDAwiththreedifferentphotoinitiator

concentrationsarepresentedinFig.8.

Theslopesofthestraightlinesproducedgelfractionexponent ˇatthegiveninitiatorconcentrations.The(valuescalculatedfor thegelationofEA/TPGDAinallinitiatorconcentrationsarelisted inTable1togetherwithtg,Rpmaxandfinalconversion,Cs.Here

ithastobenotedthattheaveragevalue(=0.56)ofthecalculated (valuesabovetgstronglysuggestthattheglassyregions

perco-lateduringphotoinitiatedgelformationforallthesamplesunder

Table1

Experimentallyobservedparametersmeasuredby “Photo-DSC”and calculated via“percolationtheory”forvariousphotoinitiatorconcentrationsduring diacry-late,EA/TPGDA,photopolymerizationat25◦CbyUVlightwithanintensityof 40mW/cm2. [TX-SH](wt%) tga(s) 10−3×Rpmaxb(s−1) Csc(%) ˇd 0.01 10.6 7 34 0.52 0.02 6.6 8 41 0.56 0.05 3.7 12 44 0.57 0.10 3.2 18 52 0.57 0.25 2.5 22 59 0.57 0.50 2.4 25 62 0.57 0.75 2.7 27 69 0.55

aTimetoreachglasstransitionpoint. bThemaximumpolymerizationrate. c Thefinalconversionofdoublebond. d Betavalue.

(5)

Fig.8. Doublelogarithmicplotoftheconversionversustimecurvesabovetgfor

(a)0.02%,(b)0.10%and(c)0.50%TX-SHconcentration,respectively.Thevaluesofˇ exponentweredeterminedfromtheslopeofthestraightlines.

consideration,bypredictingthattheybelongtothesame univer-salityclass,thatis,theyobeythepercolationtheory.

4. Conclusions

InthisworkitisseenthatPhoto-DSCtechniquecanbeusedto measurethecriticalexponents,(duringgelformationfromEAto TPGDAmixturesforvariousphotoinitiatorconcentrations.Ithas tobeemphasizedthat (values do notvary duringgelation for allsamplespreparedinvariousinitiatorconcentrationsindicating

thatthegelationinthisparticularsystemobeystheuniversalityof percolationmodel.Howeveritwasobservedthattheother gela-tionparameterssuchastg,RpmaxandCspresentedconsiderable

variationsdependingonthephotoinitiatorconcentration. Acknowledgments

TheauthorsacknowledgeYıldızTechnicalUniversityResearch Foundation (20-01-02-02),TUB˙ITAK (TB-1820), and theTurkish StatePlanningOrganization(24-DPT-01-02-01)fortheirfinancial support.

References

[1] N.Arsu,I.Reetz,Y.Yagci,K.M.Mishra,in:K.M.Mishra,Y.Yagci(Eds.),Handbook ofVinylPolymers,CRCPress,London,2009,pp.141–204.

[2]C.G.Roffey,PhotopolymerizationofSurfaceCoatings,JohnWileySons,New York,1982,pp.72–100.

[3]S.P.Pappas,UVCuringScienceandTechnology,TechnologyMarketingCorp., NorwalkCT,1978,pp.2–13.

[4]J.P.Fouassier,Photoinitiation,PhotopolymerizationandPhotocuring,Hanser Verlag,Munich,1995,pp.1–7.

[5]K.Dietliker,Chemistry&TechnologyofUV&EBFormulationforCoatings, Inks&Paints,London,1991,pp.76–77.

[6]R.S.Davidson,in:D.Bethel,V.Gold(Eds.),AdvancesinPhysicalChemistry, AcademicPress,1983,pp.1–130.

[7]M.J.Davis,J.Doherty,P.N.Godfrey,P.N.Gren,J.R.A.Yung,M.A.Parrish,Journal oftheOilandColourChemistsAssociation11(1978)256–263.

[8]L.C¸okba˘glan,N.Arsu,Y.Yagci,etal.,Macromolecules36(2003)2649–2653. [9] S. Keskin, S. Jockusch, N.J. Turro, N. Arsu, Macromolecules 41 (2008)

4631–4634.

[10]S.K.Dogruyol,Z.Dogruyol,N.Arsu,JournalofPolymerScienceA:Polymer Chemistry19(2011)4037–4043.

[11] Z.Do˘gruyol,F.Karasu,G.Temel,D.K.Balta,M.Aydın,S.Keskin,Ö.Pekcan,N. Arsu,in:J.P.Fouassier,X.Allonas(Eds.),BasicsandApplicationsof Photopoly-merizationReactions,ResearchSignpost,Trivandrum,2010,pp.161–173. [12]J.Qin,W.Guo,Z.Zhang,Polymer43(2002)1163–1170.

[13] H.K.Mahabadi,K.F.O’Driscoll,JournalofPolymerChemistryEdition15(1977) 283–300.

[14]I.A.Maxwell,G.T.Russell,MacromolecularTheoryandSimulations2(1993) 95–128.

[15] D.Kaya,Ö.Pekcan,PhaseTransition4(2004)359–373.

[16] M.D.Ediger,C.A.Angell,S.R.Nagel,JournalofPhysicsandChemistry100(1996) 13200–13212.

[17]A.M.North,in:A.D.Jenkins,A.Ledwith(Eds.),TheInfluenceofChainStructure ontheFreeRadicalTerminationReaction,Wiley-Interscience,1974. [18] R.G.W.Norrish,R.R.Smith,Nature150(1942)336–337.

[19]G.M.Burnett,H.W.Melville,ProceedingsoftheRoyalSocietyofLondon189 (1947)494–507.

[20] G.V.Schultz,G.Harbort,DieMakromolekulareChemie1(1947)106–139. [21]Z.Do˘gruyol,F.Karasu,D.K.Balta,N.Arsu,Ö.Pekcan,PhaseTransition81(2008)

935–947.

[22]Z.Do˘gruyol,N.Arsu,Ö.Pekcan,JournalofMacromolecularSciencePartB: Physics48(2009)745–754.

[23]P.J.Flory,JournaloftheAmericanChemicalSociety63(1941)3083–3090. [24]W.H.Stockmayer,JournalofChemicalPhysics11(1943)45–55.

[25]M.Sahimi,ApplicationofPercolationTheory,Taylor&Francis,London,1993, pp.169–192.

[26]S.Arbabi,M.Sahimi,PhysicalReviewB47(1993)695–702. [27]S.Arbabi,M.Sahimi,PhysicalReviewLetters65(1990)725–728. [28]A.Aharony,PhysicalReviewB22(1980)400–414.

[29]C.P.Lusignan,J.C.Wilson,T.H.Mourey,R.H.Colby,PhysicalReviewE60(1999) 5657.

[30]E.Andrejewska,M.Andrzejewski,JournalofPolymerSciencePartA:Polymer Chemistry36(1998)665–673.

Şekil

Fig. 2. Rate of polymerization spectra of photopolymerization of EA/TPGDA with various photoinitiator (TX-SH) concentrations irradiated at 25 ◦ C by UV light with an intensity of 40 mW/cm 2 .
Fig. 4. The effect of photoinitiator (TX-SH) concentration on t g value for EA/TPGDA.
Fig. 8. Double logarithmic plot of the conversion versus time curves above t g for

Referanslar

Benzer Belgeler

It was also shown that if polymer systems which are initially of an isolator charac- ter are doped with carbon nanotubes of nano dimensions and when the amount of this addition

It is seen in Figures 3 and 4, that with increasing UV light intensity from 10 to 70 mW/cm 2 the extent of heat flow, rate of polymerization, and conversion increased up to 50 mW/cm 2

The produced glass transition point t g , maximum rate of poly- merization Rp max and final conversion C s values were found to be strongly correlated with the temperature in which

Copolymer based on cross-linked polyacrylamide (PAAm) having N-isopropylacrylamide (NIPA) was prepared and their elas- tic properties were studied as a function of NIPA contents..

As their total surface energy is much less than that of SmPS particles, LgPS particle requires higher energy to complete viscous flow

Monomer conversion percentages versus time curves of EA/TPGDA monomer, photoinitiated with TX-SH, which contains various amounts of PSt-

The averaged value for the critical exponent ˇ was found to obey the percolation model, predicting that universal behavior holds near the glass transition point for all gels

In this work, Photo-DSC technique, which elaborates photoinitiation during the gelation of multifunctional acrylates was used to study glass transition in bulk free radical