• Sonuç bulunamadı

and conductivity of polymer films Investigation of PSt-MWCNT concentration on epoxyacrylatephotopolymerization Progress in Organic Coatings

N/A
N/A
Protected

Academic year: 2021

Share "and conductivity of polymer films Investigation of PSt-MWCNT concentration on epoxyacrylatephotopolymerization Progress in Organic Coatings"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ProgressinOrganicCoatings76 (2013) 944–949

ContentslistsavailableatSciVerseScienceDirect

Progress

in

Organic

Coatings

jo u r n al h om epa ge :w w w . e l s e v i e r . c o m / l o c a t e / p o r g c o a t

Investigation

of

PSt-MWCNT

concentration

on

epoxyacrylate

photopolymerization

and

conductivity

of

polymer

films

Zekeriya

Do˘gruyol

a

,

Gokhan

Temel

b

,

Sevnur

K.

Do˘gruyol

c

,

Önder

Pekcan

d

,

Nergis

Arsu

c,∗

aIstanbulUniversity,DepartmentofEngineeringScience,34850Istanbul,Turkey bYalovaUniversity,DepartmentofPolymerEngineering,77100Yalova,Turkey cYildizTechnicalUniversity,ChemistryDepartment,34320Istanbul,Turkey dFacultyofArtsandScience,KadirHasUniversity,34320Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15July2012 Accepted20August2012 Available online 21 November 2012 Keywords: ModifiedPSt-MWCNT Nanocomposite Photopolymerizationkinetics Filtereffect

a

b

s

t

r

a

c

t

Photopolymerizationkineticsandconductivitychangesofepoxyacrylatecompositesforvariousloading

modifiedPSt-MWCNTweightfractionschangingfrom0.0025to0.2wt.%wereevaluatedbyperforming

photodifferentialscanningcalorimetry(photo-DSC)andfourpointconductivitymeasurements.0.2%

PSt-MWCNTadditivepolymericfilmshadtheirelectricalconductivityboostedby6%morethannon-additive

polymericfilms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Polymer nanocomposites with carbon nanotube fillers have generatedmuchinterestamongresearchersfortheimprovement oftheirmechanicalpropertiesandelectricalconductivity[1–8].In recentyears,CNTcompositeshavebeenamajorareaofresearch and development,where they are usedas reinforcing particles embeddedin a matrix (polymeric,ceramic or metallic)to con-fertheCNTs’ inherentpropertiestothecompositeswhich then gainenhancedfunctionalities.Theyareexcellentnano-filler mate-rialsfor transformingelectricallynon-conductingpolymersinto conductivematerials,whichhaveshownpotentialapplicationsin electromagneticinterference(EMI)shielding,photovoltaicdevices, andtransparentconductivecoatings[9–17].

AlthoughCNTsexhibitexcellentproperties,suchaslowmass density,electricalconductivityand,mechanically,asa nanocom-posite component, they suffer from self-aggregation and poor solubilityinorganicsolventsand water arisingfromtheirrigid honeycombstructures[18].Inordertoovercomethelatter draw-back, several approaches involving non-covalent and covalent functionalizationmethodswerereportedandCNTswithimproved solubilitywereobtained.Non-covalentfunctionalizationssuchas ␲–␲stackinginteractionsbetweenthesurfaceofCNTsand polynu-cleargroupsofpolymerswerebasedonVanderWaalsforces[19].

∗ Correspondingauthor.

E-mailaddresses:dogruyolz@gmail.com,arsunergis@gmail.com(N.Arsu).

Covalent functionalization examplesinclude grafting of macro-moleculesusingboth“graftingonto”[20–22]and“graftingfrom” [23]approaches.The“graftingonto”methodisthemostwidely usedfunctionalizationapproachtopreparemodified CNTswith varioustypesofpolymers.Dependingonthetypeofpolymerused, theresultantcompositesmayexhibithydrophilic[24], hydropho-bic[25]oramphiphilic[26]properties.

Inphotopolymerization experiments,mainlytype I(bybond cleavage)andtype II(byH-abstraction)initiatorsareemployed [27].AlthoughtypeIphotoinitiatorsaremoreeffectivethantypeII initiators,typeIIinitiatorsoperatinginthevisiblerangeare advan-tageousintermsofenergypolicies.Recently,mercaptoderivatives [28], carboxylic acidderivatives [29,30],anthracene derivatives [31,32]andmorpholine-attached[33]TXinitiatorswereusedfor thepolymerizationofacrylatesandmethacrylatesastypeII one-componentphotoinitiators.Anotherapproachwasalsoundertaken andthioxanthone-benzotriazolewassynthesized,whichpresented stabilizerandinitiatorpropertiesinone-componentinitiators[34]. In previous studies we conducted, the efficiency of 2-mercaptothioxanthone (TX-SH) was investigated [28]. A thiol derivativeofthioxanthoneTX-SHphotoinitiatorservesasbotha tripletphoto-sensitizer[35]andahydrogendonorforfree radi-calpolymerization.Themechanismofphotoinitiationisbasedon theintermolecularreactionofthetriplet,3TX-SH*,withthethiol

moietyofgroundstateTX-SH.Theresultingthylradicalinitiates polymerization(Scheme1)[28].

We report here the results, by means of photopolymeriza-tionkineticsandtheconductivityofpolymericfilms,ofaddingof 0300-9440/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

Scheme1.PhotoinitiationmechanismofTX-SH. polystyrenegraftedmultiwallcarbonnanotubeMWCNTby

thiol-eneclickchemistryviathethermalinitiationmethod.

2. Experimental

2.1. Materials

2-Mercaptothioxanthone (TX-SH) wassynthesized according tothepreviouslydescribedprocedure[28].Dimethylformamide (DMF, 99+%, Aldrich) was distilled over CaH2 under reduced

pressure. Epoxy diacrylate (EA) and tripropyleneglycoldiacry-late (TPGDA) were obtained from Cognis France. Styrene (St, 99%, Aldrich) was distilled under reduced pressure beforeuse. 2,2-Azobis(isobutyronitrile) (AIBN, 98%, Aldrich) was recrystal-lized from ethanol. Tetrahydrofuran (THF, 99.8%, J.T. Baker) was dried and distilled over benzophenone-Na. N,N,N,N,N -Pentamethyldiethylenetriamine(PMDETA, Aldrich)was distilled overNaOHethyl-2-bromopropionate(>99%,Aldrich)and trimethy-lolpropanetris(2-mercaptoacetate)(technicalgrade,Aldrich)was usedasreceived.Multiwallcarbonnanotube(MWCNT)Baytubes®

C150P(Bayer)andallotherreagentswereusedasreceived. 2.2. Preparationofformulations

Photoinitiator (TX-SH) concentration was held constant (0.5%, w/w) for all formulations; DMF was used to dissolve the initiator easily and various weight percentages of PSt-MWCNT (0:0.0025:0.0050:0.010:0.0250:0.0500:0.1000:0.2000 (%, w/w)) content in CHCl3 and epoxydiacrylate (80%) and

tripropylenegylcoldiacrylate (20%) were added and the for-mulations were sonicated and then stirred for one day at 500rpm.

2.2.1. Generalprocedureforatomtransferradicalpolymerization ToaSchlenktubeequippedwithamagneticstirringbar,the degassedmonomer (St,44mmol), ligand(PMDETA,0.44mmol), catalyst(CuBr,0.44mmol)andinitiator(ethyl-2-bromopropionate, 0.44mmol)wereadded,respectively.Thetubewasdegassedby threefreeze-pump-thawcycles,leftundervacuum,andplacedin a90◦Cthermostatedoilbath.Afterpolymerization,thereaction mixturewasdilutedwithTHFandthenpassedthroughacolumn ofneutral aluminatoremove themetalsalt.Theexcessof THF and unreactedmonomer wereevaporated under reduced pres-sure.ThepolymerwasdissolvedinTHFandprecipitatedin10-fold excessmethanol.Theresultingpolymerwasdriedinavacuumoven at roomtemperature.Molecularweights and molecularweight distributionsofthepolymers(Mn=3000gmol−1,PDI=1.18)were

determinedbyGPC.

2.2.2. Synthesisofthiolend-functionalpolystyrene(PSt-SH) Thethiolend-functionalpolystyrenesweresynthesizedfrom theabove obtainedPSt-Br byorganic substitution reaction fol-lowingtheliteratureprocedure[36].Thus, amixtureof1.0gof polystyrene(PSt-Br),ofthiourea(0.08g,1.05mmol,10equiv.)and 30ml of DMFwas heated at100◦C under flow for 24h. NaOH (0.042g,1.05mmol,10equiv.)which wasdissolvedin0.8mlof water,wasaddedandthemixtureheatedto110◦Cfor24h.Two dropsof95%sulfuricacidin0.5mlofwaterwereaddedandthe

(3)

946 Z.Do˘gruyoletal./ProgressinOrganicCoatings76 (2013) 944–949

Scheme3. ModificationofMWCNTwiththiol-eneclickchemistrywithPSt-SH.

mixturewasstirredatroomtemperatureforanadditional5h.The functionalizedpolymerwaspurifiedbysuccessiveprecipitations inmethanol(Scheme2).

1HNMR(CDCl

3,250MHz):ı=7.25–6.24(m,aromaticprotonsof

PS),3.94(broad,2H, CH2 O C O),3.51ppm(broad,1H, CH S).

2.2.3. ModificationofMWCNTwithPSt-SHbythiol-eneclick chemistry

PSt-SH(150mg)andacatalyticamountofAIBN(1–2%,w/w) weredissolvedin30mlofDMF,and50mgMWCNTwasadded. Themixturewassonicatedfor10mininanultrasonicbathand theresultingsuspensionwasbubbledwithargonfor15min.Then thesuspensionwassonicatedagainfor10minandallowedtostir at80◦Covernight.Attheendoftheperiod,theresultingmixture wascentrifugedtoremovesolventandunreactedpolymer. Mod-ifiedMWCNTwasredispersedinfreshTHFusingmildsonication andthencentrifugedagain.Theredispersionandrecentrifugation processwasthenrepeatedthreetimestoremoveanyfreePSt.The finalproductwasdriedinvacuum.

1HNMR(CDCl

3,250MHz):ı=7.38–6.25(m,aromaticprotons

ofPS),2.34–1.22(m,aliphaticprotonsofPS)(Scheme3).

2.3. Photodifferentialscanningcalorimeter(photo-DSC)

The heat of the photoinitiated polymerization reaction was measuredbymeansofaphotodifferentialscanningcalorimeter. ThephotoinitiatedpolymerizationofEA/TPGDAwithvarious con-centrationsof PSt-MWCNT in the presence of TX-SH (0.5wt.%) wasperformedinaphoto-DSCsetup(TA-DSCQ100).UVlightwas appliedfromamediumpressuremercurylampataconstant inten-sityof40mW/cm2 for3minunderanitrogenflowof50ml/min

atroomtemperature(isothermalmode).Theweightofthe sam-ples2±0.1mgwasplacedintoanopenaluminumliquidDSCpan. Measurementswere carried outunder identicalconditions and recordedatasamplingintervalof0.05s/point.Thethicknessof curedthinfilmswasabout0.25mmaccordingtothepreviously describedprocedure[37].

Thereaction heat liberatedin thepolymerizationis directly proportionaltothenumberofacrylatesreactedinthesystem.By integratingtheareaundertheexothermicpeak,theconversionof

theacrylategroups(C)ortheextentofthereactionwasdetermined accordingtoEq.(1):

C= Ht Htheory

0

(1)

whereHtisthereactionheatevolvedattimetandH0theoryis

thetheoreticalheatforcompleteconversion.Areactionheatforan acrylatedoublebondpolymerizationofHtheory

0 =86.25kJ/mol

wasused[38,39].Therateofpolymerization(Rp)isdirectlyrelated

totheheatflow(dH/dt)asinEq.(2): Rp=ddCt = (dH/dt)

Htheory 0

(2) Electricalresistivitymeasurement

Theelectricalresistivitiesofthefilmswereconductedwiththe Signatonesystem,incorporatedwithafour-pointcylindricalprobe. Thefour-pointprobehasfourprobesinastraightlinewithanequal inter-probespacingof1.56mm.Theprobeneedleradiusis100␮m. Theelectricalresistanceofthefilms,Rs,canbeobtainedfromEq. (3)

Rs=4.53×VI (3)

whereIistheconstantcurrentthatpassedthroughthetwoouter probesandVistheoutputvoltagemeasuredacrosstheinnerprobes withtheKeithley2400source-meter.

3. Resultsanddiscussion

3.1. Kineticassessmentofphotopolymerization

Thephotocuringofepoxydiacrylate(80%)dilutedwithTPGDA (20%) in the presence of TX-SH photoinitiator with various PSt-MWCNT loading wasfollowed by photo-DSC.To study the photopolymerizationkineticsofnanocompositesbyphoto-DSCis importantandprovidesheatflowdata.Theheatflowcanbe con-vertedbyEq.(3) totheultimatepercentageconversionandthe polymerizationrateforagivenamountofformulationisgivenin Table1.However,itshouldbepointedoutthatalthoughthe solubil-ityofMWCNTissignificantlyincreasedbythemodification,there stillexistsomedispersionproblemswhichinterferewiththelight

(4)

Fig.1.HeatflowversustimecurvesofEA/TPGDAmonomer,photoinitiatedwith TX-SH,whichcontainsvariousamountsofPSt-MWCNT.

transmission,especiallyforthehighestloadingsofPSt-MWCNTs.

TheprofilesofthephotopolymerizationofEA+TPGDAwith

vari-ousPSt-MWCNTloadingsinitiatedbyTX-SHareshowninFigs.1–3

at25◦CbyUVlightwithanintensityof40mW/cm2.

Addingbetweenarangeof0.0025%and0.2%PSt-MWCNTto theUV-curableformulationsgraduallyledtolowerpolymerization ratesofupto0.5%loadingofPSt-MWCNT.With0.2%ofPSt-MWCNT loading,theconversionpercentagedecreasedatleast20% com-paredtoformulationswhichhadnoPSt-MWCNT.Thecorrelation betweenvariousloadingamountsofPSt-MWCNTandthe maxi-mumofrateofpolymerizationandfinalconversionpercentagesare summarizedinFigs.4and5.IncreasingtheamountofPSt-MWCNT reducesthelightpenetrationandinaddition,theprobabilityof producingofinitiatingthiylradicalsfromTX-SHislowered,which isreflectedinboththeRpandfinalconversionCsvalues.

Formulations,whichareusedforphoto-DSCexperiments,have beencoatedwiththedoctorblademethodinordertoexaminethe

Fig.2.RateofpolymerizationversustimecurvesofEA/TPGDAmonomer, photoini-tiatedwithTX-SH,whichcontainsvariousamountsofPSt-MWCNT.

Fig. 3. Monomer conversion percentages versus time curves of EA/TPGDA monomer,photoinitiatedwithTX-SH,whichcontainsvariousamountsof PSt-MWCNT.

Fig.4.PSt-MWCNTconcentrationversustherateofpolymerization(Rpmax)of

EA/TPGDAmonomer,photoinitiatedwithTX-SH.

UVlightpenetrationontothefilms.Theseformulationswereplaced into1cm×1cmglassesandcuredwith8passesundera Mini-UV-cureunit.Thepolymericfilmsobtained,consistingofthevarious concentrationofPSt-MWCNT,aregiveninFig.6.

Todemonstratethecut-off lightpenetration offormulations containingvariousamountsofPSt-MWCNT,transmissionspectra ofallUVcuredfilmsweretakenandaregiveninFig.7.

The TX-SH photoinitiator has an absorption maximum at 382nm and as seen from Fig. 7, increasing the amount of

Fig. 5.PSt-MWCNT concentrations versuschange of final conversion (Cs)of

(5)

948 Z.Do˘gruyoletal./ProgressinOrganicCoatings76 (2013) 944–949

Fig.6.ThepicturesofUVcuredpolymericfilmsconsistingofdifferent concentra-tionsofPSt-MWCNT.

Fig.7.UV–visregiontransparencyspectraofUVcuredthinfilmsthatcontain. PSt-MWCNTindifferentconcentrations.

PSt-MWCNT decreases the transmission percentage of cured filmsandthis diminishestheeffectof thephotoinitiator’slight absorptioncapability.ThiseffectissummarizedinFig.8.

Examiningconductivitypropertiesofepoxyacrylatebasedfilms containingvariousamountsofPSt-MWCNT

Fig.9showsthemorphologyofPSt-MWCNTcontaining pho-tocured nanocomposite films. The figures show no obvious agglomeration of PSt-MWCNT in thematrix and indicate good interactionbetweenfillerandpolymermatrix.Thegooddispersion

Fig.8.Permeabilityintensitiesandmonomerconversationpercentagesof epoxy-acrylatefilmsat382nm,whichcontaindifferentconcentrationsofPSt-MWCNT.

ofPSt-MWCNTwithinthepolymermatrixhelpstoenhancement ofthephysicalpropertiesofnanocompositecoating.

TX-SHphotoinitiator,EA+TPGDAmonomer andPSt-MWCNT atdifferentconcentrationswerecoatedontocoverglassandthen curedbypassingthrougha MiniUV-cureunit.Theconductivity oftheobtainedfilm’ssurfacewasmeasuredbyusingafour-point probe.Withthismethod,surfaceresistancevalueswereobtained usingtwoouterelectrodesandtwoinnerelectrodes.Acurrentwas sentfromthetwoouterelectrodestothetwoinnerelectrodesand thenthecurrentbetweenthetwoinnerelectrodeswasmeasured. Bycalculatingthereverseoftheresistancevalues,conductivities weredetermined.Theseprocedureswereconductedforthinfilms containingdifferentconcentrationsofPSt-MWCNTandtheDC con-ductivityvaluesdependentonlogarithmicconcentrationcanbe observedinFig.10.Allsurfaceresistivityandconductivityvalues havebeensummarizedinTable1.

Table1showssurfaceresistanceandelectricalconductivities ofepoxyacyrylatebasedfilms,photo-curedwithTX-SH, contain-ingdifferentconcentrationsofPSt-MWCNT.Incomparison,0.2% PSt-MWCNTadditivepolymericfilmshada6%boostofelectrical conductivitycomparedwithnon-additivepolymericfilms.

(6)

Fig.10.DCconductivityvaluesofpolymericfilmsdependentonPSt-MWCNT con-centrationusingpointmethod.

4. Conclusion

In this work, thiol functional polystyrene was successfully attachedtotheMWCNTwiththermalinitiatedthiol-eneclick strat-egy.DifferentconcentrationsofresultingPSt-MWCNTwereusedas fillerindiacrylatesformulationsandconductivityofthepolymeric filmswerefoundtobe0.610×10−9× (Siemens)inmaximum loadingofthePSt-MWCNT(0.2%).Meanwhile,increaseofthe PSt-MWCNTloadingisinverselyproportionaltopenetrationofthelight intothecuredfilmsandthisnegativelyaffectsthelight absorp-tionbehaviorofphotoinitiatorduringthephotoinducedfreeradical polymerization.

References

[1]W.Bauhofer,J.Z.Kovacs,Compos.Sci.Technol.69(2009)1486–1498. [2](a)Z.Ounaies,C.Park,K.E.Wise,E.J.Siochi,J.S.Harrison,Compos.Sci.Technol.

63(2003)1637–1646;

(b)E.Kymakis,G.A.J.Amaratunga,J.Appl.Phys.99(2006)084302.

[3]E.B.Kilbride,J.N.Coleman,J.Fraysse,P.Fournet,M.Cadek,M.A.Drury,S.Hutzler, S.Roth,W.J.Blau,J.Appl.Phys.92(2002)4024–4030.

[4]C.A. Martin,J.K.W.Sandler, M.S.P.Shaffer,M.K.Schwarz,W.Bauhofer,K. Schulte,A.H.Windle,Compos.Sci.Technol.64(2004)2309–2316.

[5]J.Sandler,M.S.P.Shaffer,T.Prasse,W.Bauhofer,K.Schulte,A.H.Windle,Polymer 40(1999)5967–5971.

[15]S.Y.Yang,K.Lozano,H.D.Foltz,R.Jones,CompositesA36(2005)691–697. [16] F.H.Gojny,M.G.H.Wichmann,B.Fiedler,W.Bauhofer,K.Schulte,Composites

A36(2005)1525–1535.

[17] M.Ionit¸˘a,A.Prun˘a,Prog.Org.Coat.72(2011)647–652.

[18] A.Chiolerio,S.Musso,M.Sangermano,M.Giorcelli,S.Bianco,M.Coisson,A. Priola,P.Allia,A.Taghaferro,Diam.Relat.Mater.17(2008)1590–1595. [19]Y.H.Yan,J.A.Cui,P.Potschke,B.Voit,Carbon48(2010)2603–2612. [20]P.Liu,Eur.Polym.J.41(2005)2693–2703.

[21]S.H.Qin,D.Q.Qin,W.T.Ford,D.E.Resasco,J.E.Herrera,Macromolecules37 (2004)752–757.

[22]M.S.P.Shaffer,K.Koziol,Chem.Commun.18(2002)2074–2075. [23]H.Kong,C.Gao,D.Y.Yan,J.Am.Chem.Soc.126(2004)412–413. [24]W.F.Chen,J.S.Wu,P.L.Kuo,Chem.Mater.20(2008)5756–5767.

[25]S.Akbar,E.Beyou,P.Cassagnau,P.Chaumont,G.Farzi,Polymer50(2009) 2535–2543.

[26] Y.Zhang,H.K.He,C.Gao,Macromolecules41(2008)9581–9594. [27]S.Keskin,N.Arsu,Polym.Bull.57(2006)643–650.

[28]L.Cokbaglan,N.Arsu,Y.Yagci,S.Jockusch,N.J.Turro,Macromolecules36(2003) 2649–2653.

[29] M.Aydin,N.Arsu,Y.Yagci,Macromol.RapidCommun.24(2003)718–723. [30]M.Aydin,N.Arsu,Y.Yagci,S.Jockusch,N.J.Turro,Macromolecules38(2005)

4133–4138.

[31]D.K.Balta,N.Arsu,Y.Yagci,S.Jockusch,N.J.Turro,Macromolecules40(2007) 4138–4141.

[32]D.K.Balta,G.Temel,G.Goksu,N.Ocal,N.Arsu,Macromolecules45(2012) 119–125.

[33]S.K.Dogruyol,Z.Dogruyol,N.Arsu,J.Polym.Sci.PartA:Polym.Chem.19(2011) 4037–4043.

[34] D.Sevinc,F.Karasu,N.Arsu,J.Photochem.Photobiol.A:Chem.203(2009) 81–84.

[35]S.Keskin,S.Jockusch,N.J.Turro,N.Arsu,Macromolecules41(2008)4631–4634. [36] L.Garamszegi,C.Donzel,G.Carrot,T.Q.Nguyen,J.Hilborn,React.Funct.Polym.

55(2003)179–183.

[37]Z.Do˘gruyol,N.Arsu,S.KeskinDo˘gruyol,Ö.Pekcan,Prog.Org.Coat.72(2011) 763–768.

[38] E.Andrzejewska,M.Andrzejewski,J.Polym.Sci.PartA:Polym.Chem.36(1998) 665–673.

[39]Z.Do˘gruyol,N.Arsu,S.KeskinDo˘gruyol,Ö.Pekcan,Prog.Org.Coat.74(2012) 181–185.

Şekil

Fig. 5. PSt-MWCNT concentrations versus change of final conversion (C s ) of
Fig. 6. The pictures of UV cured polymeric films consisting of different concentra- concentra-tions of PSt-MWCNT.
Fig. 10. DC conductivity values of polymeric films dependent on PSt-MWCNT con- con-centration using point method.

Referanslar

Benzer Belgeler

Etlik piliçlerin yüksek düzeydeki besin madde ihtiyaçları ve bu besin maddelerini içeren yemlerin üretim süreçleri; sera gazı, azot ve fosfor emisyonunun artmasına

Kanserli hastanın evde bakı- mı, hastanın sağlığını ve yaşam kalitesini yükselt- mek için gerekli kaynakların sağlanması ile başlar ve evde bakım kalitesi, hasta

Bana demişti ki Manavoğlu, “ Ben kazanırsam sen de kazanırsın...” Kitap sat­ tıkça satıyor, bir süre sonra de­ dim ki: “ Kitap satıyor, senin ka­ zandığın

Şevket Kutkamn, “ İnsan kemale erdikten sûnra ondan tekâlif sakit olur» suretindeki asılsız ve batıl akideye, delil olarak ıle/i sürdüğü Esteizü Billâh:

Sadi Eldem şimdi artık tenis oynamıyor, uzun yürüyüşler yapa­ mıyor, bisiklete binemiyor; fakat okumaya ve müzik dinlemeye daha çok vakit bulabildiği için

[r]

Yaşar Kemal ve romanlarını pek çok yabancı dile çeviren eşi Thilda.. En biiyiik desteği W aşar

REFA sistemine göre yapılan zaman etüdü ölçümünde, temel zaman kronometre ile ölçülmüş ve 45,11 sn olarak bulunmuştur (Tablo 2). MTM ile