• Sonuç bulunamadı

Fluorescence film formation study of from PS/Al O nanocomposites Progress in Organic Coatings

N/A
N/A
Protected

Academic year: 2021

Share "Fluorescence film formation study of from PS/Al O nanocomposites Progress in Organic Coatings"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Progress

in

Organic

Coatings

jou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / p o r g c o a t

Fluorescence

study

of

film

formation

from

PS/Al

2

O

3

nanocomposites

Ö.

Pekcan

a,∗

,

S¸.

U˘gur

b

,

M.S.

Sunay

c

aKadirHasUniversity,Cibali,34320Istanbul,Turkey

bIstanbulTechnicalUniversity,DepartmentofPhysics,Maslak,34469Istanbul,Turkey cPiriReisUniversity,FacultyofScienceandLetters,Tuzla,34940Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Availableonline22February2014 Keywords: Nanocomposites Polystyrene Annealing Films Fluorescence

a

b

s

t

r

a

c

t

Steadystatefluorescence(SSF)andUV–vis(UVV)techniqueswereusedtostudythefilmformation behaviorofpyrene(P)labeledpolystyrene(PS)latexandAl2O3(PS/Al2O3)compositesdependingonPS

particlessizeandAl2O3content.Theclose-packedarraysofPSspheres(SmPS:203nm;LgPS:382nm)

templatesoncleanglasssubstrateswerecoveredwithvariouslayersofAl2O3bydip-coatingmethod.

Twodifferentfilmseries(SmPS/Al2O3andLgPS/Al2O3)werepreparedinvariousAl2O3layercontent.The

filmformationbehaviorofthesecompositeswerestudiedbyannealingthematatemperaturerange of100–250◦Candmonitoringthescatteredlightintensity(Isc),fluorescenceintensity(IP)fromPand

transmittedlightintensity(Itr)throughthefilmsaftereachannealingstep.Opticalresultsindicatethat

classicallatexfilmformationwasoccurredforallAl2O3contentfilmsandfilmformationprocesswas

unaffectedbytheAl2O3contentforbothfilmseries.ExtractionofPStemplateproducedhighlyordered

porousstructuresforhighAl2O3contentinbothfilmseries.SEMimagesshowedthattheporesizeand

porositycouldbeeasilytailoredbyvaryingthePSparticlesizeandtheAl2O3content.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Asaresultofworldwidetheoreticalandexperimentalefforts,a verygoodunderstandingofthemechanismsoflatexfilm forma-tionhasbeenachieved[1–4].Filmformationfromsoft(low-Tg)

andhard(high-Tg)latexdispersionscanoccurinseveralstages.

Inbothcases,thefirststagecorrespondstothewetinitialstage. Evaporationofsolventleadstosecondstageinwhichtheparticles formaclosepackedarray,hereiftheparticlesaresofttheyare deformedtopolyhedrons.Hardlatexhoweverstaysundeformed atthis stage.Annealingof soft particlescausesdiffusionacross particle–particleboundarieswhichleadstoahomogeneous con-tinuousmaterial.Intheannealingofhardlatexsystem,however, deformationofparticlesfirstleadstovoidclosure[1–4]andthen afterthevoidsdisappeardiffusionacrossparticle–particle bound-ariesstarts,i.e.themechanicalpropertiesofhardlatexfilmsevolve duringannealing;afterallsolventhasevaporatedandallvoidshave disappeared.

This understanding of latex film formation can now be exploited tounderpin theprocessing of newtypes of coatings anddevelopmentofnewmaterials.Processingandmicrostructure developmentofceramicandpolymercoatingpreparedby deposit-ingasolutionordispersionhavebeenofinterestinlastfewyears

∗ Correspondingauthor.Tel.:+902125336532x1330;fax:+902125332286. E-mailaddress:pekcan@khas.edu.tr(Ö.Pekcan).

[5,6].Colloidalceramics,sol–gelderived ceramicsandpolymers havebeenstudiedascoatingsystems.Organizationof monodis-persedcolloidalparticles likelatexandsilica microspheresinto higher-ordermicrostructuresisattractinggrowinginterest[7,8], sinceitprovidesuniquestructuressuitableforvariousadvanced devices and functional materials such as photonic crystals [9] andporouspolymers[10].Colloidalcrystalsconsistingof three-dimensionalorderedarraysofmonodispersedspheres,represent noveltemplatesforthepreparationofhighlyordered macropo-rous inorganicsolids, exhibiting precisely controlled pore sizes and highly ordered three-dimensional porousstructures. These features are requirements for new photonic crystals, and can bebeneficial incatalysisorlarge-moleculeseparationprocesses by potentially improvingmass transfer processes and efficien-cies.Orderedarraysofpolymer(e.g.polystyreneorpoly(methyl methacrylate))orsilicananosphereshavebeenextensivelystudied inrecentyearsforphotoniccrystalapplications[11,12].Recently, theyhaveattractedrenewedinterest,mainlybecausetheyprovide amuchsimpler,fasterandcheaperapproachthancomplex semi-conductor nanolithography techniques to create 3D photonic crystalsworkingintheopticalwavelengthrange[13,14].Photonic crystals (i.e.spatially periodicstructures of dielectric materials withdifferentrefractiveindices)have beenextensively investi-gatedworldwide.Becausethelatticeconstantofphotoniccrystals isinthevisibleorinfraredwavelengthrange,theycancontrolthe propagationofphotonsinawaysimilartothewayasemiconductor doesforelectrons.

0300-9440/$–seefrontmatter©2014ElsevierB.V.Allrightsreserved. http://dx.doi.org/10.1016/j.porgcoat.2013.10.017

(2)

Aluminaisaveryimportantinorganicmaterialowningtoits thermal, chemical, and mechanical stability, and the hierarchi-callyporousaluminashouldbeanattractivematerialwhichcan bepotentiallyusedascatalystsupports,adsorbents,ion-exchange materials,membranesubstrates,etc[15].Severalreportsonporous aluminapreparationcanbefound[16].Al2O3 coatingshavealso

becomemorepopularfortheirhighdielectricstrength,exceptional stability,durabilityagainsthostileenvironmentsandhigh trans-parencydownto250nm.DuringthelastfewyearsAl2O3coatings

have beenwidely used for theirpractical applications,suchas refractorymaterials,antireflectioncoatings,highlyanticorrosive materials[17],microelectronicdevices[18],capacitancehumidity sensors[19]andalsoinheatsinksinIC’sandpassivationofmetal surfaces[20].Thesefilmshavebeenpreparedbyvarioustechniques suchasSpraypyrolysis[21],thermalevaporation[22],sputtering [23]etc.

In thepresent work,we reportthe preparation and charac-terization of PS/Al2O3 films. The film formation of these films

wasstudieddependingonPSparticlesizeandAl2O3content.The

resultsindicatethatLgPS/Al2O3 filmsshowedcompletefilm

for-mation independent of Al2O3 content while no film formation

occurredaboveacertainAl2O3contentforSmPS/Al2O3films.The

filmformationstagesweremodeledandrelatedactivationenergies were determined. After completion of film formation, PS tem-plateswereextractedwithtoluene. Theresultantstructurewas thereplicaofthePSparticlesandthematerialsgeneratedfrom thisprocessexhibitremarkableorderingoftheporeswithdifferent size.

2. Experimental

2.1. Materials

2.1.1. Polystyrene(latex)spheres

In this study, we used two types of PS latex with differ-ent diameters. The latex samples are composed of pyrene (P) labeled polystyrene. Fluorescent PS latexes were produced via emulsion polymerizationprocess [24]. The polymerizationwas performedbatch-wiselyusingathermostattedreactorequipped withacondenser,thermocouple,mechanicalstirringpaddleand nitrogeninlet.Water(50ml),Styrenemonomer(3g;99%purefrom Janssen)andthe0.014goffluorescent1-pyrenylmethyl methacry-late(PolyFluor®394)werefirstmixedinthepolymerizationreactor wherethetemperaturewaskeptconstant(at70◦C).Thewater soluble radicalinitiatorpotassium persulfate(KPS)(1.6%wt/wt overstyrene)dissolvedinsmallamountofwater(2ml)wasthen introducedin ordertoinducestyrenepolymerization. Different surfactantsodiumdodecylsulfate(SDS)concentrations(0.03%and

0.12%wt/vol)wereaddedinthepolymerizationrecipetochange the particlesize keeping all other experimental conditions the same. Thepolymerizationwasconducted under400rpm agita-tionduring12hundernitrogenatmosphereat70◦C.Theparticle sizewasmeasuredusingMalvenInstrumentNanoZS.Themean diameteroftheseparticlesis203nm(SmPS)and382nm(LgPS). Theweight-averagemolecularweights(Mw)ofindividualPSchain

(Mw)weremeasuredby gelpermeationchromatography (GPC)

andfoundas90×103gmol−1forboth203nm(SmPS)and382nm

(LgPS), respectively. The particle size of the polystyrene latex wasdecreased withincreasingtheconcentrationof SDSbutits molecularweightremainedalmostunchangedwithincreasingSDS concentration.Glasstransitiontemperature(Tg)ofthePSlatexes

weredeterminedusingdifferentialscanningcalorimeter(DSC)and foundtobearound105◦C.Fig.1showstheSEMimagesofSmPS andLgPSlatexparticlesproducedforthisstudy.

2.1.2. Al2O3solution

Al2O3 solwaspreparedinthefollowingway:Atotalof2ml

aluminum-tri-sec-butoxide(Aldrich;97%)wasdissolvedin45cm3

waterat70◦C.Thesolutionwasstirredfor30min.Asmallamount ofacidicacidwascontinuouslyaddedascatalyst,untilthesolution becametransparentandstirredforanother2h.Oxidenetworks areformeduponhydrolyticcondensationofalkoloxideprecursors. Finally,auniformandtransparentAl2O3solwasobtainedforfilm

fabrication.

2.2. PreparationofPS/Al2O3films

Firstly,LgPSandSmPSaqueoussuspensionsweredroppedon cleanglasssubstratesanddriedatroomtemperature.Uponslow dryingatroomtemperature,powderLgPSandSmPSfilmswere produced. In order tostudy theparticle size effect of PSlatex andAl2O3 contentonfilmformationbehaviorofPS/Al2O3

com-posites,wepreparedtwoseriesoffilms:Series1:LgPSandAl2O3

(LgPS/Al2O3)andSeries2:SmPSandAl2O3(SmPS/Al2O3).

Al2O3solwasfilledintothePStemplatesbydip-coatingmethod.

HeretheAl2O3contentinthefilmswasadjustedbyconsecutive

dippingcycle.Sevendifferentfilmsforeachseriesoffilmswere producedwith0,1,3,5, 8,10,and15 layers(dippingcycle)of Al2O3.InordertostudythefilmformationbehaviorofPS/Al2O3

composites,theproducedfilmswereseparatelyannealedaboveTg

ofPS,attemperaturesrangingfrom100to250◦C.Thetemperature wasmaintainedwithin±2◦Cduringannealing.Aftereach

anneal-ingstep,filmswereremovedfromtheovenandcooleddownto roomtemperature.

(3)

2.3. Methods

2.3.1. Fluorescencemeasurements

Afterannealing,each samplewasplacedin thesolid surface accessoryofaPerkin-ElmerModelLS-50fluorescence spectrom-eter.Pyrenewasexcitedat345nmandscatteringandfluorescence emissionspectraweredetectedbetween300and500nm.All mea-surements were carried out in the front-face positionat room temperature.Slitwidthswerekeptat8nmduringallSSF measure-ments.

2.3.2. Photontransmissionmeasurements

Photontransmissionexperimentswerecarriedoutusing Carry-100BioUV–vis(UVV)scanningspectrometer.Thetransmittances ofthefilmsweredetectedat500nm.Aglassplatewasusedasa standardforallUVVexperiments,andmeasurementswerecarried outatroomtemperatureaftereachannealingprocesses.

2.3.3. Scanningelectronmicroscopy(SEM)measurements

ScanningelectronmicrographsofthePS/Al2O3filmsweretaken

at10–20kVinaJEOL6335Fmicroscope.Athinfilmofgold(10nm) wassputteredontothesurfaceofsamplesusingaHummer-600 sputteringsystemtohelpimagethePS/Al2O3filmsagainsttheglass

background.

3. Resultsanddiscussions

Figs.2and 3showtransmitted(Itr), scattered(Isc)and

fluo-rescence(IP)light intensitiesversusannealingtemperaturesfor

bothSmPS/Al2O3 and LgPS/Al2O3 composite filmseries,

respec-tively.Uponannealingthetransmittedlightintensity,Itr,started

toincreaseaboveacertainonsettemperature,calledtheminimum filmformationtemperatureT0,forallfilmsamples.Scatteredlight

intensityshowedasharpincreaseatthesingletemperaturenamed asthevoidclosuretemperature,Tv.Fluorescenceintensity,IPofall

filmsamplesfirstincrease,reachamaximum,andthendecrease withincreasingannealingtemperature[25,26].Thetemperature whereIPreachesthemaximumiscalledthehealingtemperature,

Th.Minimumfilm formation(T0),void closure(Tv)and healing

(Th)temperaturesareimportantcharacteristicrelatedtothefilm

formationpropertiesof latexes.T0 isoftenused toindicatethe

lowestpossibletemperatureforparticledeformationsufficientto decreaseinterstitialvoiddiameterstosizeswellbelowthe wave-lengthoflight[27].Belowthiscriticaltemperature,thedrylatexis opaqueandpowdery.However,atand/orabovethistemperature, alatexcastfilmbecomescontinuousandclearfilm[28].HereTvis

thelowesttemperatureatwhichIscbecomehighest.Thehealing

temperature(Th)istheminimumtemperatureatwhichthelatex

filmbecomescontinuousandfreeofvoids.Thehealingpoint indi-catestheonsetoftheparticle–particleadhesion[28].Therefore, theincreaseinItraboveT0canbeexplainedbyevaluationofthe

transparencyofthecompositefilmsuponannealing.Most proba-bly,increasedItrcorrespondstothevoidclosureprocess[29];i.e.

polystyrenestarttoflowuponannealingandvoidsbetween parti-clescanbefilled.SincehigherItrcorrespondstohigherclarityofthe

composite,thenincreaseinItrpredictsthatmicrostructureofthese

filmschangeconsiderablybyannealingthem,i.e.thetransparency ofthesefilmsevolveuponannealing.PSstartstoflowdueto anneal-ing,andvoidsbetweenparticlescanbefilledduetotheviscous flow.Furtherannealingathighertemperaturecauseshealingand interdiffusionprocesses[26,29],resultinginamoretransparent film.

ThesharpincreaseinIscoccursatTv,whichoverlapsthe

inflec-tionpoint ontheItr curve.Below Tv,light scattersisotropically

becauseoftheroughsurfaceofthePSfilms.Annealingofthefilm atTv createsaflatsurfaceonthefilm,which actslikea mirror.

Asa result,light is reflected tothephotomultiplier detectorof the spectrometer. Further annealing makes the PS film totally transparenttolight andIscdropstoitsminimum.On theother

hand, the increase in IP above T0 presumably corresponds to

Fig.2.PlotofItr,IscandIPintensitiesversusannealingtemperature,TforSmPS/Al2O3compositefilmswith0(pure),1,5and10layersofAl2O3.Numbersoneachcurve

(4)

thevoid closure process up tothe Th point where the healing

processtakesplace.DecreaseinIPaboveThcanbeunderstoodby

interdiffusionprocessesbetweenpolymerchains[30,31]. Inordertodeterminetheextentoffilmformation,filmswere soakedintoluenefor24htocompletelydissolvethePStemplate afterthefilmformationiscompleted.AfterextractionofPS,the morphologyofSmPS/Al2O3filmswithoneandfivelayersofAl2O3

(Fig.4a)donotchangesignificantly.Intheseimages,SmPSspheres highlycoatedwithAl2O3areclearlyseen.However,somespherical

poreswhichmustbelongtotheAl2O3encapsulatedreplicaofSmPS

latexesarealsoobserved.Theseporeshaveawell-pronounced cir-cularshape andareisolatedfromeachother.SEMimageofthe filmpreparedwith10layersofAl2O3 inFig.4cshowsan

inter-connectedandopenporositywithaverageporesizediameterof 203nm,correspondingtoapproximatelySmPStemplatediameter. Inallimages,besidestheporestherearealsovoidsthatmightbe leftbytheinterconnectedSmPSaggregatedspheres.Itis under-stoodthathigherAl2O3contentandsmallPSsizecreatedaporous,

disorderedmaterialafterextractionoftemplate.

Ontheotherhand,SEMimagesofLgPS/Al2O3compositesgiven

inFig.4bpresenthighly porousstructuresafterextraction pro-cess.Theporesareuniformlydistributedinspace,butrandompore morphologyinthefilmswith1and5layersofAl2O3(seeFig.4b)

destroytheirsphericalshape.Thesefilmsshowapoorlyordered porestructureandheterogeneouspore-sizedistribution.Forthese lowAl2O3 contentfilms,apartiallybrokenwallframeworkwas

obtainedbecausetheAl2O3particlesmightnotbesufficienttofully

coverthesurfaceoftheLgPStemplate.However,itcouldbeseen fromFig.4bthatfilmwith10layersofAl2O3showswell-defined

spherical-orderedpores.Theporesareuniformlydistributedinthe sampleandshowedanorderedconnectedporousstructure.The homogenousdistributionoftheporesintheAl2O3framework

indi-catesthattheporousstructureretainstheperiodicityoftheLgPS template.

Inconclusion,SEMimagesofbothfilmseriesshowedthatwell definedopenstructureandinterconnectedporositywereobtained

whenAl2O3contentwasincreased.Thisbehaviorcanbeexplained

by removal of PSfrom the surface of the Al2O3 covered latex

particlesduringthedissolutionprocess.Inotherwords,thefilm formationfromSmPSandLgPSparticleshasoccurredontopofthe Al2O3coveredparticlesduringannealingand,duringdissolution,

PSmaterialiscompletelydissolvedshowingthemicrostructureof PSparticlescoveredbyAl2O3layer.Thispictureisnowdepictedin

Fig.5wherethebehaviorofSmPS/Al2O3andLgPS/Al2O3

compos-itefilmsduringannealingarepresented[26].InFig.5a,filmposses manyvoids,whichresultsinshortmean-freeandopticalpathsof aphotonyieldingverylowIPandItr.Fig.5bshowsafilminwhich

interparticlevoidsdisappearduetoannealing,whichgivesriseto alongmeanfreeandopticalpathinthefilm.Atthisstage,IPand

Itrreachitsmaximumvalues.Finally,Fig.5cpresentsalmost

trans-parentfilmwithnovoidsbutsomeAl2O3background.Atthisstage,

filmhaslowIPbuthighItrbecausethemeanfreepathisverylong

buttheopticalpathisshort. 3.1. Filmformationmechanisms 3.1.1. Voidclosure

InordertoquantifythebehaviorofIPbelowThandItrabove

T0 inFigs.2and 3,aphenomenologicalvoidclosuremodelcan

beintroduced.Latexdeformationandvoidclosurebetween par-ticles canbeinduced by shearingstress which isgenerated by surface tensionof thepolymer,i.e. polymer–airinterfacial ten-sion.Thevoidclosurekineticscandeterminethetimeforoptical transparencyandlatexfilmformation[32].Inordertorelatethe shrinkageofsphericalvoidofradius,r,totheviscosityofthe sur-roundingmedium,,anexpressionwasderivedandgivenbythe followingrelation[32]. dr dt =−  2



1 (r)



(1) whereisthesurfaceenergy,tistimeand(r)istherelative den-sity.Ithastobenotedthatherethesurfaceenergycausesadecrease

Fig.3.PlotofItr,IscandIPintensitiesversusannealingtemperature,TforLgPS/Al2O3compositefilmswith0(pure),1,5and10layersofAl2O3.Numbersoneachcurveshows

(5)

Fig.4. SEMimagesof(a)SmPS/Al2O3and(b)LgPS/Al2O3compositefilmswith1,5and10layersofAl2O3afterextractionofPStemplatewithtoluene.

in void size and the term (r) varies with the microstructural characteristicsofthematerial,suchasthenumberofvoids,the ini-tialparticlesizeandpacking.Eq.(1)issimilartoonethatwasused toexplainthetimedependenceoftheminimumfilmformation temperatureduringlatexfilmformation[33,34].Iftheviscosityis constantintime,integrationofEq.(1)givestherelationas

t=−2  r



ro (r)dr (2)

wherer0istheinitialvoidradiusattimet=0.Thedependenceofthe

viscosityofpolymermeltontemperatureisaffectedbythe over-comingoftheforcesofmacromolecularinteraction,whichenables thesegmentsofpolymerchaintojumpoverfromone equilibra-tionpositiontoanother.Thisprocesshappensattemperaturesat whichthefreevolume becomeslargeenoughandis connected withtheovercomingofthepotentialbarrier.Frenkel–Eyringtheory producesthefollowingrelationforthetemperaturedependenceof viscosity[35,36] = N0h V exp



G kT



(3)

where N0 is Avogadro’s number, h is Planck’s constant, V is

molar volume and k is Boltzmann’sconstant. It is known that G=H−TS,soEq.(3)canbewrittenas

=A exp



H

kT



(4)

whereHistheactivationenergyofviscousflow,i.e.theamount ofheatwhichmustbegiventoonemoleofmaterialtocreatethe actofajumpduringviscousflow;Sistheentropyofactivationof viscousflow.HereArepresentsaconstantfortherelated param-etersthatdonotdependontemperature.CombiningEqs.(2)and (4),thefollowingusefulequationisobtained

t=−2A  exp



H kT





r or (r)dr (5)

Inordertoquantifytheaboveresults,Eq.(5)canbeemployed byassumingthattheinterparticlevoidsareequalinsizeandthe

(6)

Fig.5.CartoonrepresentationofPS/Al2O3filmsatseveralannealingsteps.(a)Film

possesmanyvoidsthatresultsinverylowIPandItr,(b)interparticlevoidsdisappear

duetoannealing,IPreachesitsmaximumvalue,and(c)transparentfilmwithno

voidsbutsomeAl2O3backgroundandhaslowIPbuthighItr.

number of voids stays constant during film formation (i.e. (r)≈r−3),ThenintegrationofEq.(5)givestherelation

t= 2AC  exp



H kT

 

1 r2− 1 r2 o



(6) whereCisaconstantrelatedtorelativedensity(r).Aswestated before, decreasein void size(r) causesanincrease in IP.Ifthe

assumptionis madethatIP is inverselyproportional tothe6th

powerofvoidradius,r,thenEq.(6)canbewrittenas t= 2AC  exp



H kT

 

I1/3



(7)

herero−2isomittedfromtherelationsinceitisverysmall

com-paredtor−2valuesaftervoidclosureprocessesarestarted.Eq.(7) canbesolvedforIPandItr(=I)tointerprettheresultsinFigs.2and3

as I(T)=S(t) exp



−3H kT



(8) whereS(t)=(t/2AC)3.ForagiventimethelogarithmicformofEq.

(8)canbewrittenasfollows ln I(T)=ln S(t)−



3H

kT



(9) Asitwasalreadyarguedabovethat,theincreaseinbothIPand

Itroriginateduetothevoidclosureprocess,thenEq.(9)wasapplied

toItraboveT0andtoIPbelowThforallfilmsamplesintwoseries.

Fig.6presentsthelnIPversusT−1andFig.7presentslnItrversus

T−1 plots forSmPS/Al2O3 filmseriesfromwhichHPand Htr

Fig.6. Theln(IP)versusT−1plotsofthedatainFig.2forSmPS/Al2O3composite

filmcontain(a)0(pure),(b)1,(c)5and(d)10layersofAl2O3.Theslopeofthe

straightlinesonrightandlefthandsideofthegraphproduceHPandEactivation

energies,respectively.

Fig.7.Theln(Itr)versusT−1plotsofthedatainFig.2forSmPS/Al2O3compositefilm

contains(a)0(pure),(b)1,(c)5and(d)10layersofAl2O3.Theslopeofthestraight

linesproducesHtr.

activationenergieswereobtained.Similarfittingswerealsodone forLgPS/Al2O3 filmseriesandthemeasuredHPandHtr

acti-vationenergiesarelistedinTable1forbothseries.Itisseenthat HPvalues,exceptforpureSmPSandLgPSfilms,forbothseries

donotchangemuchbyincreasingtheAl2O3layershowingthatthe

amountofheatthatwasrequiredbyonemoleofpolymericmaterial toaccomplishajumpduringviscousflowdoesnotchangeby vary-ingtheAl2O3layersonthelatexfilms.Inaddition,Htrvaluesof

bothfilmseriesalsodonotchangemuch.Ithastobenotedthatthe measuredactivationenergiesforviscousflowprocesswerefound tobedifferentindifferenttechniques.Thisdifferencemost proba-blyoriginatesfromdifferenttechniquesandsecondonemeasures thefilmformationfromtheinnerlatexes.Sincepyrenesarelabeled toPSchain,itisbelievedthatHPvaluesaremorerealisticto

inter-prettheviscousflow.Ontheotherhand,Htrvalueswereobtained

indirectlycomparedtoHPvalues.Whencomparingthe

activa-tionenergiesofbothseries,itisseenthatHvaluesofLgPS/Al2O3

seriesarelargerthanthoseofSmPS/Al2O3series.Thisimpliesthat

(7)

Table1

ExperimentallyproducedactivationenergiesofSmPS/Al2O3andLgPS/Al2O3filmseries.

Al2O3layer SmPS/Al2O3 LgPS/Al2O3

HP(kcalmol−1) Htr(kcalmol−1) E(kcalmol−1) HP(kcalmol−1) Htr(kcalmol−1) E(kcalmol−1)

0 2.5 2.2 7.5 2.2 10.6 12.6 1 1.2 0.8 3.2 3.1 8.2 3.6 3 1.7 0.6 3.4 2.2 4.9 5.8 5 2.2 1.0 7.7 3.0 6.1 7.1 8 2.7 0.8 6.0 2.5 7.2 4.6 10 0.9 0.8 10.0 2.2 6.7 8.7 15 1.5 1.1 7.8 2.4 8.3 5.1

size.Withsmallerdiameter(i.e.203nm),theSmPSparticleshave largersurfaceareaorsurfacefreeenergy.Thedrivingforceforfilm formationisproportionaltotheinverseoftheparticlesize, accord-ingtothedescriptionsoffilmformationdrivenbycapillaryforces [30].Thegreatercurvatureandhighersurfaceareaofsmallparticles areexpectedtoencouragefilmformation.Thespecificsurfacearea orthetotalsurfaceenergyofSmPSparticles(diameter203nm)is muchlargerthanthatofLgPSparticles(diameter382nm).Astheir totalsurfaceenergyismuchlessthanthatofSmPSparticles,LgPS particlerequireshigherenergytocompleteviscousflowprocess.

3.1.2. Healingandinterdiffusion

ThedecreaseinIP wasalreadyexplainedinprevioussection,

byinterdiffusion of polymerchains.As theannealing tempera-tureisincreasedabovemaxima,somepartofthepolymerchains maycrossthejunctionsurfaceandparticleboundariesdisappear, asaresultIP decreasesduetotransparencyofthefilm.Inorder

toquantifytheseresults,thePrager–Tirrell(PT)model[37,38]for thechaincrossingdensitycanbeemployed.Theseauthorsusedde Gennes’s“reptation”modeltoexplainconfigurationalrelaxationat thepolymer–polymerjunctionwhereeachpolymerchainis con-sideredtobeconfinedtoatubeinwhichexecutesarandomback andforthmotion[39]Thetotal“crossingdensity”(t)(chainsper unitarea)atjunctionsurfacethenwascalculatedfromthe con-tributions1(t)duetochainsstillretainingsomeportionoftheir initialtubes,plusaremainder2(t)i.e.contributioncomesfrom chainswhichhaverelaxedatleastonce.Intermsofreducedtime =2 t/N2thetotalcrossingdensitycanbewrittenas[40]

() (∞)=2

−1/21/2 (10)

where andNarethediffusioncoefficientandnumberoffreely jointedsegmentofpolymerchain[37].

Inordertocompareourresultswiththecrossingdensity of thePTmodel,thetemperaturedependenceof()/(∞)canbe modeledbytakingintoaccountthefollowingArrheniusrelation forthelineardiffusioncoefficient

= o exp



−E kT



(11) hereEisdefinedastheactivationenergyforbackbonemotion dependingonthetemperatureinterval.CombiningEqs.(10)and (11)ausefulrelationisobtainedas

() (∞)=Ro exp



−E 2kT



(12) whereRo=(8 ot/N2)1/2isatemperatureindependentcoefficient.

ThedecreaseinIPinFigs.2and3aboveThisalreadyrelatedtothe

disappearanceofparticle–particleinterface.Asannealing tempera-tureincreased,morechainsrelaxedacrossthejunctionsurfaceand asaresultthecrossingdensityincreases.Now,itcanbeassumed

thatIP isinverselyproportionaltothecrossingdensity␴(T)and

thenthephenomenologicalequationcanbewrittenas IP(∞)=R−10 exp



E 2kBT



(13) Theactivationenergyofbackbonemotion,Eisproducedby least-squaresfittingthedatainFig.6(thelefthandside)toEq. (13)andarelistedinTable1.TheEvaluesforeachseriesseems almostnottochangewithincreasingAl2O3contentshowingthat

interdiffusionprocessis notaffectedbyAl2O3 content.

Further-more,EvaluesforLgPS/Al2O3seriesareslightlylargerthanthatof

SmPS/Al2O3series.Thepolymerchainscontainmorefreevolume

andlessinteractionbetweensegmentsinSmPSparticlesleading tohigherconformationalenergyandlessinteractionofpolymer chains[31,41].PolymerchainsintheSmPSparticleareinahighly confinedstatebecauseofthespatiallimitationcomparedtothat oftherandom-coilstate[31]inLgPSparticles.Thisisthemajor reasonfortheSmPSparticlesneedlessenergytoaccomplish inter-diffusionprocessincomparisonwithLgPSparticlesincomposite films.

4. Conclusions

Inthisstudy,weemployedthesteadystatefluorescence(SSF) techniqueinconjugationwithUVVandSEMtechniquestostudy filmformationprocessofPS/Al2O3nanocompositesand

morpho-logicalchangesdependingonPSparticlesizeandAl2O3content.

Theresultsshowedthatfilmformationprocessofboth compos-itefilmserieswasunaffectedbytheAl2O3contentsincethefilm

formationhasoccurredontopoftheAl2O3coveredparticles

dur-ingannealing. However,activationenergy values ofLgPS/Al2O3

serieswerefoundslightlylargerthanSmPS/Al2O3serieswhichcan

beexplained byPSsizeeffect.ExtractionofPSproducedhighly orderedporousstructuresforhighAl2O3contentinbothfilmseries.

ThemeasurementobtainedfromtheSEMshowedthatthepore sizeandporositycouldbeeasilytailoredbyvaryingthePSparticle sizeandtheAl2O3content.Theresultsalsoshowedthatthereisa

goodcorrespondencebetweentheopticaldataandSEMimages. Thesefindings provide insight intotheprinciple mechanism of latexfilmformationininorganicoxide-basedsystems.Thus,our studypresentsusefulinformationsandideasaboutthekineticsof filmformationincompositesystems.Ontheotherhand,similar observationswasreportedpreviouslybyHollandetal.,where tita-nia,zirconia,andaluminawereusedtoconstructhighlyordered periodic3Darraysofmacroporous,usingPSlatexspheresas tem-plates [42,43].In Holland’swork,correspondingmetalalkoxide precursorspermeatethroughPSspheresinroomtemperature,then closepacked,open-porestructureswith320to360nmvoidswere producedaftercalcinationsoftheorganiccomponentat575◦C. Besidesdip-coatingandfilm formationmodeling,themain dif-ferencebetweenourworkandtheirpresentationcomesfromthe dissolutionofPStemplateusingtoluenetoproduceorderedpore structurefromhighAl2O3contentcomposites.Inconclusion,the

(8)

whichcouldhaveapplicationsinareasrangingfromquantum elec-tronicstophotocatalysistobatterymaterials.

Acknowledgment

Dr.SunaywouldliketothanktheLaboratoriesinPhysics Depart-mentofITU,whereshehasdonetheexperimentalworkduringher Ph.D.studies,haveusedtopreparethismanuscript.

References

[1]P.R. Sperry, B.S. Synder, M.L. O’Dowd, P.M. Lesko, Langmuir 10 (1994) 2619–2628.

[2]S.Mazur,Coalescenceofpolymerparticles,in:N.Rosenweig(Ed.),Polymer PowderProcessing,Wiley,NewYork,NY,1995.

[3]J.K.Mackenzie,R.Shutlewort,Proc.Phys.Soc.62(1949)833–852. [4]J.W.Vanderhoff,Br.Polym.J.2(1970)161–173.

[5]D.M.Vaessen,F.A.Ngantung,M.L.B.Palacio,L.F.Francis,A.V.McCormick,J.Appl. Polym.Sci.84(2001)2784–2793.

[6]D.M.Vaessen,A.V.McCormick,L.F.Francis,Polymer43(2002)2267–2277. [7]D.Wang,H.Mohwald,J.Mater.Chem.14(2004)459–468.

[8]A.D.Dinsmore,M.F.Hsu,M.G.Nikolaides,M.Marquez,A.R.Bausch,D.A.Weitz, Science298(2002)1006–1009.

[9]E.Chomski,G.A.Ozin,Adv.Mater.12(2000)1071–1078.

[10]J.H.Moon,S.Kim,G.-R.Yi,Y.-H.Lee,S.-M.Yang,Langmuir20(2004)2033–2035. [11]T.Yamasaki,T.Tsutsui,Appl.Phys.Lett.72(1998)1957–1959.

[12]Yu.A.Vlasov,N.Yao,D.J.Norris,Adv.Mater.11(1999)165–169. [13]Y.A.Vlasov,X.Z.Bo,J.C.Sturm,D.J.Norris,Nature414(2001)289–293. [14]J.Wijnhoven,W.L.Vos,Science281(1998)802–804.

[15]J.Sánchez-Valente,X.Bokhimi,F.Hernández,Langmuir19(2003)3583–3588. [16]Y.Tokudome,K.Fujita,K.Nakanishi,K.Miura,K.Hirao,ChemMater.19(2007)

3393–3398.

[17]DianranYan,JiningHe,XiangzhiLi,YangaiaLiu,JianxinZhang,HuiliDing,Surf. Coat.Technol.141(2001)1–6.

[18]Yi-ShungChaug,NripenRoy,Vac.Sci.Technol.7(1989)1303–1304. [19]R.K.Nahar,V.K.Khanna,Int.J.Electron.52(1982)557–567.

[20]Yi-ShungChaug,NripenRoy,ThinSolidFilms193–194(1990)959–974. [21]M.Aguiler-Fruits,M.Garcia,C.Falcony,G.Plesch,S.Jimenez-Sandoval,Thin

SolidFilms389(2001)200–206.

[22]S.Mansour,A.I.Robaee,G.N.Subbanna,K.NarasimhaRao,S.Mohan,Vacuum 45(1994)97–102.

[23]S.Maniv,W.D.Westwod,J.Vac.Sci.Technol.17(1980)743–751. [24]J.S.Liu,J.F.Feng,M.A.Winnik,J.Chem.Phys.101(1994)9096–9103. [25]M.Canpolat,Ö.Pekcan,J.Polym.Sci.Polym.Phys.Ed.34(1996)691–698. [26]S.Ugur,M.S.Sunay,A.Elaissari,F.Tepehan,O.Pekcan,Polym.Compos.27

(2006)651–659.

[27]J.L.Keddie,P.Meredith,R.A.L.Jones,A.M.Donald,Macromolecules28(1995) 2673–2682.

[28]S.T.Eckersley,A.Rudin,J.Coat.Technol.62(1990)89–100.

[29]S.Ugur,A.Elaissari,O.Pekcan,J.ColloidInterfaceSci.263(2003)674–683. [30]J.L.Keddie,Mater.Sci.Eng.R21(1997)101–170.

[31]C.Wu,K.K.Chan,K.F.Woo,R.Qian,X.Li,L.Chen,D.H.Napper,G.Tan,A.J.Hill, Macromolecules28(1995)1592–1597.

[32]J.L.Keddie,P.Meredith,R.A.L.Jones,A.M.Donald,Filmformationinwaterborne coatings,in:T.Provder,M.A.Winnik,M.W.Urban(Eds.),ACSSymp.Ser.648, AmericanChemicalSociety,1996,pp.332–348.

[33]G.B.McKenna,in:C.Booth,C.Price(Eds.),ComprehensivePolymerScience,2, PergamonPress,Oxford,UK,1989.

[34]H.Vogel,Phys.Z.22(1921)645–646.

[35]G.S.Fulcher,J.Am.Ceram.Soc.8(1925)339–355.

[36]J.Frenkel,Viscousflowofcrystallinebodiesundertheactionofsurfacetension, J.Phys.USSR9(1945)385–391.

[37]S.Prager,M.Tirrell,J.Chem.Phys.75(1981)5194–5198.

[38]R.P.Wool,B.L.Yuan,O.J.McGarel,J.Polym.Eng.Sci.29(1989)1340–1367. [39]P.G.deGennes,J.Chem.Phys.76(1982)3322–3326.

[40]Ö.Pekcan,E.Arda,ColloidsSurf.,A153(1999)537–549. [41]X.Qu,Y.Tang,L.Chen,X.Jin,Chin.Sci.Bull.46(2001)991–996. [42]B.T.Holland,C.F.Blanford,A.Stein,Science281(1998)538–540.

[43]B.T.Holland,C.F.Blanford,A.Stein,M.Greenblatt,Chemtracts12(2)(1999) 121–124.

Referanslar

Benzer Belgeler

All three defended parts of the construction process (design process, dwelling process and approval process) will be concluded separately to have a basic information

The produced glass transition point t g , maximum rate of poly- merization Rp max and final conversion C s values were found to be strongly correlated with the temperature in which

(a) The time behavior of pyrene, P, fluorescence intensity, I, during oxygen diffusion into the composite films with different MWNT content.. Numbers on each curve indicates the

Monomer conversion percentages versus time curves of EA/TPGDA monomer, photoinitiated with TX-SH, which contains various amounts of PSt-

The averaged value for the critical exponent ˇ was found to obey the percolation model, predicting that universal behavior holds near the glass transition point for all gels

Rate of polymerization spectra of photopolymerization of EA/TPGDA with various photoinitiator (TX-SH) concentrations irradiated at 25 ◦ C by UV light with an intensity of 40 mW/cm

Scanning electron microscopy (SEM) was used to characterize the morphologies of the composite films. Figures 10 to 13 show SEM images of both SmPS/TiO 2 and LgPS/TiO 2 composites

The 6 main areas of veterinary medicine include: Private Practice, Teaching & Research, Regulatory Medicine, Public Health, Uniformed Services and