• Sonuç bulunamadı

Başlık: αβ-statistical convergence of modified q-Durrmeyer operatorsYazar(lar):NARAYAN MISHRA, Vishnu; PATEL, PrashantkumarCilt: 66 Sayı: 2 Sayfa: 263-275 DOI: 10.1501/Commua1_0000000817 Yayın Tarihi: 2017 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: αβ-statistical convergence of modified q-Durrmeyer operatorsYazar(lar):NARAYAN MISHRA, Vishnu; PATEL, PrashantkumarCilt: 66 Sayı: 2 Sayfa: 263-275 DOI: 10.1501/Commua1_0000000817 Yayın Tarihi: 2017 PDF"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C om mun.Fac.Sci.U niv.A nk.Series A 1 Volum e 66, N umb er 2, Pages 263–275 (2017) D O I: 10.1501/C om mua1_ 0000000817 ISSN 1303–5991

http://com munications.science.ankara.edu.tr/index.php?series= A 1

-STATISTICAL CONVERGENCE OF MODIFIED q-DURRMEYER OPERATORS

VISHNU NARAYAN MISHRA AND PRASHANTKUMAR PATEL

Abstract. In this work, we investigate weighted -statistical approximation properties of q-Durrmeyer-Stancu operators. We also give some corrections in limit of q-Durrmeyer-Stancu operators de…ned in [1] and discuss their conver-gence properties.

1. Introduction

The concept of statistical convergence has been de…ned by Fast [2] and studied by many other authors. It is well known that every ordinary convergent sequence is statistically convergent but the converse is not true, examples and some related work can be found in [3, 4, 5, 6, 7]. The idea -statistical convergence was introduced by Akt¼uglu in [8] as follows:

Let (n) and (n) be two sequences positive numbers which satisfy the following conditions

(i) and are both non-decreasing, (ii) (n) (n),

(iii) (n) (n) ! 1 as n ! 1

and let ^ denote the set of pairs ( ; ) satisfying (i)-(iii). For each pair ( ; ) 2 ^, 0 < 1 and K N, we de…ne ; (K; ) in the following way

; (K; ) = lim n!1 jK \ P ; n j ( (n) (n) + 1) ; where P ;

n is the closed interval [ (n); (n)] and jSj represents the cardinality of

S. A sequence x = (xk) is said to be -statistically convergent of order to ` or

Received by the editors: June 28, 2016; Accepted: January 12, 2017. 2010 Mathematics Subject Classi…cation. 41A25, 41A30, 41A36.

Key words and phrases. Durrmeyer operators, Korovkin type theorems rate of the weighted -statistical convergent.

c 2 0 1 7 A n ka ra U n ive rsity C o m m u n ic a tio n s d e la Fa c u lté d e s S c ie n c e s d e l’U n ive rs ité d ’A n ka ra . S é rie s A 1 . M a th e m a t ic s a n d S t a tis t ic s .

(2)

S -convergent, if ; (fk : jxk `j g; ) = lim n!1 fk 2 P ; n : jxk `j g ( (n) (n) + 1) = 0:

The concept of weighted -statistically convergence was developed by Karakaya and Karaisa [9]. Let s = (sk) be a sequence of non-negative real numbers such that

s0> 0 and Sn = X k2Pn; sk ! 1; as n ! 1 and zn(x) = 1 Sn X k2Pn; skxk:

A sequence x = (xk) is said to be weighted -statistically convergent of order

to ` or S -convergent, if for every > 0

; (fk : skjxk `j g; ) = lim n!1 1 Snjfk Sn: skjxk `j gj = 0

and denote st lim x = ` or xk ! `[S ], where S denotes the set of all

weighted -statistically convergent sequences of order .

De…nition 1 ([9]). A sequence x = (xk) is said to be strongly weighted

-summable of order to a number ` if lim n!1 1 Sn X k2P ; n skjxk `j ! 0 as n ! 1:

We denote it by xk ! `[N ; ; s]. Similarly, for = 1 the sequence x = (xk) is said

to be strongly weighted -summable to ` . The set of all strongly weighted -summable of order and strongly weighted -summable sequence will be denoted by [N ; ; s] and [N ; ; s], respectively.

De…nition 2 ([9]). A sequence x = (xk) is said to be weighted -summable of

order to a number `, if zn(x) ! ` as n ! 1. Similarly, for = 1 the sequence x = (xk) is said to be weighted -summable of order zn(x) ! ` as n ! 1. The

set of all weighted -summable sequence of order and weighted -summable sequence will be denoted by (N ; ; s) and (N ; ; s), respectively.

Remark 1. If = 1, (n) = 1 and (n) = n, weighted -summability reduces to weighted mean summability and [N ; ; s] summable sequences coincide with (N ; pn)

summable sequences introduced in [10, 11]. Also if pn = 1, then (N ; pn) reduces to

C1-summability and called Cesàro summability.

The q-Bernstein operators were introduced by Phillips [12]. A survey of the obtained results and references concerning q-Bernstein operators can be found in [13]. It is worth mentioning that the …rst generalization of the Bernstein operators based on q-integers was obtained by Lupa¸s [14]. The Durrmeyer type modi…cation of q-Bernstein operators were established by Gupta [15] and its local approximation, global approximation and simultaneous approximation properties were discussed in

(3)

[16], we refer some of the important papers in this direction as [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. Stancu type generalization of the q-Durrmeyer operators were discussed by Mishra and Patel [1, 36], which de…ned for f 2 C ([0; 1]) and 0 $ # as

Dn;q$;#(f; x) = [n + 1]q n X k=0 q kpnk(q; x) Z 1 0 f [n]qt + $ [n]q+ # pnk(q; qt)dqt(1.1) = n X k=0 A$;#n;k(f )pnk(q; x); 0 x 1; where pnk(q; x) = n k qx k(1 x)n k q .

We have used notations of q-calculus as given in [37]. Along the paper, C([a; b]) denotes the set all of continuous functions on interval [a; b] and khkC([a;b])represents

the sup-norm of the function h j[a;b].

In this work, we establish -statistical convergence for operators (1.1). In section 3, we discuss convergence results of limit of q-Durrmeyer-Stancu operators (1.1). Lemma 1([1]). We have D$;#n;q (1; x) = 1; D$;#n;q (t; x) = [n]q+ $[n + 2]q+ qx[n] 2 q [n + 2]q([n]q+ #) and Dn;q$;#(t2; x) = q 3[n]3 q([n]q 1) x2+ q(1 + q)2+ 2$q4 [n]3q+ 2$q[3]q[n]2q x ([n]q+ #)2[n + 2]q[n + 3]q +(1 + q + 2$q 3)[n]2 q+ 2$[3]q[n]q ([n]q+ #)2[n + 2]q[n + 3]q + $ 2 ([n]q+ #)2 : Remark 2. By simple computation, we can …nd the central moments

n(x) = Dn;q$;#(t x; x) = q[n]2 q [n + 2]q([n]q+ #) 1 ! x + [n]q+ $[n + 2]q [n + 2]q([n]q+ #) ; n(x) = Dn;q$;#((t x)2; x) =q 4[n]4 q q3[n]3q 2q[n]2q[n + 3]q([n]q+ #) + [n + 2]q[n + 3]q([n]q+ #)2 ([n]q+ #)2[n + 2]q[n + 3]q x2 +q(1 + q) 2[n]3 q+ 2q$[n]2q[n + 3]q (2[n]q+ 2$[n + 2]q) [n + 3]q([n]q+ #) ([n]q+ #)2[n + 2]q[n + 3]q x +(1 + q)[n] 2 q+ 2$[n]q[n + 3]q ([n]q+ #)2[n + 2]q[n + 3]q :

(4)

2. -Statistical Convergence

Theorem 1([9]). Let (Lk) be a sequence of positive linear operators from C ([a; b])

into C ([a; b]). Then for all f 2 C ([a; b])

S lim k!1kLk(f; x) f (x)kC([a;b])= 0 if and only if S lim k!1kLk(x i; x) xi kC([a;b])= 0; i = 0; 1; 2:

Let fqng be a sequence in the interval [0; 1] satisfying

S lim n!1qn= 1; S nlim!1(qn) n = a(a < 1); S lim n!1 1 [n]q = 0: (2.1) For example, take = 12, (n) = n and (n) = n1 and de…ne the sequence , (qn)

by qn= 8 < : 0 if n = m2(m = 1; 2; 3; : : :); 1 e n n if n 6= m 2:

Now, we note that

; k 2 Pn; : jqk 1j = lim n!1 j k 2 P ; n : jqk 1j j ( (n) (n) 1) = lim n!1 j k 2 [n; n2] : jq k 1j j ( (n) (n) 1) = lim n!1 j k 2 [n; n2] : jqk 1j j (n2 n 1)2 lim n!1 n (n2 n 1)2 = 0: Therefore, S lim n!1qn= 1. Also, for a < 1 ; k 2 Pn; : jqkk aj = nlim !1 j k 2 P ; n : jqkk aj j ( (n) (n) 1) = lim n!1 j k 2 [n; n2] : jqk k aj j ( (n) (n) 1) = lim n!1 j k 2 [n; n2] : jqkk aj j (n2 n 1)2 lim n!1 n2 n + 1 (n2 n 1)2 = 0: Thus, S lim n!1q n n= a; (a < 1).

(5)

Theorem 2. Let fqng be a sequence satisfying (2.1) and D$;#n;q as de…ned in (1.1).

For any f 2 C ([0; 1]), we have

S lim

n!1kD $;#

n;qn(f; x) f (x)kC([0;1])= 0:

Proof: By Theorem 1, it is enough to prove that

S lim n!1kD $;# n;qn(t j; x) xj kC([0;1])= 0; j = 0; 1; 2 (2.2)

From the Dn;q$;#n(1; x) = 1, it is easy to obtain that

S lim n!1kD $;# n;qn(1; x) 1kC([0;1])= 0: Now, jDn;q$;#n(t; x) xj qn[n]2qn [n + 2]qn([n]qn+ #) [n + 2]qn([n]qn+ #) + [n]qn+ $[n + 2]qn [n + 2]qn([n]qn+ #) = [n]qn(qn[n]qn [n + 2]qn) #[n + 2]qn [n + 2]qn([n]qn+ #) + [n]qn+ $[n + 2]q [n + 2]qn([n]qn+ #) [n]qn(1 + q n+1 n ) [n + 2]qn([n]qn+ #) + # [n]qn+ # + [n]qn+ $[n + 2]qn [n + 2]qn([n]qn+ #)

Using equation (2.1), we get

S lim n!1 [n]qn(1 + q n+1 n ) [n + 2]qn([n]qn+ #) = 0; S lim n!1 # [n]qn+ # = 0 and S lim n!1 [n]qn+ $[n + 2]qn [n + 2]qn([n]qn+ #) = 0: De…ne the following sets:

A = n 2 N : kDn;q$;#n( ; x) xkC([a;b]) ; A1= n 2 N : [n]qn(1 + q n+1 n ) [n + 2]qn([n]qn+ #) 3 ; A2= n 2 N : # [n]qn+ # 3 ; A3= n 2 N : [n]qn+ $[n + 2]qn [n + 2]qn([n]qn+ #) 3 : Then, we obtain A A1 [ A2 [ A3, which implies that ; (A) ; (A1) +

; (A 2) + ; (A3) and hence S lim n!1kD $;# n;qn(t; x) xkC([0;1])= 0:

(6)

Similarly, we have jDn;q$;#n(t 2; x) x2 j q 3 n[n]3qn([n]qn 1) ([n]qn+ #)2[n + 2]qn[n + 3]qn 1 + qn(1 + qn) 2+ 2$q4 n [n]3qn+ 2$qn[3]qn[n] 2 qn ([n]qn+ #) 2[n + 2] qn[n + 3]qn + (1 + qn+ 2$q 3 n)[n]2qn+ 2$[3]qn[n]qn ([n]qn+ #)2[n + 2]qn[n + 3]qn + $ 2 ([n]qn+ #)2 q3 n[n]4qn(1 qn 2) ([n]qn+ #) 2[n + 2] qn[n + 3]qn + qn(1 + qn) 2+ 2$q4 n [n]3qn ([n]qn+ #) 2[n + 2] qn[n + 3]qn + 2$qn[3]qn[n] 2 qn ([n]qn+ #)2[n + 2]qn[n + 3]qn + (1 + qn+ 2q 3 n$)[n]2qn ([n]qn+ #)2[n + 2]qn[n + 3]qn + 2$[3]qn[n]qn ([n]qn+ #) 2[n + 2] qn[n + 3]qn + $ 2 ([n]qn+ #) 2 :

Again, using S lim

n!1qn= 1; S nlim!1(qn) n = a 2 (0; 1); S lim n!1 1 [n]qn = 0, we get S lim n!1 q3 n[n]4qn(1 q 2 n) ([n]qn+ #)2[n + 2]qn[n + 3]qn = 0; S lim n!1 qn(1 + qn)2+ 2$qn4 [n]3qn ([n]qn+ #) 2[n + 2] qn[n + 3]qn = 0; S lim n!1 2$qn[3]qn[n] 2 qn ([n]qn+ #)2[n + 2]qn[n + 3]qn = 0; S lim n!1 (1 + qn+ 2qn3$)[n]2qn ([n]qn+ #)2[n + 2]qn[n + 3]qn = 0; S lim n!1 2$[3]qn[n]qn ([n]qn+ #)2[n + 2]qn[n + 3]qn = 0; S lim n!1 $2 ([n]qn+ #) 2 = 0:

(7)

Now, consider the following sets: B1:= ( n 2 N : q 3 n[n]4qn(1 q 2 n) ([n]qn+ #)2[n + 2]qn[n + 3]qn 6 ) ; B2:= ( n 2 N : qn(1 + qn) 2+ 2$q4 n [n]3qn ([n]qn+ #)2[n + 2]qn[n + 3]qn 6 ) ; B3:= ( n 2 N : 2$qn[3]qn[n] 2 qn ([n]qn+ #)2[n + 2]qn[n + 3]qn 6 ) ; B4:= ( n 2 N : (1 + qn+ 2q 3 n$)[n]2qn ([n]qn+ #)2[n + 2]qn[n + 3]qn 6 ) ; B5:= n 2 N : 2$[3]qn[n]qn ([n]qn+ #)2[n + 2]qn[n + 3]qn 6 ; B6:= n 2 N : $2 ([n]qn+ #)2 6 :

Consequently, we obtain B B1[ B2[ B3[ B4[ B5[ B6, which implies that

(B) 6 X i=1 (Bi). Hence, we get S lim n!1kD $;# n;qn(t 2; x) x2 kC([0;1])= 0:

This completes the proof of Theorem 2.

3. Limit of q-Durrmeyer-Stancu operators In [36, Sec.4], the operators D$;#

1;q [36, Eq.(4.2)], which depend on [n]q, have

been de…ned and studied. Since [36, Theorem 2] is incorrect, we have modi…ed the operators Eq.(4.2) and proof of Theorem 2 of [36] with this note.

Here, we de…ne the limit q-Durrmeyer-Stancu operators (1.1) as: Let q 2 (0; 1) be …xed and x 2 [0; 1], the operators D$;#

1;q(f ; x) is de…ned by D$;#1;q(f ; x) = 1 1 q 1 X k=0 p1k(q; x)q k Z 1 0 f t + (1 q)# 1 + (1 q)$ p1k(q; qt)dqt = 1 X k=0 A$;#1k(f )p1k(q; x); (3.1) where p1k(q; x) = (1 q)xkk[k]!(1 x)1q .

Using the fact that (see [38]), we have

1 X k=0 p1k(q; x) = 1; 1 X k=0 (1 qk)p1k(q; x) = x; (3.2)

(8)

and

1

X

k=0

(1 qk)2p1k(q; x) = x2+ (1 q)x(1 x): (3.3) Also, (see [39, eq.4])

Z 1 0

tsp1k(q; qt)dqt = (1 q)s+1

qk[k + s]!

[k]! ; s = 0; 1; 2 : : : : (3.4) Using (3.1) and (3.2)-(3.4), it is easy to prove that

D$;#1;q(1; x) = 1; D$;#1;q(t; x) = 1 + q(x 1) + #(1 q) 1 + $(1 q) ; D1;q$;#(t2; x) = q 4x2+ q(1 + q)(1 q2) + 2(1 q)q# x (1 + $(1 q))2 + ((1 + q) + 2# + #2)(1 q)2 (1 + $(1 q))2 :

For f 2 C[0; 1]; t > 0, we de…ne the modulus of continuity !(f; t) as follows: !(f; t) = supfjf(x) f (y)j : jx yj t; x; y 2 [0; 1]g:

Theorem 3. Let 0 < q < 1 then for each f 2 C[0; 1] the sequence fD$;#n;q (f ; x)g converges to D$;#1;q(f ; x) uniformly on [0; 1]. Furthermore,

kD$;#n;q (f ) D$;#1;q(f )k Cq$;#!(f; qn):

Proof: D$;#

1;q(f ; x) and Dn;q$;#(f ; x) reproduce constant function that is Dn;q$;#(1; x) =

D1;q$;#(1; x) = 1: Hence for all x 2 [0; 1), by de…nition of D$;#

n;q (f ; x) and D$;#1;q(f ; x), we know that jD$;#n;q (f ; x) D1;q$;#(f ; x)j = n X k=0 A$;#nk (f )pnk(q; x) 1 X k=0 A$;#1k(f )p1k(q; x) = n X k=0 A$;#nk (f f (1)) pnk(q; x) 1 X k=0 A$;#1k (f f (1)) p1k(q; x) n X k=0 A$;#nk (f f (1)) A$;#1k (f f (1)) pnk(q; x) + n X k=0 jA$;#1k (f f (1)) jjpnk(q; x) p1k(q; x)j + 1 X k=n+1 jA$;#1k (f f (1)) jp1k(q; x) = I1+ I2+ I3:

(9)

By the well known property of modulus of continuity (see [40]), !(f; t) (1 + )!(f; t); > 0; we get jf(t) f (1)j !(f; 1 t) !(f; qn) 1 +1 t qn : Thus jA#;$nk (f f (1))j = [n + 1]q Z 1 0 q k f [n]qt + # [n]q+ $ f (1) pnk(q; qt)dqt [n + 1]q Z 1 0 q k f [n]qt + # [n]q+ $ f (1) pnk(q; qt)dqt [n + 1]q Z 1 0 q k!(f; qn) 1 + 1 qn 1 [n]qt + # [n]q+ $ pnk(q; qt)dqt !(f; qn) 1 + q n 1 [n]q[k + 1]q+ #[n + 2]q [n + 2]q([n]q+ $) !(f; qn) 1 + q n[n] q [n]q+ $ 1 [k + 1]q [n + 2]q +q n($ #) [n]q+ $ = !(f; qn) 1 + qk+1 n+q n($ #) [n]q+ $ : Similarly, jA#;$1k(f f (1))j = q k 1 q Z 1 0 f t + #(1 q) 1 + $(1 q) f (1) p1k(q; qt)dqt q k 1 q Z 1 0 !(f; qn) 1 + 1 qn 1 t + #(1 q) 1 + $(1 q) p1k(q; qt)dqt q k 1 q Z 1 0 !(f; qn) 1 + 1 qn(1 t) + 1 qn $ # 1 + $(1 q) p1k(q; qt)dqt !(f; qn) 1 + qk+1 n+ q n($ #) 1 + $(1 q) : From [36, Eq.4.5] and [39, Eq.8], we have

jpnk(q; x) p1k(q; x)j

qn k

(10)

Hence by using (3.5), we have jA#;$nk (f f (1)) A #;$ 1k(f f (1))j [n + 1]q Z 1 0 q k f [n]qt + # [n]q+ $ f (1) pnk(q; qt)dqt + 1 1 q Z 1 0 q k f t + #(1 q) 1 + $(1 q) f (1) p1k(q; qt)dqt [n + 1]q Z 1 0 q k f [n]qt + # [n]q+ $ f (1)jpnk(q; qt) p1k(q; qt)jdqt + 1 1 q Z 1 0 q k f t + #(1 q) 1 + $(1 q) f (1) p1k(q; qt)dqt +[n + 1]q Z 1 0 q k f [n]qt + # [n]q+ $ f (1) p1k(q; qt)dqt [n + 1]q qn k 1 q Z 1 0 q k f [n]qt + # [n]q+ $ f (1)jpnk(q; qt) + p1k(q; qt)jdqt + 1 1 q Z 1 0 q k f t + #(1 q) 1 + $(1 q) f (1) p1k(q; qt)dqt +[n + 1]q Z 1 0 q k f [n]qt + # [n]q+ $ f (1) p1k(q; qt)dqt !(f; qn) 2 4 2 qn k 1 q 1 + qk+1 n+ q n($ #) [n]q+$ + 1 + q k+1 n+q n($ #) 1+$(1 q) + 1 + qk+1 n+q n($ #) [n]q+$ 3 5 :

To estimate I1; I2 and I3, we have

I1 !(f; qn) 1 q 8 + 3($ #) qn([n] q+ $) + ($ #) qn(1 + $(1 q)) n X k=0 pnk(q; x) = !(f; q n) 1 q 8 + 3($ #) qn([n] q+ $) + ($ #) qn(1 + $(1 q)) ;

(11)

I3 = 1 X k=n+1 jA$;#1k(f f (1))jp1k(q; x) !(f; qn) 1 X k=n+1 1 + qk+1 n+ q n($ #) 1 + $(1 q) p1k(q; x) !(f; qn) 2 + q n($ #) 1 + $(1 q) ; I2 = n X k=0 A$;#1k (f f (1)) jpnk(q; x) p1k(q; x)j n X k=0 !(f; qn) 1 + qk+1 n+ q n($ #) 1 + $(1 q) qn k 1 qjpnk(q; x) + p1k(q; x)j 2!(f; qn) 1 q 2 + q n($ #) 1 + $(1 q) :

Combining the estimates I1 I3, we conclude that kD$;#n;q (f ) D$;#1;q(f )k Cq$;#!(f; qn):

This completes the proof of Theorem 3.

Lemma 2 ([41]). Let L be a positive linear operator on C ([0; 1]) which reproduces constant functions.

If L(t; x) > x for all x 2 [0; 1), then L(f) = f if and only if f is a constant. Remark 3. Since D$;#1;q(t; x) = (1 + q(x 1)) + #(1 q)

1 + $(1 q) > x for 0 < q < 1, as a consequence of Lemma 2, we have the following:

Theorem 4. Let 0 < q < 1 be …xed and let f 2 C ([0; 1]). Then D$;#

1;q(f ; x) = f (x)

for all x 2 [0; 1] if and only if f is constant.

Theorem 5. Let 0 < q < 1 be …xed and let f 2 C ([0; 1]). Then fD#;$ 1;q(f )g

converges to f uniformly on [0; 1] as q ! 1 .

Proof: We know that the operators D#;$1;qis positive linear operator on C ([0; 1]) for 0 < q < 1 and reproduce constant functions. Also, D$;#1;q(t; x) ! x uniformly on [0; 1] as q ! 1 and D#;$1;q(t2; x) ! x2 uniformly on [0; 1] as q ! 1 : Thus,

Theo-rem 5 follows from Korovkin TheoTheo-rem.

References

[1] V. N. Mishra, P. Patel, A short note on approximation properties of Stancu generalization of q-Durrmeyer operators, Fixed Point Theory and Application 2013 (1) (2013) 84. [2] H. Fast, Sur la convergence statistique, Colloquium Mathematicum 2 (1951) 241ï£ ¡244. [3] Ö. Dalmanoglu, O. Dogru, On statistical approximation properties of Kantorovich type

(12)

[4] V. N. Mishra, K. Khatri, L. N. Mishra, Statistical approximation by Kantorovich-type discrete q-Beta operators, Advances in Di¤erence Equations 2013:345, DOI: 10.1186/10.1186/1687-1847-2013-345. (1) (2013) 1–15.

[5] M. Örkcü, Approximation properties of bivariate extension of q-Szász-Mirakjan-Kantorovich operators, Journal of Inequalities and Applications 2013 (1) (2013) 1–10.

[6] P. Patel, V. N. Mishra, Jain-Baskakov operators and its di¤erent generalization, Acta Math-ematica Vietnamica 40 (4) (2014) 715–746.

[7] Q. Lin, Statistical approximation of modi…ed Schurer-type q-Bernstein Kantorovich operators, Journal of Inequalities and Applications 2014 (1) (2014) 465.

[8] H. Aktu¼glu, Korovkin type approximation theorems proved via -statistical convergence, Journal of Computational and Applied Mathematics 259 (2014) 174–181.

[9] V. Karakaya, A. Karaisa, Korovkin type approximation theorems for weighted -statistical convergence, Bulletin of Mathematical Sciences 5 (2) (2015) 159–169.

[10] V. Karakaya, Weighted statistical convergence, Iranian Journal of Science and Technology (Sciences) 33 (3) (2009) 219–223.

[11] M. Mursaleen, V. Karakaya, M. Ertürk, F. Gürsoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Applied Mathematics and Computation 218 (18) (2012) 9132–9137.

[12] G. M. Phillips, Bernstein polynomials based on the q-integers, Annals of Numerical Mathe-matics 4 (1996) 511–518.

[13] S. Ostrovska, The …rst decade of the q-Bernstein polynomials: results and perspectives, Journal on Mathematical Analysis Approximation Theory 2 (1) (2007) 35–51.

[14] A. Lupa¸s, A q-analogue of the Bernstein operator, in: University of Cluj-Napoca, Seminar on numerical and statistical calculus, Vol. 9, 1987.

[15] V. Gupta, W. Heping, The rate of convergence of q-Durrmeyer operators for 0 < q < 1, Mathematical Methods in the Applied Sciences 31 (16) (2008) 1946–1955.

[16] Z. Finta, V. Gupta, Approximation by q-Durrmeyer operators, Journal of Applied Mathe-matics and Computing 29 (1) (2009) 401–415.

[17] V. N. Mishra, P. Patel, The Durrmeyer type modi…cation of the q-Baskakov type operators with two parameter and , Numerical Algorithms 67 (4) (2014) 753–769.

[18] B. ·Ibrahim, E. Ibikli, The approximation properties of generalized Bernstein polynomials of two variables, Applied Mathematics and Computation 156 (2) (2004) 367–380.

[19] B. ·Ibrahim, Ç. Atakut, On Stancu type generalization of q-Baskakov operators, Mathematical and Computer Modelling 52 (5) (2010) 752–759.

[20] B. ·Ibrahim, Approximation by Stancu–Chlodowsky polynomials, Computers & Mathematics with Applications 59 (1) (2010) 274–282.

[21] Ç. Atakut, B. ·Ibrahim, Stancu type generalization of the Favard–Szàsz operators, Applied Mathematics Letters 23 (12) (2010) 1479–1482.

[22] B. ·Ibrahim, On the approximation properties of two-dimensional q-Bernstein-Chlodowsky polynomials, Mathematical Communications 14 (2) (2009) 255–269.

[23] G. ·Içöz, R. Mohapatra, Weighted approximation properties of Stancu type modi…cation of q-Szász-Durrmeyer operators, Communications Series A1 Mathematics & Statistics 65 (1). [24] G. Icoz, B. Cekim, Durrmeyer-type generalization of Mittag-Le- er operators, Gazi University

Journal of Science 28 (2) (2015) 259–263.

[25] O. Do¼gru, G. Içöz, K. Kanat, On the rates of convergence of the q-Lupa¸s-Stancu operators, Filomat 30 (5).

[26] O. Dalmanoglu, S. K. Serenbay, Approximation by Chlodowsky type q-Jakimovski-Leviatan operators.

[27] A. Aral, A. Karaisa, Some approximation properties of Kontorovich variant of Chlodowsky operators based on q-ineteger, Commun. Fac. Sci. Univ. Ank. SÈr. A1 Math. Stat. 65 (2) (2016) 97–119.

(13)

[28] V. N. Mishra, K. Khatri, L. N. Mishra, Deepmala, Inverse result in simultaneous approxi-mation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications 2013 (1) (2013) 586.

[29] R. B. Gandhi, Deepmala, V. N. Mishra, Local and global results for modi…ed Szàsz-Mirakjan operators, Math. Method. Appl. Sci.DOI: 10.1002/mma.4171.

[30] A. R. Gairola, Deepmala, L. N. Mishra, Rate of approximation by …nite iterates of q-Durrmeyer operators, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 86 (2) (2016) 229–234.

[31] A. Wa…, N. Rao, R. Deepmala, Approximation properties by generalized Baskakov Kantorovich Stancu type operators, Applied Mathematics & Information Sciences Letters 4 (3) (2016) 111–118.

[32] K. K. Singh, A. R. Gairola, Deepmala, Approximation theorems for q-analouge of a linear positive operator by A. Lupa¸s, International Journal of Analysis and Applications 12 (1) (2016) 30–37.

[33] V. N. Mishra, P. Sharma, L. N. Mishra, On statistical approximation properties of q-Baskakov–Szász–Stancu operators, Journal of the Egyptian Mathematical Society 24 (3) (2016) 396–401.

[34] V. N. Mishra, H. Khan, K. Khatri, L. N. Mishra, Hypergeometric representation for Baskakov-Durrmeyer-Stancu type operators, Bulletin of Mathematical Analysis and Applications 5 (3) (2013) 18–26.

[35] V. N. Mishra, K. Khatri, L. N. Mishra, On simultaneous approximation for Baskakov-Durrmeyer-Stancu type operators, Journal of Ultra Scientist of Physical Sciences 24 (3A) (2012) 567–577.

[36] V. N. Mishra, P. Patel, On generalized integral Bernstein operators based on q-integers, Applied Mathematics and Computation 242 (2014) 931–944.

[37] V. Kac, P. Cheung, Quantum calculus, Springer, 2002.

[38] A. Il’inskii, S. Ostrovska, Convergence of generalized Bernstein polynomials, Journal of Ap-proximation Theory 116 (1) (2002) 100–112.

[39] V. Gupta, Some approxmation properties of q-Durrmeyer operators, Applied Mathematics and Computation 197 (2008) 172–178.

[40] G. G. Lorentz, Bernstein polynomials, American Mathematical Society, 1953.

[41] X. M. Zeng, D. Lin, L. Li, A note on approximation properties of q-Durrmeyer operators, Applied Mathematics and Computation 216 (3) (2010) 819–821.

Current address : Vishnu Narayan Mishra (Corresponding author): Department of Applied Mathematics and Humanities, S. V. National Institute of Technology, Ichchhanath Mahadev Du-mas Road, Surat-395 007 (Gujarat), India, L. 1627 Awadh Puri Colony Beniganj, Phase-III, Opposite - Industrial Training Institute (I.T.I.), Ayodhya Main Road, Faizabad, Uttar Pradesh 224 001, India

E-mail address : vishnu_narayanmishra@yahoo.co.in; vishnunarayanmishra@gmail.com Current address : Prashantkumar Patel: Department of Applied Mathematics and Humanities, S. V. National Institute of Technology, Ichchhanath Mahadev Dumas Road, Surat-395 007 (Gu-jarat), India, Department of Mathematics, St. Xavier’s College(Autonomous), Ahmedabad-380 009 (Gujarat), India

Referanslar

Benzer Belgeler

Koşul: Kurumsal Arşivin OAI-PMH ara yüzünün ve Handle sisteminin çalışıyor olması Kayıt formu:

Bir kurumun araştırma bilgi sisteminde ve değerlendirme sürecinde arşiv değerli bir araçtır ve bilimsel topluluk için katma değerli hizmetler sunar.. • Açık

Mevlana’nın kültür endüstrisi bağlamında yeniden üretimini politik-ekonomik boyutlarda değerlendirmek ve kültür endüstrisinin ticari ve politik bir

olmahdlr. manll~ln yapabilecegi her~eyi yapabilmelidir. ·KUtUphanenin amacma vc bUtfjeye uygun olmalldlr. ·Hangi donanlm ve i~letim sisteminde r;all~t1~ma

After checking the existence of cointegration, the analyses continue with ARDL approach of Pesaran and Shin (1999) to investigate the short run and long run relations. 2001)

We …rst establish approximation properties and rate of convergence results for these operators.. Our main purpose is to give a theorem on the rate of convergence of the r th

exact order of approximation, quantitative Voronovskaja-type theorems, simultaneous approximation properties for complex q-Bernstein - Kantorovich polynomials ,

Many properties and results of these polynomials, such as Korovkin type ap- proximation and the rate of convergence of these operators in terms of Lipschitz class functional are