• Sonuç bulunamadı

Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture

N/A
N/A
Protected

Academic year: 2021

Share "Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Particuology

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / p a r t i c

Novel

one-step

synthesis

of

silica

nanoparticles

from

sugarbeet

bagasse

by

laser

ablation

and

their

effects

on

the

growth

of

freshwater

algae

culture

Nalan

Oya

San

a,b,c

,

Canan

Kurs¸

ungöz

c

,

Yasin

Tümtas¸

c

,

Öncay

Yas¸

a

c

,

Bülend

Ortac¸

c,∗

,

Turgay

Tekinay

a,b,∗∗

aPolatlıScienceandLiteratureFaculty,BiologyDepartment,GaziUniversity,Ankara06900,Turkey bLifeSciencesApplicationandResearchCenter,GaziUniversity,Ankara06830,Turkey

cUNAMInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara06800,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21September2013

Receivedinrevisedform6November2013 Accepted25November2013 Keywords: Laserablation One-stepsynthesis Raman Silicananoparticle Microalgae

a

b

s

t

r

a

c

t

Scientificresearchinvolvingnanotechnologyhasgrownexponentiallyandhasledtothedevelopment ofengineerednanoparticles(NPs).SilicaNPshavebeenusedinnumerousscientificandtechnological applicationsoverthepastdecade,necessitatingthedevelopmentofefficientmethodsfortheirsynthesis. Recentstudieshaveexploredthepotentialoflaserablationasaconvenientwaytopreparemetaland oxideNPs.Duetoitshighsilicacontent,lowcost,andwidespreadavailability,sugarbeetbagasseishighly suitableasarawmaterialforproducingsilicaNPsvialaserablation.Inthisstudy,twodifferentNP pro-ductionmethodswereinvestigated:laserablationandNaOHtreatment.Wedevelopedanovel,one-step methodtoproducesilicaNPsfromsugarbeetbagasseusinglaserablation,andwecharacterizedthesilica NPsusingenvironmentalscanningelectronmicroscopy(ESEM),energydispersivespectrometry(EDS), dynamiclightscattering(DLS),transmissionelectronmicroscopy(TEM),attenuatedtotal reflectance-Fouriertransforminfraredspectroscopy(ATR–FTIR),X-rayphotoelectronspectroscopy(XPS)andRaman spectroscopy.EDSanalysisandXPSconfirmedthepresenceofsilicaNPs.TheNPsproducedbylaser ablationweresmaller(38–190nm)thanthoseproducedbyNaOHtreatment(531–825nm).Finally,we demonstratedpositiveeffectsofsilicaNPsproducedfromlaserablationonthegrowthofmicroalgae,and thus,ournovelmethodmaybebeneficialasanenvironmentallyfriendlyproceduretoproduceNPs.

©2014PublishedbyElsevierB.V.onbehalfofChineseSocietyofParticuologyandInstituteofProcess Engineering,ChineseAcademyofSciences.

1. Introduction

Silica is beneficial to many plants (Ding, Ma, Shui, Wan, &

Li,2005).Itiswellknownthatcertainplants,includinggrasses

(Poaceae),rice(Oryzasativa),sugarbeet(Betavulgaris),and

horse-tail(Equisetum),containhighlevelsofbiogenicsilica(Sun&Gong,

2001).Inparticular,sugarbeetisanattractivesourceofbiogenic

sil-icabecausethesilicacontentofthisplantismainlyconcentrated

inbagasse.Sugarbeetbagasseisproduced inlargequantitiesas

anagro-industrialbyproductandisoftenusedasboilerfuelfor

generatingsteamduringtheprocessingofsugar.

∗ Correspondingauthor.Tel.:+903122903526;fax:+903122664365. ∗∗ Correspondingauthorat:PolatlıScienceandLiteratureFaculty,Biology Depart-ment,GaziUniversity,Ankara06900,Turkey.Tel.:+903124846270;

fax:+903124846271.

E-mailaddresses:ortac@unam.bilkent.edu.tr(B.Ortac¸),ttekinay@gazi.edu.tr

(T.Tekinay).

In recent years, there hasbeen an increasing trend toward

themoreefficientuseofagro-industrialby-productsfor animal

nutrition,fuel,andfermentativeproducts.Severalprocessesand

productsusingsugarbeetbagasseastherawmaterialhavebeen

reported,particularlyinpulpandpaperproduction;itisalsoused

asafeedstockinfermentationprocesses(Alves,Felipe,Silva,Silva,

&Prata,1998;Pandey,Soccol,Nigam,&Soccol,2000).However,

sugarbeetbagassecanalsobeprocessedtoproducehigh-purity

sil-ica,exceeding99%purityandprimarilybearingK2O,andMgOas

impurities(Affandi,Setyawan,Winardi,Purwanto,&Balgis,2009).

Assuch,bagasseisaneconomicallyviablerawmaterialforsilica

nanoparticle(NP)production.

Nanoparticlesarefrequentlyusedinseveral

nanotechnologi-calapplications.Inparticular,silicaNPsarewidelyusedindrugs,

cosmetics,printertoners,varnishes,andfoodpreservatives(Baek

&An,2011;Bagwe,Hilliard,&Tan,2006;Huaetal.,2009; Lin, Huang,Zhou,&Ma,2006).Inaddition,theuseofsilicaNPshas

recently beenextended tothe biomedicaland biotechnological

1674-2001/$–seefrontmatter©2014PublishedbyElsevierB.V.onbehalfofChineseSocietyofParticuologyandInstituteofProcessEngineering,ChineseAcademyofSciences.

(2)

silicaNPsynthesismaybeunsustainableandcostprohibitiveinthe

nearfuture.Therefore,itishighlydesirabletoidentifyalternative

approachestoreduceproductioncosts.

MostNPsynthesistechniques,suchasphysicalvapor

deposi-tion(Yousefi&Muhamad,2010),precipitation(Yang&Hu,2010),

solvothermal/hydrothermalmethods(Wang,Shi,Qi,&Liu,2010),

andsol–gelmethods(e.g.,sol–gelcombustion),areexpensiveand

complex and offer only limited control over particle size and

sizeuniformity.Inrecentyears,pulsed-laserablationofsolidsin

solutionhasattractedinterestduetoitsversatilityandlowcost

(Alkis,Oruc¸,Ortac¸,Kos¸ger,&Okyay,2012;Amendola&Meneghett, 2009;Wu,Dickinson,&Lele,2012).Sajti,Sattari, Chichkov,and Barcikowski(2010)demonstratedrecentlythebulksynthesis of

NPsbylaserablation,yieldingceramicNPsonascaleofseveral

grams.Theirstudyindicatesthepotentialfeasibilityoflaser

abla-tionforlarge-scalesynthesisapplications.

Based on the available literature (Affandi et al., 2009), we

hypothesizedthatsugarbeetbagasse,whichisinherentlyrichin

silica,canbeusedtosynthesizesilicaNPs.Inthisstudy,wedescribe

forthefirsttimetheuseoflaserablationforthesynthesisof

sil-ica NPsfrom agro-industrialbyproducts.It is alsoimportantto

investigatetheeffects ofnanomaterialexposureontheaquatic

environment.Greenalgaeareknowntobesensitivetomany

chem-icals.Theyhavebeenconsideredindicatorsofthebioactivityof

industrial wastes,and theyvaryin theirresponsestoa variety

oftoxicants.Theirecologicalpositionatthebaseofmostaquatic

foodwebsandtheiressentialrolesinnutrientcyclingandoxygen

productionarecriticaltomanyecosystems.Therefore,we

exam-inedhowsilicaNPsimpactthegrowthofafreshwatergreenalgae

speciesthatisamongthemostwidespreadofallalgae:Chlorella

vulgaris.Ourresultsmayaidthedevelopmentofenvironmentally

friendlyandeconomicallyattractivealternativestocurrentNP

pro-ductionmethods.

2. Materialsandmethods

2.1. Nanoparticleproduction

Sugarbeetbagasse wasobtainedfromtheAnkaraSugar

Fac-tory,Etimesgut,Ankara,Turkey.Twoseparatetreatments were

adopted toextractsilica fromthebagasse samples. Inthe first

approach,bagasseashwasobtainedbycalciningsugarbeetbagasse

at500◦Cfor12h.Onegramofbagasseashwasthentreatedwith

concentratedHCl:HNO3=1:3(v/v)at35◦Cfor2handoven-dried

at 60◦C. Then, 50mL of water was added to the residue, and

thesolutionwasalkalized toa pHof13–14withconcentrated

NaOH.Followingovernightincubation,thealkalinesolutionwas

sampleswerefilteredwitha0.22␮mfiltertoremovethefibers

fromtheNPsolution.

2.2. Nanoparticlecharacterization

Themorphologyandelementalcompositionofrawbagassewas

measuredbyanenvironmentalscanningelectronmicroscopewith

EDS(ESEM,Quanta200FEG,FEIInstruments,USA).Theparticlesize

anddistributionofparticlesdispersedindistilledwaterwere

mea-suredusingdynamiclightscattering(DLS)(MalvernInstruments

Ltd.,Malvern,UK).ThestabilityofthesilicaNPswasmeasuredfrom

thezetapotentialofthesolution(NanoZS,MalvernInstruments

Ltd.,Malvern,UK).ThemorphologyofsilicaNPswasalsoanalyzed

usingaFEITecnaiG2F30transmissionelectronmicroscope(TEM)

connectedtoahighresolutionimagingsystem.NPsampleswere

preparedbydryingatotalof2␮Lofthelaserablatedmixtureon

carboncoatedcoppergridsatroomtemperature.

Fourier transform infrared spectroscopy (ATR/FTIR) analysis

wasperformed using a Nicolet 6700(Thermo Fisher Scientific,

USA)ATR–FTIRspectrometer.Spectrawereobtainedwithinthe

4000–500cm−1rangewitharesolutionof4cm−1(Bruker,Vertex

70withHyperionScanningMicroscope,Germany).Thesamples

(100␮L)wereplacedintheattenuatedtotalreflectance(ATR,ZnSe)

analyzerandanalyzed.

X-rayphotoelectronspectroscopy(XPS)(K␣-Monochromated

highperformance)(Thermo,USA)measurementswereperformed

inanultra-highvacuum(UHV)withaconventionalX-raysource

(Mg-K␣).

Ramanspectrawereacquiredatroomtemperaturebyusinga

WitecAlpha300S+RamanModule(Witec,Germany).Asolid-state

532nmwavelengthlaserwasusedforexcitation.Raman

measure-mentsofsinglespectraweretakenat50×magnificationandwith

2.03sintegrationtimes.

2.3. EffectsofsilicananoparticlesonC.vulgarisgrowth

ThealgaC.vulgariswasobtainedfromaculturecollectionat

GaziUniversityLifeSciencesApplicationandResearchCenterand

sub-culturedinthelaboratory.C.vulgariswascultivatedin

steril-izedTapmedium(Tris–acetate–phosphate)underanillumination

intensity of 4000lux. The temperature in the air-conditioned

growthchamberwasmaintainedat25◦C.WeexposedsilicaNPs

producedfromtwodifferenttreatmentstoalgalcultures.Thealgal

densityofthreereplicateswasthencalculatedbymeasuringthe

opticaldensity (OD) at a wavelengthof 750nmwith a UV–vis

spectrophotometer(Shimadzu,UV-1201V,Japan).Medium

(3)

Fig.1.Flowdiagramoftheprocedureusedtoproducesilicananoparticlesfromsugarbeetbagasse.

Fig.2.(a)ESEMimagesand(b)EDSspectrumofrawsugarbeetbagasse.

cultures werevisuallyinspectedforcontaminationusinga light

microscope.

3. Resultsanddiscussion

Inthepresentstudy,thesilicaNPswerepreparedusingtwo

differentmethods:(1)calcinationofsugarbeetbagasseand

sub-sequenttreatmentofsugarbeetbagasse ashwithNaOHand (2)

synthesisofsugarbeetbagasseusinglaserablation(Fig.1).

Fig.2(a)and(b)shows theESEM imagesandEDS spectrum,

respectively, ofrawbagasse. TheESEMmicrographofraw

sug-arbeet bagasse (Fig. 2(a)) clearly revealsits fibrous texture. In

Fig.3.TheparticlenumberdistributionsofsilicaNPsobtainedby(a)NaOH treat-mentand(b)laserablation.

(4)

Fig.4. (a)TEMimageofsilicaNPs,inset:sizedistribution,(b)XPSanalysisrecordedfromsilicaNPs,(c)amorphousstructureofsilicaNPs,and(d)nanocrystal(NC)structure ofsilicaNPs.

addition,EDS analysis showedthat rawsugarbeet bagasse was

primarilycomposedofmetaloxides,suchasMg,K,andSi(Fig.2(b)).

Fig.3showstheintensityandparticlenumberdistributionsof

silicaNPsofvarioussizesafter(a)NaOHtreatmentand(b)laser

ablation.Fig.3(a)demonstratesthatthesilicaparticlesproduced

bycalcinationandNaOHtreatmentweresubstantiallylargerthan

thoseformedvialaserablation,withasizerangeof531–825nm.

Incontrast,silicaNPsformedvialaserablationwereintherange

of38–190nm,withanaveragesizeof∼74nm(Fig.3(b)).

AdetailedTEManalysiswasperformedtoidentifythestructural

propertiesofthecolloidalnanoparticlesolution(CNS).Fig.4shows

thattheCNSwassuccessfullyproducedbypulsedlaserablation

methodindeionizedwater.TheCNSconsistsofspheroid-shaped

anduniformlydispersednanoparticles,withoutanyaggregation.

Inaddition,zetapotentialmeasurementswerecarriedout,andthe

zetapotentialwas−21.0mV,indicatingthatthesilicaNPswere

sta-ble.ThedataindicatetheCNSindeionizedwaterwasstableand

welldispersedafterthelaserablationprocess.Toobtainaccurate

particlesizeinformation,wemeasuredthesizesof150particles

observedintheTEMimages.AsapparentfromtheinsetofFig.4(a),

nanoparticlesrangedinsizebetween40and160nm,withan

aver-ageparticlesizeof100nm.Toverifythechemicalcomposition

oftheCNS, XPSanalysiswasperformed.Thepeak at102.43eV

correspondstotheSi2pspectra,indicatingtheexistenceofSi O

bondsofSiO2nanoparticles(Yang,Kuperman,Coombs,

Mamiche-Afara,&Ozin,1996).ThesedatashowthatthecolloidalNPsolution

consistsofSiO2 NPs(Fig.4(b)).Inaddition,Fig.4(a)showsthat

theone-stepproductionmethodyieldedNPswithamorphousand

crystalstructure.Fig.4(c)showsanisolatedamorphousNP,and

Fig.4(d) shows an isolated nanocrystal(NC). The lattice-fringe

structureapparentintheHR-TEMimageofthesingleisolatedNC

evidencesthegenerationofnanoparticlesintheformofa

crys-tallinestructurebylaserablationtechnique.

ProductionofSiNPshaspreviouslybeenreportedfrom

silica-containingagro-industrialwaste,suchasricehuskashandcoffee

(Estevez,Vargas,Casta ˜no,&Rodriguez,2009;Li&Wang,2008).

Inthesestudies,Si NPswereobtainedbyashingfollowed bya

chemicaltreatmentof6horlonger.Ourresultsdemonstratethat

laserablationcanbeusedasaone-step,uncomplicatedmethod

toproducesilicaNPsthataresignificantlysmallerthanthose

pro-ducedbychemicalmethods,suchascalcinationfollowedbyNaOH

treatment.

InfraredspectraofthesilicaNPssynthesizedusingtwodifferent

methodswererecordedbyFTIRspectroscopyandarepresentedin

Fig.5.AsseeninFig.5,silicapeaksareclearlyvisible.The

(5)

Fig.5. FTIRspectraofNPsobtainedfromlaserablationofbagasseandNaOH-treated bagasseash.

region.Thebandsat1200–1000cm−1and807areduetothe

asym-metricandsymmetricstretchingmodesofSi O Si(Beganskien ˙e,

Sirutkaitis,Kurtinaitien ˙e,Juˇsk ˙enas,&Kareiva,2004).Thebandat

955cm−1wasascribedtotheSiO Hasymmetrybendingvibration.

Thebroad peak atapproximately3200–3600cm−1 corresponds

to the stretching vibrations of hydroxyl groups, whereas the

band at 1630–1640cm−1 is due to the deformation of water

moleculesabsorbedthroughthesilicaparticlesurface(Martinez,

Ruiz,Vorobiev,Perez-Robles,&Gonzalez-Hernandez,1998).The

peaks centered at approximately 1100cm−1 show an obvious

broadeningandashoulderinthe1160–1290cm−1range.This

pat-terncanbeattributedtotheasymmetricstretchingvibrationsof

thetetrahedralSiO4coordinationunits(Pol,Gedanken,&

Calderon-Moreno,2003;Wangetal.,2011).Similaritiesbetweenthespectra

ofthetwosilicasamplesindicatethatthepretreatmentdoesnot

affectthechemicalstructure ofthesynthesizedsilica,although

NaOHtreatmentproducedmoreresiduesthanthelaserablation

method.

Throughitssensitivitytovibrationalproperties,Raman

scatter-ingoffersavaluabletoolforunderstandingstructuralaspectsof

materials(Dreschera&Kneipp,2012;Woods&Bain,2012).Inthis

work,theWitecAlpha300S+RamanModulewith532nm

excita-tionwasusedtocharacterizethebondpropertiesofsilicaNPs.The

resultsofRamanscatteringinthespectralrangeof300–3600cm−1

areshowninFig.6.Severaldifferencesareapparentamongthe

Ramanspectraofthethreesamples.ThenoiselevelintheNaOH

treatmentspectraismuchhigherthanthatofthelaserablation

treatment,althoughbothspectrawererecordedunderthesame

conditions.The probablesourceofthis highnoise is thelarger

amountofporewaterincorporatedinNPsduetoNaOHtreatment.

Wefoundanotablepeakat522cm−1 inbothtreatments,which

isclosetothevalueobservedforbulksilicon(Inada,Nakagawana,

Umezu,&Sugimura,2002).

Fig.7 shows theoptical density (OD)of C. vulgarisexposed

to silica NPs produced by laser ablation and NaOH treatment.

Understandingtheeffectsofnanomaterialexposureontheaquatic

environmentisextremelyimportant.Becauseoftheirwidespread

use,NPswilllikelymoveintoaquatic,terrestrial,andatmospheric

environments. Therefore, concerns have been raised about the

potentialenvironmentalrisksposedbyNPs.Greenalgaeareknown

tobesensitivetomanychemicals,andtheyareconsidered

indica-torsofthebioactivityofindustrialwastes.Theirecologicalposition

atthebaseofmostaquaticfoodwebsandtheiressentialrolesin

Fig.6. RamanscatteringspectraofNPsresultingfromlaserablationofbagasseand NaOHtreatedbagasseash.

nutrientcyclingandoxygenproductionarecriticaltomany

ecosys-tems.However,fewstudieshaveinvestigatedNPtoxicitytoalgae.

Zhu,Zhu,Tian,Lang,andLi(2008)studiedthetoxicityofZnO,

CuO,andTiO2NPstothegreenalgaeScenedesmusobliquus.They

foundthatZnONPswerethemosttoxic,followedbyCuONPsand

TiO2NPs.Inthepresentstudy,SiNPsdidnotinhibitalgalgrowth

butinsteadincreasedthegrowthrate.

Weietal.(2010)showedthatSiO2NPsof10–20nmindiameter

weretoxictoS.obliquus.Theyfoundthatthesmallertheparticle,

thegreateritstoxicity.ThetoxicityofSiNPsismostlikelydueto

theirsorptiontothealgalcellsurface.Inthepresentstudy,the

sizeofNPsproducedbylaserablationwas38–190nm.Therefore,

wespeculatethatthelaser-ablatedSiNPscannotsorbtothecell

surface.Inaddition,themorphologyofthealgalcellsdidnotchange

whenobservedunderanopticalmicroscope.

Majornutrients,includingcarbon,nitrogen,phosphorus,and

silica, aredefined assuchbecausetheyare essentialfor life in

Fig.7.EffectsofsilicaNPsproducedfromlaserablationandNaOHtreatmenton growthofChlorellavulgaris.

(6)

bagasse notonlytakes fulladvantageofthehighsilicacontent

ofsugarbeetbagassebutalsominimizestheenvironmentalissues

associatedwithcurrentapplicationsanddisposalmethodsof

sug-arbeetbagasse.Assuch,themethodpresentedhereinmayaidthe

developmentofneweconomicalapproaches involvingthe

syn-thesisofvaluablenanomaterialsfromagro-industrialresiduesas

alternativestotheenergy-intensiveandpotentiallyhazardous

pro-cessescurrentlyadoptedbyindustry.

Here,wereportthesuccessfulpreparationofenvironmentally

friendlysilicaNPsusinglaserablation,asconfirmedbySEM,TEM,

andDLS.OurresultsshowthattheNPsobtainedbylaserablation

aresignificantlysmaller(38–190nm)thanthosepreparedusing

chemicaltreatment.

Last,thisstudydemonstratestheeffectofsilicaNPsproduced

usingtwodifferentnanoparticlemethodsonalgalgrowth.From

ourresults,weconcludethatsilicaNPsproducedfromchemical

treatmenthaveanegativeeffectonaquaticalgae,asmanifestedby

thedecreasedgrowthofalgalcells.However,silicaNPsproduced

bylaserablationincreasedthegrowthofC.vulgaris.Ourresults

suggestthatsilicaNPsproducedbylaserablationmayposenoharm

totheaquaticenvironment.

Acknowledgments

TheauthorsthankZeynepErgülÜlgerforprocuringthe

sugar-beetbagassesamples,ÖmerFarukSarıo˘gluforhelpinanalyzing

theATR/FTIRdata,AlperDevrimÖzkanforobtainingtheRaman

spectraandAhmetEminTopalforperformingtheXPSanalysis.

References

Affandi,S.,Setyawan,H.,Winardi,S.,Purwanto,A.,&Balgis,R.(2009).Afacilemethod forproductionofhigh-puritysilicaxerogelsfrombagasseash.AdvancedPowder Technology,20,468–472.

Alkis,S.,Oruc¸,F.B.,Ortac¸,B.,Kos¸ger,A.C.,&Okyay,A.K.(2012).Aplasmonic enhancedphotodetectorbasedonsiliconnanocrystalsobtainedthroughlaser ablation.JournalofOptics,14,125001.

Alves,L.A.,Felipe,M.G.A.,Silva,J.B.A.E.,Silva,S.S.,&Prata,A.M.R.(1998). Pretreat-mentofsugarcanebagassehemicellulosehydrolysateforxylitolproductionby Candidaguilliermondii.AppliedBiochemistryandBiotechnology,70–72,89–98.

Amendola,W.V.,&Meneghett,M.(2009).Laserablationsynthesisinsolutionand sizemanipulationofnoblemetalnanoparticles.PhysicalChemistryChemical Physics,11,3805–3821.

Baek,Y.W.,&An,Y.-J.(2011).Microbialtoxicityofmetaloxidenanoparticles(CuO, NiO,ZnO,andSb2O3)toEscherichiacoli,Bacillussubtilis,andStreptococcusaureus.

ScienceoftheTotalEnvironment,409,1603–1608.

Bagwe,R.P.,Hilliard,L.R.,&Tan,W.H.(2006).Surfacemodificationofsilica nanopar-ticlestoreduceaggregationandnon-specificbinding.Langmuir,22,4357– 4362.

Bansal,V.,Ahmad,A.,&Sastry,M.(2006).Fungus-mediatedbiotransformationof amorphoussilicainricehusktonanocrystallinesilica.JournaloftheAmerican ChemicalSociety,128(43),14059–14066.

nanoparticles.GreenChemistry,12,1995–2002.

Hua,D.,Tang,J.,Jiang,J.L.,Gu,Z.Q.,Dai,L.L.,&Zhui,X.L.(2009).Controlledgrafting modificationofsilicagelviaRAFTpolymerizationunderultrasonicirradiation. MaterialsChemistryandPhysics,114,402–406.

Inada,M.,Nakagawana,H.,Umezu,I.,&Sugimura,A.(2002).EffectsofhydrogenonSi nanoparticlesformedbypulsedlaserablation.AppliedSurfaceScience,197–198, 666–669.

Lee,J.,Park,J.,Singha,K.,&Kim,W.J.(2013).Mesoporoussilicananoparticle facilitateddrugreleasethroughcascadephotosensitizeractivationand cleav-ageof singletoxygen sensitivelinker. ChemicalCommunication,49,1545– 1547.

Li,T., &Wang, T.(2008).Preparationof silicaaerogelfrom rice hullashby dryingatatmosphericpressure.MaterialsChemistryandPhysics,112,398– 401.

Lin,W.,Huang,Y.W.,Zhou,X.D.,&Ma,Y.(2006).Invitrotoxicityofsilica nanopar-ticlesinhumanlungcancercells.ToxicologyandAppliedPharmacology,217, 252–259.

Martinez,J.R.,Ruiz,F.,Vorobiev,Y.V.,Perez-Robles,F.,&Gonzalez-Hernandez, J. (1998). Infraredspectroscopy analysis of the localatomic structure in silicapreparedbysol–gel.TheJournalofChemicalPhysics, 109(17),7511– 7514.

Molenkamp,W.C.,Watanabe,M.,Miyata,H.,&Tolbert,S.H.(2004).Highlypolarized luminescencefromopticalqualityfilmsofasemiconductingpolymeraligned withinorientedmesoporoussilica.JournaloftheAmericanChemicalSociety, 126(14),4476–4477.

Pandey,A.,Soccol,C.R.,Nigam,P.,&Soccol,V.T.(2000).Biotechnologyfor agro-industrialresiduesutilisation.I:Sugarcanebagasse.BioresourceTechnology,74, 69–80.

Pol,V.G.,Gedanken,A.,&Calderon-Moreno,J.(2003).Depositionofgold nanopar-ticlesonsilicaspheres:Asonochemicalapproach.ChemistryofMaterials,15(5), 1111–1118.

Sun,L.,&Gong,K.(2001).Review:Silicon-basedmaterialsfromricehusksand theirapplications.Industrial&EngineeringChemistryResearch,40(25),5861– 5877.

Tolaymat,T.M.,ElBadawy,A.M.,Genaidy,A.,Scheckel,K.G.,Luxton,T.P.,&Suidan, M.(2010).Anevidence-basedenvironmentalperspectiveofmanufactured sil-vernanoparticleinsynthesesandapplications:Asystematicreviewandcritical appraisalofpeer-reviewedscientificpapers.ScienceoftheTotalEnvironment, 408,999–1006.

Trewyn,B.G.,Giri,S.,Slowing,I.I.,&Lin,V.S.Y.(2007).Mesoporoussilica nanopar-ticlebasedcontrolledrelease,drugdelivery,andbiosensorsystems.Chemical Communications,31,3236–3245.

Sajti,C.L.,Sattari,R.,Chichkov,B.N.,&Barcikowski,S.(2010).Gramscalesynthesis ofpureceramicnanoparticlesbylaserablationinliquid.TheJournalofPhysical ChemistryC,114,2421–2427.

Suzuki,N.,Kiba,S.,&Yamauchi,Y.(2011).Fabricationofmesoporoussilica/polymer compositesthroughsolventevaporationprocessandinvestigationoftheir excellentlowthermalexpansionproperty.PhysicalChemistryChemicalPhysics, 13(11),4957–4962.

Wang,J.,Shi,N.,Qi,Y.,&Liu,M.(2010).Reversemicellestemplateassisted fab-ricationofZnOhollownanospheresandhexagonalmicrotubesbyanovelfast microemulsion-basedhydrothermalmethod.JournalofSol–GelScienceand Tech-nology,53,101–106.

Wang,W.,Martin,J.C.,Zhang,N.,Ma,C.,Han,A.,&Sun,L.(2011).Harvesting sil-icananoparticlesfromricehusks.JournalofNanoparticleResearch,13,6981– 6990.

Wei,C.,Zhang,Y.,Guo,J.,Han,B.,Yang,X.,&Yuan,J.(2010).Effectsofsilica nanopar-ticlesongrowthandphotosyntheticpigmentcontentsofScenedesmusobliquus. JournalofEnvironmentalSciences,22,155–160.

Woods,A.D.,&Bain,C.D.(2012).TotalinternalreflectionRamanspectroscopy. Analyst,137,35–48.

Wu,J.,Dickinson,R.B.,&Lele,T.P.(2012).Investigationofinvivomicrotubuleand stressfibermechanicswithlaserablation.IntegrativeBiology,4,471–479.

(7)

Yousefi,R.,&Muhamad,M.R.(2010).Effectsofgoldcatalystsandthermal evapo-rationmethodmodificationsonthegrowthprocessofZn1−xMgxOnanowires.

JournalofSolidStateChemistry,183,1733–1739.

Yang,H.,Kuperman,A.,Coombs,N.,Mamiche-Afara,S.,&Ozin,G.(1996).Synthesis oforientedmesoporoussilicafilmsonmica.Nature,379,703–705.

Yang,Q.,&Hu,W.(2010).Anovelmercury-mediaroutetosynthesizeZnOhollow microspheres.CeramicsInternational,36,989–993.

Zhao,B.,&Zhu,L.(2009).Mixedpolymerbrush-graftedparticles:Anewclass ofenvironmentallyresponsivenanostructuredmaterials.Macromolecules,42, 9369–9383.

Zhu,X.S.,Zhu,L.,Tian,S.Y.,Lang,Y.P.,&Li,Y.(2008).Aquaticecotoxicitiesof nanoscaleTiO2,ZnOandAl2O3watersuspensions.ActaEcologicaSinica,28(8),

Şekil

Fig. 1. Flow diagram of the procedure used to produce silica nanoparticles from sugarbeet bagasse.
Fig. 4. (a) TEM image of silica NPs, inset: size distribution, (b) XPS analysis recorded from silica NPs, (c) amorphous structure of silica NPs, and (d) nanocrystal (NC) structure of silica NPs.
Fig. 5. FTIR spectra of NPs obtained from laser ablation of bagasse and NaOH-treated bagasse ash.

Referanslar

Benzer Belgeler

The fragment program makes a binary search in the sorted grid-coordinate texture for each grid cell to determine the first particle residing in the grid cell and stores this

When matrices, generated based on amino acid replacements observed in closely related sequences, were used, the prediction accuracy of subcellular classes was better than those of

Bu yazıda süpermarket söylentisi olarak adlandırılacak bu olayın (daha doğ- rusu hikâyenin) bir yönüyle kent efsanele- ri içinde değerlendirilebileceğini söylemek

According to the major contributor of noise in lasers during amplification and oscillation is the transfer of noise of the pump lasers, the main aim of this paper is introduing a

The agreement with experiment and with Green function calculations shows that TDDFT excited states of radical cations at the B3LYP/6-311G* level are very accurate and that

In assortment planning literature, there are three commonly used customer choice models; locational choice model, exogenous demand model and utility based mod- els, mainly

reading Christine de Pizan as part of the history of social and political philosophy course, students replied that they had, but that perhaps she would have fitted better in a course

Since the RH-problem is defined in terms of the monodromy data, which is calculated in terms of initial data, this step provides the solution of the Cauchy problem.. Recently,