• Sonuç bulunamadı

Persistent perfect entanglement in atomic systems

N/A
N/A
Protected

Academic year: 2021

Share "Persistent perfect entanglement in atomic systems"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

?jjfij:dt·s, '!,hi. J4;N,.. 2 .. 20il4. P/L !39-143.

MODERN TRENDS

·;t1hi Ct!/1~·,·i}llll O 2()(J4.by Amr,, t.11l . . .

IN LAS. ER PHYSIC' S

.r.©WilJJ,y,W1I.IK ··Nm1kal{1ilerperiocli,·11.""·(R11.,,,;..j,

=============;:;==== · .

·

~

·.

. ·

Persistent Perfect Entanglement in 4tomic Systems

"-\

O.

(_;akir,

M.

A.

Can,

A. A.

Klyachko,

and

A.

S. Shumovsky

Farnlty <Jf Sciem:e, Bi/1.:e,,t U1d11ei'sity, Bil(e111, Ankara. 0(>800 Tutkey

e0mail: ·shu,mo@lcn.bilkent.e~u.tr

Rcceiv~cl August 28, 2003

; Abstra:ct-lt is shown that the system <ff an even number of thfee-levcl atoms inthc A configuration in a cavity

i

can evolve inio u persistllnl maxi1l'lum entangled state" The time of formation M such an entangled state is

esti-{)inated. ·

.-·:·-: ..

-%ms and jons, interacting witb cavity

photons,

are

'HJsic

building blocks.of qm1ntum information

pro-:j~g;

At

least, they represent a usefuJ tool for. testing

tµOl

algorithms

in

co.inmunications,

cryptography,

,, . /c9mputing [

1, 2].

Realization

of~ifferent

quantum

1\liW<loriation

processes,

such

as

re1epo11ation

£31,

w,r;:/Hires

perfect (maxirnum) and long-lived entaogled -.. ts,,Unfottunately, the lifetime of entanglement in

"''fc

systems .is

mostly

specified

by the

lifetime

of

(id

atomic states with 1espect

.to

di.pole

transitions

;Jtierefore

is quite short.

Jabilizatiori

of

perfect

entanglementin the general

e\tising

the vari~tional principle for maximum

, . ~ngforrtent ·has been proposed rece.ntly [4].

Accord-ftfiJ':fo

this:

principle,

max i'mum

entanglement is a

prop-[~'rfii{qfstates thatstiowtl~e rnaximurii

scale.of

qu~u'l~liin

iffo'ctuations

of all

essential

measurements

responsible

it&iifomanifestation

ofentariglement. To stabilize the

fBfa'.iimum

entangkd

stat~. it

is

neces'sary to achieve the

;ftlttittnom

level ·of fluctuation

and

~.t (iocal)

minimum

of

i:f,P:~f

~y · :..~. . .

·· · · · .. ·. s

an

illusJrntive

ex.ample,

consider a system of two JW.

}fovel

atoms interacting with a single cavity photon

aiMiribed

by the Hamiltonian

IJS

H

=

H,+ H,;·

H

0

=

~,,aI,ap

+

00:u

LR12U),

fed {l)

H.,

=

c;IR,,{fla,+i-to.J.

i[~fJ;

ap denot.es the photon annihilation operator .and

~j}/¥F

li)UI.

is tl1e atomic operator; i

=

1 denotes the

gfi?.~.rid

level, and i =.2.~arks_the excited .level. Assu1re

tha(both a,toms are 1mt1~1ly

m

the gmund

state,

w.Iule

mw~avity

cpntain~

a single, photon

lo/o)

=

11,

2) ®

lip).

(2}

!'.bn.

the system will periodically

elapse

over i.he·st~te

[5]

·:;.~,~~ -· .-. .

~1?

l'1'1) =

}i{l2,

I)

+ll,

2})10p),

(3)

which manifests maximum two-qubit entanglement .in

tl1e atomic subsystem. In the case ofqubits, the

essen~

tiaf measurements :ire given b,y the infinitesimal

gener-a(ors of the SL(2, C) algebra [6}:

{

a 1

=

j2)(1!

+

H.c.

"

0'2

=

ip)(21

+

H.c.

C>3

=

12)(21-

li)(l

I-Jt .is seen that the

tota:I

varianc~

J 2

V

=

LL

((~a?'>\

f= I/.: I

(4)

(5)

describing

the remoteness

cif

a

two-qubit state

from

"classical reality" [4], achieve the

maximum

Vmax

=

6.

in state (3) and

minimum \/

111i1,.=4 in state(2).

Unfortu-nately, thi$,waximlim

entangled

state (3) has the

m~xi-mum:energy E == -Ol11 and is· unstabl¢ with respectto the

dipole

decay

of

the atomic excitation.

Assume now that, inste~d

of the two-level atoms, we

have

three-level atoins

in

A configuration (see

Fig.

1).

2

-']

'

- - - - ' 3

'

1

Fig~. 1. Structure of .a threcsh.:vel atom in the A configura-lion.

(2)

140

Then, the atom-field Hiimiltonian takes the fotrri

<;AKIR et al. <

";;~~~I

which does not manifest perfect entangle:ment

beciati!

VC.%)

=

s

+ 113.

while

vmnit

=

9

i.n the

case ofJWI

qribils. Moreover, thi!i state (I 0) belongs to the c1a{f{?.f the so-called W·S.tates [10]. Therefore.

it

does. notJn'ii'i\¥

ifost entan·gJeme11t'at all [4, 1 ll

);f.i~!

H

=

H(i+Hinl'

H .

.

t + 0

=

·ropa

1

.a·,-

+

cosasas

2

+

L [

W21

R

:d.f)

+

ro31

R:n

(.f")],

f'=I

If instead

we

begin

with

the st~te of three

unex¢iJI

<

6) atc;>ms interacting ~ith two cavity .photons; the

fi[i\l

Sta~ I .

ii

Rini

=

L

[g,.R21 (f)c~,.+.gsR23 (.f}a.~·

+

H.c.] •

.r

Beginning with the same initial state (2) as al>0ve, the

system can achieve one more milximum entangl~d

two-l'l'r,)

=

,/3(13,

3, 1)+ !3, 1, 3)+

II

,3, 3)) ®. !Or,

Os}:f}iil

. :·: . .-,=:!,':·~\:1

·,qubit. state,

als<:> beJongs lo theclaS!i of Wstates.

Final1y,ifwe:~li

1~

with the state With

three

cavity photons, th~

finalstff(e

(7) rake, tho

fo:,)

=··13,

3.

3)

®

10,.,

Oi)

I

arid definitely is r:iot ~ntangled a'i welLThis

agtees@iiii

our

previous result [12]

lhat

the

_m,µcimum

entan,gj~%

.Discarding·the Stokes photmr[7, 8], ·we can turn unsta-ble state (7) .into the folkrwing:twoc.qubit'state:

merit

in

an

atom-photon system can be achieved

ifiiiij

(8) tially we

have

2N

atoms in the ground state .-Ji'd}t_i

puI11pi11g

photons. lnparticular, this mean~

that tbe/~~

Let us note that the local rne~slirements (4) should be

repla~ed by

(9)

in

this

case and that state (8} again provides

ihe

maxi-mum tot.al variance for the 'two-qubii entanglement

\I

ma:1.

=

6. At the same tifue, this state (8) has an energy E'

=

co

31 ""' ro21 - roithat'is much low¢r tlian E=

ro.2

1 and

corresponds to a 1ocal ininirrimt1 because the radiative

transition 3 - l isdipole-forbidden.Thus, sia:te (8)

is '.a persistent ma:ximuni entangled atomic state of two

qubit$.

The discard of Stokes photons can be realized·indif-ferent manners [~]. Either they abandon the cavity or

they are ab~orbed by the .cavity walls .. In both cases,

the

atomic system evolves towards the. per$istent ~tate (8)

with reliability.

In'this paper, we extend our previous results [7, 8] on the multiatom case. It should be emphasized· that the problem of multipartite entanglement in cavity QED. has attracted a great deal of interest recently (e.g .• see [9] and references therein}.

Consider first the system of three A~type atoms in

the ground st.ate interacting with a single Gavity photon with freqµency ro,,: Then, the irreversible evolution leads to the three-qubit state

lws>=

~(J3, l, l)+P,3: l)+p., 1,3))®J0p,Os>..(.IO)

l'l'c1Hz)

= ·

~

(13,

3, 3) ±

II,

I, l))

®

10,,; Os)

;J2

11,

1,

I)

®

13 ,.)

®

IO.s> ·

Strite ( 13) can

be generated

in

the

way propose~ in

[lijj'

by

sending three atoms. ,one after another, with

srn;~

dally selected velocitieslthroligh a cavity containifi'g

the: field in the superposition state ;//;\

·::,:\:}

For pther- proposals, see. [ 14-I 7].

Consider . the case when

the

Stoke~ photcms --~~

allowed to escape from the .cavity and inith11ly ·allJlj'~ atoms

ate

in the grotind state while the cavity contairi$

ilp p1,1mp pbotons. If

there are.

N atoms in the cavity,)d~

excitations.· in .the third state will be created and

the'se

excitations will be. distributed equally

over the

N ato~~j

N

r·P(r==

OJ)

=

2,

®,Jl),

®

Jn,.)p

(3)

PERSISTENT PERFECT ENTANGLEMENT IN ATOMIC SY$TEMS 141

:'.$.~ere f(,) denotes all possible permutations over

N

rJif

ms and

c,,;,

(N)

=

C~).

In. the case 11/'

~

N. all the

)ifoms witl evolve to the third state, thus leading to an

'unentangJed state, The Harriittonfan of the system in the

i{ritetactiori

picture has the form

;\~h

=

!lpa;a,p

+

I,.~1a}a1;:

+

g,,c1;S'~21 +

gtalm12,.

)iX

k

ct6>

H . illl = .LJ.8k•IL2'!,ak ~ ; cJ/1

+

8k ,*at/µ) k-'1,:E,

L

({~;~~'re

m,;

=

L7=,

R(;U) CQnstitute the collective

'ilfon,ic

operators. The Stokes modes: make up the

envi-ii:bh.Ji:ienl

and lead to spontan~ous d.ecay

from

the

sec-}foif

level to the third level. Upon eliminatic:,n ·Of the

:sfBkes

modes,

the

.inastet equation for the reduced den-~ffy(matrix

of

atoms and pump photons

in

a· thermal

iefivifonment

is as follows:

11:

2

~:i::;;~~=::;;~;~:~::~'.?)

f$1~@lb

r

is the spontaneous decay tale for the 2 - 3 1fiilliSition and H is Che mean number of thermal Stokes

~H~{gµs

at the resona.nt frequency

£!

3• Consider for

t{ffflplicity

the case when the l"emperature is much

rtM#ll~tthan

the· resonant energy £23, .so that 11

-D

and

i1i~\'ii1;,i$ter equation ( J 7) reduces to

/:}.::_.:,,:::.

[~~j~:~fr~: -

p{r)Wtii 9ft32 -9/t23Wt32P ( 1)}.

1

J~1t@ly,

all

the ato.ms are supposed to be in the first

g~gµi,ir;l

state. Then, becall~e of the coupling between

lne\.firsf

and :second levels mediated by the pump

pho-tl~n~f;*'ri

excitation in the .second level will appear. Since

tiW~;)ppntaneous

decay rate

r

for

t~e

2 - . . 3 transition

tf~\-~~upposed

to be much greater than the. coupling

ton,-§fantfqtt11e 1 - 2 transition, the state with one

e~c}-tlifib&in'

the

second level will rapidly decay to the third

'sllitif

preceding

the I - 2 transitions. As a result, the

:l$&1ijifon

can be approximately described tbr0l1gh the ···:}):lie Hilbert space spanned by the vectors

Vol 14 No .. ·2 20()4. N X

(8)

101:Pt®Jn,,-n-l)r;

(19) .i=,11+1 I ;, .,,.+2 1<1> ';) = . . ~ /5(\

13) •·;).

'5(\

12) ,., .

'

Jc·

(N. -

,,,.,··:c

·<·N)£-

'?' ·

·«:.' -\Cl ·""·' . . 2 . · 11 11 . ~· I = I '·"'II+ 1 ;V·

x

(8)

Jl)

1,, ®

In,;"'"'

I I -2),.. i.=11+:>,

where n

;= 0, I .• 2, .... In our approximate picture,

firs.t.

the transition I\JI,,) -

l<l>,,)

takes place. It' is at;compa-nied by the transitions

ltl>,,) - -

j4>;,)

an~

J<l>,,)

-j\J:',1

+

1)

at

11

time scale of/ -

1/r.

Hence, the popul~tion

of

JCl>)

to

that

of j'P;,+ 1). is of the order g~/r2 ~. l.So.

we can

cqnfine.

ourselves to the subspace spanned by

the ~tates

{1'¥

11) ,

J<I>,,),

,z

=

0,

1,

2, .•. } .

1n a sense, this.is equival~ntto the extension of

the

effective picture of Raman-StoJ(~s process¢s in

three-level atoms .that was proposed in [18, 19J

fdr

the

multi-.atom case.

Now, the d~ns1ty matrix

ca:n

be chosen as.follows:

P :

:Z,'ct11!\Ji,)('l',,I

+

blP1,}(<I\l

;,=O (20)

+h;;

l«l>1

,)()Jl,,J

+

c,,l(l>

11)(cJ.>11 /.

From Eq. ( 18), keeping in mind that we· restrict our con-sideration to the subspace spanned: by

I'¥,.), 1(1>;;),

n

=

0, 1, 2~ ...• we get the folloW.i ng equations for coeffi dents

in (20):

ti,,

= iJ(N -·iz)(,i1, -1z")(g,,b,1 - g

1

~b;~)

+

211n.·,._

1,

/;,, = iJ(N-11)(1.11,-,j)(gi'.cl,, -,-g~c11 ) - iAb,, - (n + l.:)rb11 ,

6,~

= -

i

,j(N-

11 )(n,:,,,-n)(gpa,1 - gpc;;)

+

ill.b;~'

(:21)

-(n

+

J)rb;,

c\

=

-ij(N -11)(1tr~1i)(gpb11 - gJjb,;) -2(;1 +

nrc

11.-i'

Give1i the. initial condition a0(0)

=

l, we wiU assert Jhat

.a

11

)r ~.·

1,

c

1

Jr ~·

1 and ·solve the equations of motion (21) accordingly; then, the assertions can be

checked for consistency;The coefficients

b,,

and

b,;

can

be e1iminated from the equations of motion through th~

use

ofthe

relations

(4)

l42

·I

x

J<lte-l(•i+

l)r+ illl\(i11(t-:. t) - c11(t :--'C})

·o

<;:AKIR .::.:;

the c!wracteri~tic

tirile

scale

for obtaining a

ii

sistent perfect entc,1ngl~d state is ·

/)fli

wh,ere :it is assume4 t11at ti,, /f ~ l,

,\Jf

<isi 1 . Then, the coupled

equations

for a;, and ti, are. obtained:

··f '1 .,.,.

m~r-

+

A~ 't =

i .

2)... fm(m + l) ··~-·

.,

r-<.

,,1

Li-

I

- - -·.. .. +· , -- }/2(m

+

I)

A

2r2,1i(hl

+

I).

a,,

= -y,Jll11-'i',,)

+

2nrc,,-i•

c,, ;::

'Y,,_(a,, -

r,J-

2(11

+

l)r

c,,,

2

. .

.

.

A.

r

tain function of g;, and gs [18~ 191). It is

seen

that

tJ.i:~:!

second

term in

(27) vanishes

as

1/m?. as 111 incr:ease~~

~qi/

that

detuning·

influentes the characteristic time only

fol~

(22) s.mall numb.ers of

atort1s.

In turn; the tirsl

term

in (Z'jJ}]

·grows

with an increase in m, achi~vjng a maximu#,if~ value

tm:ix.=r/2X

2 .at m ~I.

Thi~

time

-i

111n"" can

becorit~:

'Y;

1

=

2(N-n){np-n)(n + l)- .. ,, ., .•

· ·· (11

+

1

rr-

+.A~

Thus. a11 and c,, can be: obtained in terms of each other,

I.

( ) JI.

-·'.!(11+l}rY( ( ) ( .. ))

c;

1 _

r

= -y11

cr:_e

· ·

'!n

1-1:.

-c,,_t-·-r ...

~ ~

sidered as an estimation from above of the time

sc~i§t

corresponding to the formation of

perfect per.sisteijfii

entangJemerit in O:ie system ·of N

=

2m A-type

atorh.st

interacting with

n;

=m

cavity

photons;

\%fl

Y11 (· . ) . ))

~ 2(n+ "I )r-a"(t - c"(t.

=

2(n:·

l)r(lii).

~.o that

the equation govemirtg a,,'r. taker,; the

form

In

summary, we

have· shown

tlui,t)1

system consi((ffi

ing of an even· numbar 2m of A-type ·o:toins in a

cav1Jy)~

{23) initialJy prepared in the grom1d state,, While the cavity;;J field contain.s m

pumping.

photons resonant with

th~W

transition l - - 2, evolves with reliabHity to the

p¢(4'~

si"stent maximum eniangled atomic state if the

Sfoktfl

photons.

crented

by

th~ t;ansition 2

- 3

ar~

discarde~It

We

have ~hown that the time required .to prep&re s.uch@f state can be ·estimated from above through the use. of~rij effective model that neglect$ the populati~n qf

th~;;

(24) intermedia(~ atomitlev.el 2. At m ~- J, this- time. is com;;;}:

Under the above -initial condition. we get the solution

. -'fol

a(i(t)

=

e

.,

a,,(r) =

y,, _

1

J

dt_/'1'.,,

ta,,_

1 (r ~ -r},

0

11 = l, 2~ 3,

pletely determined

by

the spontaneous decay r;,i.te

r

(6£~

the 2 --.

J

tram;ition and effective coupling con~tan().ij~

Detuning is

important. only

at smail

m. The

reiu.t'tit

obtained'ribove should be considered as an estimati'ciii't (25) from

above:.

A

more

detailed cons·iderati.on of

corrd~J}j

tions· between the atoms caused by _photon exchan,g~)

can lead tO' a

small.er

time (e.g,; see [201). }}

In

general.

(he .. soJution for a,,. and c/s will be a linear superpositiotJ" of

terms

of the

form

.exp(_:Y;t).

i- ~-

n. which are in line with the assumption that

a,, Ir

.:g

l.

c:,/r

~ 1. When.n

=

min(np~ N),

y

11

=

0, so that

the

final

value is

11.r=

min(np, N) and the system evolves to the, persistent state.

j'I',,)('¥

11

,I -

The time dependence

-ofa,,

1 has the fonn

a,1 (i) ;:. { .

,,,.-.1

"r-

i

L

-

-1,,11·

1- e · -.-·-1 - . Y·-Y· i=O f,i·1 J . 1 (2~) Thus, ihe chardcteris~ic t~me· scale need.ed in order to obtain the final state is l/y1,

r

1 , bcc.ause

f_y

11.} is a

mono-tonita11y decrea~ing sequence.

In the case of an even number of atoms N

=

.2m

.and

np = m. when ·the final

state

is a. ma~irnum entangled

REI<'ERENCES

1. 0- Raillkl, C ..

Wagner; H.

Walther; L. M. Nurduccii

a:nhW

M. 0. S¢ully; in Advanre,s i11 Atoniic, Mplecular

a11d\

Optical Physip\ Ed. by P. Bennart {Academic; New))

York, 1994). \}

2. H. Waliher,

ht

Quaim,m .Co111~m111icatioi1 a.nd Iiljor,naii~

;;c;-,,

Teclmologie~; Ed. by A.

s.

Shumovsky

an~1J

v~ I. Rupasov (Kluwer Academic, Dordrccht, ioo3). ·

\1:1

3. C. H. Bennett and P.. W, Shor, IEEE Trans. Inf. Theorf;i 44~ 2124 < t 9.98). :(._ia 4; A. A. Klyachko and A. S. Shumovsky, E-print quant/J

ph/030711

o.

<r

.s.·. A. Beige, S. Bose; D. Br~un, ,etal .. , J. Mod. QpL 47. 258{[~

(2000);

<i

6. A. A .. {{lyachko and A, S. Shuxnovsky, J. Opt B:

Quan{#

h.n:n Semiclassic. Opt.

5,.

~322 (2003). ;/)

7. M, A.

Can,

A.

A-

Klyachk(), and A. S. Shumovs~y, AppI)t/

Phys. Lett. 81, 5072 .(2002). }~

·,;,_

(5)

PEi~SISTENT PERFECT ENTANGLEMENT IN ATO!vUC SYSTEMS 143

'i0:0h.

Gakir, M. A .. ~art, A. A. Klyachko, and A. S. Shu-f(/ifnovsky, Phys. Rev. A 68, 022305 (20Q3). ·

,9.%E.

Splam\ G. S. Agarwal, arid l:I. Walther, Phys. Rev.

}Jl..eH. 90; 027903 (2003).

·o}\\f;

Dur; G. Vidal, and J. L Cirac, Phys. Rev. A 62,

I;)fpQ2J14

t2000>. · . .. .

:,KA. Miyake, Phys,

Rev: A 67, 012 !OR (2003).

~/0

&,t

A. Can, A.

A.

Klyachko. and A S. ShumovskY; Phys.

Mi/Rev.,

A 66; 022 J J · I (2002).

£.frJi

r.

Cirac and P. Zoller, Phys.

Rev.

A 50, R2799 ( 1994).

:4.Jfk.

WMkiewicz, L. Wang, nrid ). H. Eberly, Phys. Rev. A /{>47 3"80 0 993)

;_:.:/i:.:-.:-.·.-.. -~ - - . .... •

l:5. D. N. Kl yshko, Phys. Rev. L!!tt. 172; 3Q9 (1993). 16. S. Harc)chc, Ann. (N.Y.) Acad. Sd. 75S, 73 (1995.).

17. C'. C. Gerry, Phy.s.~Rev.A54,.R2529 (1996).

18. C C. Gerry and

f

H. Eberly, Phys. Rev. A 42, 6805

{i990).

19;

C.

K. Luw and J. lj. Eberly, Phys.

Rev.

A 47, 3195.

(1993).

20. T. Quang and

A.

S.

Shqmovsky, in intetactiou £~(

Elec-tmi11r1g11etfr: Field witli Co11de11secf Matter, Ed. hy

N. N. ~ogoluhov, A.

S·.

Shumovsky, and. V. I. Yukafov

Referanslar

Benzer Belgeler

scales………..52 Table 6 – Participant responses to culture of English language questions….………54 Table 7 – Participant responses to learning about the culture of

yüzyılın ikinci yarısında Balıkesir örneğinde, bir sosyal tarih kaynağı olan terekelerin potansiyelinin vurgulanarak değerlendirilmesine ve bu doğrultuda

Bu birlik Bitki Sosyolojisi yönünden incelendiğinde, hem birliğin ayırdedici ve karakter taksonlarının hem de lloristik kompozisyonu oluşturan taksonların önemli

Bu tez çalışmasında ağırlıklı Lorentz ve ağırlıklı Orlicz uzaylarında konvolüsyon tipli dönüşümlerin en iyi yaklaşım sayıları yardımıyla

Our Kohonen map allows us to examine 160 countries and identify groups along the five dimensions articulated in our data section, reflecting digital development, economic,

As for the second type of principal components, PCb, the first component is mainly composed of criteria related to ownership, directors and managers, reporting/recording

Given the same value-creation technology in both rounds through sincere clause offers, the analysis focuses on whether misleading offers, inspections, outright rejections and

Mantar zehirlenmelerinde hedef sistemi ve başlangıç zamanı sınıflaması Erken başlangıçlı toksisite (&lt;6 saat) Geç başlangıçlı toksisite (6-24 saat) Daha geç