• Sonuç bulunamadı

Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the standard model with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Share "Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the standard model with the ATLAS detector"

Copied!
23
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Search for anomalous production of prompt like-sign muon pairs and constraints on physics

beyond the standard model with the ATLAS detector

G. Aad et al.* (ATLAS Collaboration)

(Received 5 January 2012; published 17 February 2012)

An inclusive search for anomalous production of two prompt, isolated muons with the same electric charge is presented. The search is performed in a data sample corresponding to 1:6 fb1 of integrated luminosity collected in 2011 at pffiffiffis¼ 7 TeV with the ATLAS detector at the LHC. Muon pairs are selected by requiring two isolated muons of the same electric charge with pT> 20 GeV and jj < 2:5.

Minimal requirements are placed on the rest of the event activity. The distribution of the invariant mass of the muon pair mðÞ is found to agree well with the background expectation. Upper limits on the cross section for anomalous production of two muons with the same electric charge are placed as a function of mðÞ within a fiducial region defined by the event selection. The fiducial cross-section limit constrains the like-sign top-quark pair-production cross section to be below 3.7 pb at 95% confidence level. The data are also analyzed to search for a narrow like-sign dimuon resonance as predicted for e.g. doubly charged Higgs bosons (H). Assuming pair production of Hbosons and a branching ratio to muons of 100% (33%), this analysis excludes masses below 355 (244) GeV and 251 (209) GeV for Hbosons coupling to left-handed and right-handed fermions, respectively.

DOI:10.1103/PhysRevD.85.032004 PACS numbers: 13.85.Rm, 12.60.Cn, 14.80.Fd

I. INTRODUCTION

Events containing two high-pT, prompt, like-sign lep-tons are rarely produced in the standard model (SM), but occur with an enhanced rate in several models of new physics. For example, supersymmetry [1], universal extra dimensions [2], left-right symmetric models [3–6], Higgs triplet models [7–9], the little Higgs model [10], fourth-family quarks [11], and flavor-changing neutral currents resulting in the production of like-sign top quarks [12–20] could all give rise to final states with two leptons of the same electric charge. Most of these models would result in an excess of like-sign dimuons over the background with no distinct kinematic features. However, doubly charged Higgs bosons (H), predicted by some of those models, would be observed as a narrow resonance in the dimuon mass spectrum.

In the analysis described in this article, events contain-ing like-sign muon pairs are selected and their invariant mass distribution is compared to the SM prediction. Both muons are required to have transverse momentum pT> 20 GeV and pseudorapidity [21]jj < 2:5, and they must be isolated from other activity in the event. Upper limits on the cross section of non-SM physics in a fiducial region corresponding to the experimental requirements are de-rived as a function of the dimuon invariant mass. Results

are presented inclusively for  production and sepa-rately for þþand final states. The þþresult is further used to constrain like-sign top-quark pair pro-duction. The data are also used to search for a narrow dimuon resonance with a width much smaller than the detector resolution of 3%. An example of a particle that may result in a narrow mass peak is a short-lived H boson, predicted by a number of the models for new physics mentioned above. Constraints on the H mass as a function of its branching ratio to two muons are presented.

The ATLAS Collaboration has previously reported an inclusive search for new physics in the like-sign dilepton final state in a data sample corresponding to an integrated luminosity of 34 pb1[22]. No significant deviation from SM expectations was observed, and fiducial cross-section limits as well as limits on several specific models of physics beyond the SM were derived. The CDF Collaboration has performed similar inclusive searches [23,24] without observing any evidence for new physics. Like-sign top-quark pair production has previously been searched for by the CDF [25] and the CMS Collaborations [26]. The upper limit on the cross section set by the CMS Collaboration in pp collisions at pffiffiffis¼ 7 TeV is 17 pb. Direct limits on H bosons have previously been set at hadron colliders by the CDF [24,27] and D0 [28,29] Collaborations. The most stringent limits to date for H bosons decaying to dimuons with a branching ratio of 100% exclude masses below 205–245 GeV depending on the couplings [24].

This article is organized as follows. A brief description of the ATLAS detector is given in Sec.II. Sec.IIIpresents the data and simulation samples used. The event selection

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

is described in Sec.IV. The backgrounds are discussed in Sec.V, and Sec.VIsummarizes the systematic uncertain-ties. The data are compared to the background estimate in Sec.VII. The interpretation of the data as a cross-section upper limit within the fiducial region, for four ranges of dimuon invariant mass, and its implication on like-sign top-quark pair production are reported in Secs. VIII and

IX, respectively. The narrow resonance search and its interpretation in terms of H boson production is presented in Sec. X. Finally, Sec. XI summarizes the conclusions.

II. THE ATLAS DETECTOR

The ATLAS detector [30] consists of an inner tracking system, calorimeters, and a muon spectrometer. The inner detector, directly surrounding the interaction point, is com-posed of a silicon pixel detector, a silicon strip detector, and a transition radiation tracker, all embedded in a 2 T axial magnetic field. It covers the pseudorapidity range jj < 2:5 and is enclosed by a calorimeter system contain-ing electromagnetic and hadronic sections. The calorime-ter system is surrounded by a large muon spectromecalorime-ter built with three air-core toroids. This spectrometer is equipped with precision chambers (composed of moni-tored drift tubes and cathode strip chambers) to provide precise position measurements in the bending plane in the rangejj < 2:7. In addition, resistive plate chambers and thin gap chambers with a fast response time are used primarily to trigger muons in the rapidity ranges jj  1:05 and 1:05 < jj < 2:4, respectively. Momentum mea-surements in the muon spectrometer are based on track segments formed in at least two of the three precision chambers. The resistive plate chambers and thin gap cham-bers provide position measurements in the nonbending plane which is used to improve the pattern recognition and the track reconstruction.

The ATLAS detector has a three-level trigger system [31] which reduces the event rate to approximately 200 Hz before data transfer to mass storage. The Level-1 muon trigger searches for hit coincidences between different muon trigger detector layers inside programmed geomet-rical windows that define the muon transverse momentum and provide a rough estimate of its position. It selects muons in the rapidity rangejj < 2:4. The Level-1 trigger is followed by a high-level, software-based trigger selec-tion which is similar to that of the offline reconstrucselec-tion.

III. DATA SAMPLE AND MONTE CARLO SIMULATION

This analysis is carried out using a data sample corre-sponding to an integrated luminosity of 1:6 fb1recorded between March and July of 2011 at a center-of-mass energy of 7 TeV. The data are selected using single-muon triggers with a pT threshold of 10 GeV at Level-1. At the

high-level trigger, a muon with pT> 18 GeV is required. In this data set, the average number of interactions per beam crossing is about six.

Monte Carlo (MC) simulation is used to estimate some of the background contributions and to determine the selection efficiency and acceptance for possible new physics signals. The dominant SM processes that contribute to prompt like-sign dimuon production are WZ, ZZ, WW, and ttW. These are all estimated using MC simulation. For processes with a Z boson, the contribution from  is also simulated for mð‘‘Þ > 20 GeV. WZ and ZZ events are generated using HERWIG [32], and WW and ttW production is generated with MADGRAPH [33] for the matrix element andPYTHIA[34] for the parton shower and fragmentation.

The normalization of the WZ and ZZ MC samples is based on cross sections determined at next-to-leading-order (NLO) using MCFM [35]. The NLO cross sections

times branching ratios for WZ ! ‘‘‘ and ZZ ! ‘‘‘‘, where ‘is an electron, muon, or tau lepton, after requiring two charged leptons with the same electric charge and with pT> 20 GeV and jj < 2:5, are 347 fb and 54 fb, respectively. The K factors for WZ and ZZ production, defined as the ratios between the NLO and the leading order (LO) cross sections, depend on the kine-matic requirements placed on the muons and the invariant mass of the like-sign muon pair. Therefore, K-factors that depend on this invariant mass are applied.

Opposite-sign dimuon events due to Drell-Yan, tt, and WWproduction constitute a background if the charge of one of the muons is misidentified. WW production is generated using HERWIG. The Drell-Yan process is gener-ated with ALPGEN [36], whereas the tt background is modeled usingMC@NLO[37].

In addition, a variety of new physics signals are simu-lated in order to study the efficiency and acceptance of the selection cuts.

Like-sign top-quark pair production can occur in models with flavor-changing neutral currents, e.g. via a t-channel exchange of a Z0boson with utZ0coupling. Since the left-handed coupling is highly constrained by B0

d B0dmixing [38], only right-handed top quarks (tR) are considered. Samples for this process are produced with the PROTOS

[39] generator, using Z0 mass values of 100, 150 and 200 GeV. An additional sample is generated, based on an effective four-fermion operator uu ! tt corresponding to Z0masses 1 TeV [18]. The parton shower and hadroni-zation are performed withPYTHIA.

Pair production of doubly charged Higgs bosons (pp ! HH) via a virtual Z= exchange is gener-ated usingPYTHIAfor H mass values between 100 and 400 GeV [40].

Production of a right-handed W boson (WR) decaying to a charged lepton and a Majorana neutrino (NR) [41,42], and pair production of heavy down-type fourth generation quarks (d4) decaying to tW are generated usingPYTHIA.

(3)

Parton distribution functions taken from CTEQ6L1 [43] are used for the LO MC generators, while for the tt

MC@NLOsample CTEQ6.6 [44] parton distribution func-tions are used.

The detector response to the generated events is simu-lated with the ATLAS simulation framework [45] using

GEANT4 [46], and the events are reconstructed with the same software used to process the data. The simulated response is corrected for the small differences in efficien-cies, momentum scales, and momentum resolutions be-tween data and simulation.

IV. EVENT SELECTION

Events are selected with an inclusive single-muon trig-ger with a pTthreshold of 18 GeV as described in Sec.III. They must further contain at least two muons of the same electric charge with pT> 20 GeV and jj < 2:5. The efficiency of the trigger selection for muon pairs in Z ! þevents passing the event selection used here is 97%. Any combination of two muons is considered, allowing more than one muon pair per event to be included. The invariant mass of the two muons, mðÞ, is required to be larger than 15 GeV to exclude the low-mass hadronic resonances such as the J=c and  mesons. All events used in this analysis are required to have a primary vertex determined with at least five tracks with pT> 0:4 GeV. If more than one interaction vertex is found, the vertex with the highest PNi¼1p2T;i, where N is the number of tracks associated to the vertex, is defined as the primary vertex.

Muons selected for this analysis are formed from tracks reconstructed in the inner detector combined with tracks reconstructed in the muon spectrometer [47]. The indepen-dent charge measurements from these two detectors are required to agree to reduce the charge mismeasurement rate. In addition, the transverse and longitudinal impact parameters with respect to the primary event vertex must be small,jd0j < 0:2 mm and jz0sinj < 5:0 mm, and the transverse impact parameter significance, jd0j=ðd0Þ, is required to be less than 3.0. The muon isolation (pcone40T ) is defined as the scalar sum of the transverse momenta of all tracks with pT> 0:5 GeV within a cone around the muon axis of size R ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2þ 2¼ 0:4 that are within jz0j < 1 cm of the primary event vertex. Requirements of pcone40

T < 5 GeV and pcone40T =pTðÞ < 0:08 are made.

The above selection cuts are chosen to retain a high efficiency for prompt muons while rejecting a large fraction of nonprompt backgrounds. For muons from Z-boson decays, the efficiency of the impact parameter significance and the isolation cuts ranges from 87% to 97% depending on pT, while for muons from b- and c-hadron decays, the efficiency is about 3.5%. For muons arising from  decays in Z !  events, the efficiency is about 60%.

V. BACKGROUND DETERMINATION The SM backgrounds for like-sign dimuon final states can be divided into background from production of prompt like-sign dimuons, background caused by muons from hadronic decays (nonprompt muons), and background from processes with two prompt opposite-sign muons where the charge of one of the muons is mismeasured.

The dominant SM processes with two prompt leptons of the same electric charge in the final state are WZ ! ‘‘‘, ZZ ! ‘‘‘‘, WW! ‘‘, and ttW ! ‘‘þ X. Any other SM processes are found to be negligible. The contribution of these processes to the signal region is estimated from MC simulation using the samples described in Sec.III. In these simulated samples, only muons that originate from a  lepton, a W boson, or a Z boson are considered prompt. Muons originating from any other sources are discarded in order to avoid double-counting with the nonprompt muon background that is derived from data.

Background from nonprompt muons may originate from several different sources: semileptonic b- or c-hadron de-cays, muons from pion or kaon decays in flight, and mis-identified muons from hadronic showers in the calorimeter which reach the muon spectrometer and are incorrectly matched to a reconstructed inner detector track [48]. The background from nonprompt muons is estimated from data using a matrix method [49]. This method requires knowl-edge of the probabilities for prompt and nonprompt muons to pass the isolation requirement. The probability for non-prompt muons to pass the isolation cut is determined using muons with jd0j=ðd0Þ > 5 in dimuon or single-muon samples. These are dominated by semileptonic b- and c-hadron decays. The probability is found to be 5% rather independently of pT and . A systematic uncertainty is derived from a complementary sample where jd0j=ðd0Þ < 3 is required. In this sample, prompt muons from W or Z decays are suppressed by requiring there to be exactly one muon in the event, the transverse mass [50] of the muon and the missing transverse energy [51] to be below 10 GeV, and at least one jet with pT> 20 GeV to be present. The resulting systematic uncertainty on the proba-bility for nonprompt muons to pass the isolation cut varies between 30% and 100% depending on pT. The probability for prompt muons to pass the isolation cut as a function of pT and  is derived from Z ! þ MC events and is cross-checked with data.

Another source of background arises from opposite-sign muon pairs where the charge of one of the two muons is misidentified. This background source is negligible in the relevant mass range as estimated from simulation. The charge misidentification probability is also measured from Z !  events in data by exploiting the independent charge measurements provided by the inner detector and the muon spectrometer. It is found to be consistent with zero in the relevant pT range. Based on observing zero

(4)

charge misidentified events in data, a 68% upper limit is placed on this probability as function of pT, which ranges up to 10% at pTðÞ ¼ 400 GeV. This upper limit is ap-plied as a function of pTðÞ to opposite-sign prompt muon pairs in the Drell-Yan, WþW, and tt MC samples to determine the systematic uncertainty on this background source.

The background estimate is cross-checked in a variety of samples complementary to the signal region. These include like-sign muon pairs where at least one muon fails the jd0j=ðd0Þ cut, like-sign muon pairs where both muons fail the isolation requirement used in the analysis but pass a looser isolation requirement, like-sign and opposite-sign muon pairs where both muons fail the isolation requiment used in the analysis but pass a looser isolation re-quirement and at least one muon fails thejd0j=ðd0Þ cut, and opposite-sign muon pairs where both muons pass the final analysis requirements. For all control regions, the data are found to agree with the background prediction within the systematic uncertainties, both in overall event yield and in the shape of the dimuon mass distribution.

VI. SYSTEMATIC UNCERTAINTIES

Uncertainties on the event selection efficiencies and the luminosity affect the predicted yield of signal events as well as those backgrounds that are estimated purely from MC simulation, i.e. WZ, ZZ, WW, and ttW production. The uncertainty on the muon reconstruction efficiency is 1% [52]. In addition, the efficiency of the requirements on impact parameter and isolation is observed to be 3% lower in data than in simulation at the lowest pT values while for pT> 30 GeV data and simulation agree typically within 1%. The resulting uncertainty on the muon pair selection efficiency due to the muon identification effi-ciency is þ1:01:8%. The uncertainty on the muon trigger efficiency of <1% [52] results in an uncertainty on the selection efficiency of 0:3%. The uncertainty in the muon momentum scale [53] results in an uncertainty on the dimuon pair selection efficiency of0:9% due to the migrations across the pT and mðÞ cut thresholds. In addition, the integrated luminosity measurement has an uncertainty of3:7% [54,55].

The uncertainty in the production cross sections of the SM processes affect the predicted yield of the prompt muon background. The WZ and ZZ cross-section uncer-tainties due to higher-order corrections are estimated to be 10% by varying the renormalization and factorization scales by a factor of 2. For ttW production, the higher-order corrections are estimated to be similar to those for ttZ, which are calculated in Ref. [56], and the cross section is taken to be a factor of 1:30  0:65 higher than the LO cross section [57]. The full higher-order corrections for WW production have not yet been calculated. However, for parts of the process, the NLO QCD corrections have

Muon pairs / 25 GeV

0 5 10 15 20 25 30 35 40 Data 2011 µ Non-prompt µ Prompt ATLAS

Ldt = 1.6 fb-1 = 7 TeV s ) [GeV] ± µ ± µ m( 0 50 100 150 200 250 300 350 Data / Bkg 0 1 2 3 4

Muon pairs / 25 GeV

0 5 10 15 20 25 30 Data 2011 µ Non-prompt µ Prompt ATLAS

-1 Ldt = 1.6 fb = 7 TeV s

Positively charged pairs

) [GeV] + µ + µ m( 0 50 100 150 200 250 300 350 Data / Bkg 0 1 2 3 4

Muon pairs / 25 GeV

0 2 4 6 8 10 12 14 16 18 Data 2011 µ Non-prompt µ Prompt ATLAS

Ldt = 1.6 fb-1 = 7 TeV s

Negatively charged pairs

) [GeV] -µ -µ m( 0 50 100 150 200 250 300 350 Data / Bkg 0 1 2 3 4

FIG. 1 (color online). Distribution of the dimuon invariant mass for (a) pairs, (b) þþpairs, and (c) pairs. The data are compared to the stacked background estimates. The ratio between the data and the predicted background is also shown, where the shaded region is the total systematic uncer-tainty on the background prediction.

(5)

been shown to be small [58]. Here, the LO cross section is used and an uncertainty of50% is assumed.

Uncertainties on the parton distribution functions affect both the acceptance and the normalization of the prompt muon backgrounds and the new physics models con-strained in this paper. This uncertainty is evaluated using the eigenvectors provided by the MSTW2008lo68cl set [59] of parton distribution functions using the prescription given in Ref. [60] and adding in quadrature the difference between the central cross-section value obtained using this set and that obtained with the CTEQ6L1 [43] parton dis-tribution functions. For the diboson background, the result-ing uncertainty on the cross section is 7%. The uncertainty on the acceptance due to this source is typically 2%.

The uncertainty on the number of muon pairs from nonprompt muon backgrounds has systematic and statisti-cal components which are added in quadrature to give the total uncertainty on this background source. The system-atic component is derived from the uncertainty on the measurement of the fraction of nonprompt muons passing the isolation cuts which ranges from30% for mðÞ > 15 GeV to 80% for mðÞ > 300 GeV (see Sec. V).

The statistical component arises from the limited number of nonisolated muons used in the matrix method: this is 3% for mðÞ > 15 GeV and 45% for mðÞ > 300 GeV. The background due to charge misidentification has an uncertainty of þ2:7 events for the full sample and þ0:6 events in the highest mass region.

Any statistical uncertainties due to limited size of the background and signal MC samples are also considered.

Systematic uncertainties on different processes from the same origin are assumed to be 100% correlated.

VII. COMPARISON OF THE DATA TO THE BACKGROUND EXPECTATION

The invariant mass distributions observed in the data are compared to the predicted background for , þþ, and production in Fig.1.

Table I summarizes the number of observed and ex-pected muon pairs for , þþ, and  produc-tion for four cuts on the dimuon invariant mass. The data agree with the background within the systematic uncer-tainties and no excess is observed. The number of data events in high-mass bins is lower than the background

TABLE I. Expected and observed numbers of pairs of isolated like-sign muons for various cuts on the dimuon invariant mass, mðÞ. The uncertainties shown are the quadratic sum of the statistical and systematic uncertainties. The prompt muon background contribution includes the WZ, ZZ, WW, and ttW processes.

Sample Number of muon pairs with mðÞ

>15 GeV >100 GeV >200 GeV >300 GeV

Prompt muons 63:1  7:8 34:9  4:5 9:6  1:6 2:24  0:54

Nonprompt muons 37:5þ10:312:4 13:0  4:5 1:8  0:7 0:31  0:18

Charge flip 0þ2:70:0 0þ0:90:0 0þ0:70:0 0þ0:610:00

Total 100:6þ13:214:7 48:0  6:4 11:4þ1:81:7 2:56þ0:830:57

Data 101 32 7 1

Sample Number of muon pairs with mðþþÞ

>15 GeV >100 GeV >200 GeV >300 GeV

Prompt muons 41:2  5:3 23:5  3:2 6:6  1:2 1:33  0:40

Nonprompt muons 20:2þ5:96:9 6:3  2:2 1:0  0:4 0:24  0:15

Charge flip 0þ1:30:0 0þ0:50:0 0þ0:30:0 0þ0:300:00

Total 61:4þ8:08:7 29:8  3:9 7:5  1:3 1:57þ0:520:42

Data 61 22 6 1

Sample Number of muon pairs with mðÞ

>15 GeV >100 GeV >200 GeV >300 GeV

Prompt muons 21:9  3:0 11:4  1:8 3:04  0:67 0:91  0:32

Nonprompt muons 17:4þ4:75:8 6:8  2:4 0:83  0:38 0:07þ0:080:07

Charge flip 0þ1:30:0 0þ0:50:0 0þ0:340:0 0þ0:300:00

Total 39:3þ5:86:5 18:2  3:0 3:87þ0:840:77 0:98þ0:450:33

(6)

expectation, but in all mass bins the probability that the background gives a fluctuation as low or lower than ob-served in the data is found to be greater than 5%. In all mass bins, prompt muons from diboson production are the dominant background but nonprompt muons also contrib-ute significantly: about 40% at low mass and 10% at high mass.

VIII. UPPER LIMITS ON THE CROSS SECTION FOR PROMPT LIKE-SIGN

DIMUON PRODUCTION

A 95% confidence level (C.L.) upper limit on the num-ber of like-sign muon pairs due to anomalous production, N95ðÞ, is obtained using a Bayesian approach with a flat prior for the number of events from new physics, integrat-ing over Gaussian priors for the systematic uncertainties [61,62]. All systematic uncertainties discussed above are included, and correlations between their effects on signal and background processes are taken into account.

The upper limit on the number of anomalously produced muon pairs, N95ðÞ, ranges from 41 pairs for mðÞ > 15 GeV to 3.8 pairs for mðÞ > 300 GeV at 95% C.L. The limit on the number of muon pairs is translated to a 95% C.L. limit on the cross section measured in the phase space region defined by the fiducial cuts as

fid 95ðÞ ¼ N95ðÞ "fid R Ldt; (1)

where RLdt is the integrated luminosity of 1:61  0:06 fb1. The efficiency of the experimental cuts with respect to the fiducial region, "fid, depends on the model of new physics. The fiducial cuts used to define the efficiency are closely matched to those imposed at reconstruction level: both muons must have pT> 20 GeV, jj < 2:5, and be separated by R > 0:4 from any jet or prompt muon or electron with pT> 20 GeV.

A variety of models is considered for the determination of "fid, and the lowest efficiency value obtained among all the models is used. The models considered are like-sign top-quark pair production via an effective four-fermion coupling, Majorana neutrino (NR) production from the decay of a WRboson, pair production of fourth generation quarks decaying via top quarks, and doubly charged Higgs boson production. A variety of mass values for those models is considered: 800  mðWRÞ  1500 GeV and 100  mðNRÞ  1300 GeV, 300  mðd4Þ  500 GeV, and 100  mðHÞ  300 GeV. The efficiency values obtained from any of these samples with respect to the fiducial cuts vary for different models and mass bins due primarily to the pTdependence of the isolation efficiency. Like-sign top-quark pair production results in the lowest fiducial efficiency of 43:9þ1:92:4% for mðÞ > 300 GeV, while a model with WR boson of 800 GeV decaying to a 500 GeV Majorana neutrino gives the highest value of 72:5þ1:62:2%. For pair production of 100 GeV H

bosons, the fiducial efficiency is 69:8þ1:52:0% for mðÞ > 15 GeV. The efficiency uncertainties include all sources discussed in Sec.VI. To derive the cross-section limits, the lowest efficiency value of 43:9þ1:92:4% is used in all mass bins. The resulting limits are given in TableIIfor the four mass ranges and separately for , þþ, and production.

IX. LIMITS ON LIKE-SIGN TOP-QUARK PAIR PRODUCTION

Like-sign top-quark pair production can occur if e.g. a flavor-changing Z0boson that couples to u and t quarks is exchanged in the t channel. The fiducial cross-section limits presented above are used to constrain this model.

In order to assess the impact on any physics model, the acceptance of the fiducial cuts with respect to the full phase space, Afid, needs to be determined. The cross-section limit for that model is then given by

95¼ fid

95ðÞ Afid

: (2)

For the model of like-sign top-quark production, only þþ pairs are considered since the  process con-tributes less than 3% at the LHC due to the much smaller u-quark density compared to the u-quark density in the proton. The fiducial acceptance for the production of

TABLE II. Expected and observed 95% C.L. upper limit on the cross section, fid

95, for new physics in bins of dimuon mass

for like-sign muon pairs with pTðÞ > 20 GeV, jðÞj < 2:5,

and R > 0:4 between the muon and any jet, prompt electron or prompt muon with pT> 20 GeV.

Mass range [GeV] fid

95 [fb]

Expected Observed All muon pairs

mðÞ > 15 58þ1917 58

mðÞ > 100 30þ119 16

mðÞ > 200 13:7þ5:74:4 8.4 mðÞ > 300 8:0þ3:32:6 5.3

Positively charged muon pairs

mðþþÞ > 15 37þ1411 37

mðþþÞ > 100 21:8þ9:16:9 14.1

mðþþÞ > 200 10:3þ5:72:2 9.1

mðþþÞ > 300 7:2þ1:82:9 5.6

Negatively charged muon pairs

mðÞ > 15 29þ118 30

mðÞ > 100 17:0þ6:55:1 9.5 mðÞ > 200 8:7þ3:12:5 5.2

mðÞ > 300 5:9þ1:81:6 4.3

(7)

right-handed like-sign top quarks, AfidðtRtRÞ, is determined for each mass cut and for four Z0mass values. For mðZ0Þ ¼ 100 GeV (mðZ0Þ  1 TeV), Afid ranges from 0.69% (0.62%) for mðþþÞ > 15 GeV to 0.12% (0.29%) for mðþþÞ > 300 GeV. This acceptance is defined with respect to inclusive decays of the W bosons, so the small values are primarily caused by the low W !  branching ratio. The relative uncertainty on the acceptance is typi-cally 2–3% and accounts for both the statistical uncertainty and the uncertainty due to the parton distribution functions as discussed in Sec.VI.

The mass range that gives the best expected limits is mðþþÞ > 200 GeV for all mðZ0Þ. The results are listed in TableIIIfor four Z0masses. The upper limits on the tRtR production cross section range from 2.2 to 3.7 pb depend-ing on mðZ0Þ.

X. CONSTRAINTS ON DOUBLY CHARGED HIGGS BOSONS

The data are used to constrain the production of a narrow resonance decaying to two muons, using as reference model the production of H bosons. In Sec. X A the model considered for H production is described and the results are presented in Sec.X B.

A.H boson production

The production process of doubly charged Higgs bosons considered here is pair production via the exchange of a virtual Z=[63]. Other production mechanisms may con-tribute in addition but they depend on other model parame-ters such as the masses of the neutral and singly charged Higgs bosons and are therefore not included. Only H bosons decaying to muons with coupling values between 105 and 0.5 are considered to ensure a short lifetime (c < 10 m) and that the relative natural width, =M, is less than 1%. Doubly charged Higgs bosons couple to Higgs and electroweak gauge bosons and either left-handed or right-left-handed charged leptons, and are denoted HL or HR , respectively. While HLcouple both to the Z boson and to photons, HR bosons only couple to photons, i.e. coupling to any hypothetical right-handed gauge bosons is neglected, resulting in a 2.5 times smaller pair-production cross section for the latter.

Next-to-leading-order calculations of the H pair-production cross section via the Drell-Yan process are used [64]. Higher-order QCD corrections beyond the next-to-leading-order accuracy are expected to increase the cross section by about 5% but are neglected here. The uncertainty on the cross section is10% due to scale dependence in the NLO calculation, parton distribution function uncertainties, and neglected electroweak correc-tions [65].

B. Constraints onH bosons

The data are used to derive an upper limit on H pair production via the Drell-Yan process. For this purpose, counting experiments are performed in steps of 10 (20) GeV for mðÞ < 200 GeV (mðÞ  200 GeV) in a mass window of size 10% of the central mass, corresponding to about 3 times the experimental mass resolution.

The product of the acceptance and efficiency to detect a single Hboson is evaluated based on simulated samples. It is 46% at mðHÞ ¼ 100 GeV and increases to 57% at 300 GeV. Uncertainties on the acceptance arise from the parton distribution functions, the interpolation between H mass values, and the limited MC statistics. Adding these three uncertainties in quadrature, an overall accep-tance uncertainty of3:6% is obtained. The other system-atic uncertainties are propagated as described in Sec.VI.

This analysis aims to constrain the pair production (pp ! HþþH) process. In the analysis, however, like-sign muon pairs are counted, and two muon pairs per event can contribute. The cross section for pair production of H bosons, HH, is related to the number of reconstructed dimuon pairs, NðÞ, by

TABLE III. Upper limit at 95% C.L. on the tRtR production

cross section, 95ðtRtRÞ, for four Z0 mass values based on the

þþsearch with mðþþÞ > 200 GeV.

mðZ0Þ 95ðtRtRÞ [pb] Expected Observed 100 GeV 4:2þ2:30:9 3.7 150 GeV 3:3þ1:90:7 3.0 200 GeV 2:9þ1:60:6 2.6  1 TeV 2:5þ1:40:5 2.2 mass [GeV] ±± H 100 150 200 250 300 350 400 ) [fb] ± µ ± µ → ±± BR(H× ) −− H ++ H → (ppσ -1 10 1 10

Observed 95% C.L. upper limit Expected 95% C.L. upper limit

1σ ± Expected limit σ 2 ± Expected limit )=100% µ µ → L ), BR(H L H L H → (pp σ )=100% µ µ → R ), BR(H R H R H → (pp σ ATLAS

-1 Ldt = 1.6 fb = 7 TeV s

FIG. 2 (color online). Upper limit at 95% C.L. on the cross section times branching ratio for pair production of doubly charged Higgs bosons decaying to two muons. Superimposed is the predicted cross section for HLþþHL and HþþR HR

production assuming a branching ratio to muons of 100%. The bands on the predicted cross sections corresponds to the theo-retical uncertainty of 10%.

(8)

HH BRðH ! Þ ¼

NðÞ

2 A Ldt; (3) where A is the acceptance times efficiency to detect a single  pair with invariant mass within 10% of the considered H mass value. It was verified that for this process the efficiency for detecting a single pair is not affected by the presence of a second pair in the event. The cross-section limits are obtained using the same procedure as described in Sec. VIII. The expected and observed upper limits at 95% C.L. on the cross section times the branching ratio, ðpp ! HþþHÞ BRðH ! Þ, are shown in Fig. 2. The observed upper limit is 11 fb at mðHÞ ¼ 100 GeV and 1.7 fb at mðHÞ ¼ 400 GeV. The median expected upper limits based on the background expectation together with the 1 and 2 uncertainty bands are also shown. The results derived from data are consistent with the expecta-tion over the full mass range.

The cross-section limit is compared to the prediction for the pair-production cross section of HL and HRbosons, assuming a branching ratio for the dimuon decay of 100%. For this scenario, HL bosons are excluded for mðHLÞ < 355 GeV, while HR bosons are excluded for mðHRÞ < 251 GeV at 95% C.L. for the central value of the theoreti-cal prediction. The corresponding expected limits are 337 GeV and 264 GeV, respectively. Using a 10% lower value for the theoretical prediction (corresponding to the 1 uncertainty on the cross section), the data exclude mðHLÞ < 348 GeV and mðHR Þ < 248 GeV.

The observed and expected limits on the mass of doubly charged Higgs bosons are also determined as a function of the branching ratio to assuming the central value of the theoretical cross-section prediction. This is shown in Fig. 3 for HL and HR bosons, respectively. For ex-ample, assuming a branching ratio of 33% to muons, the respective lower mass limits are 244 GeV for HL and 209 GeV for HRbosons.

XI. CONCLUSIONS

An inclusive search for production of pairs of prompt like-sign muons has been presented using a data set corre-sponding to an integrated luminosity of 1:6 fb1recorded with the ATLAS detector at the LHC. The data agree with the background expectation and no sign of new physics has been found. The data are used to place model-independent upper limits on the cross section of new physics processes giving rise to like-sign dimuons ranging from 5.3 fb for mðÞ > 300 GeV to 58 fb for mðÞ > 15 GeV. In addition, constraints are placed on like-sign top-quark and doubly charged Higgs boson production. The 95% C.L. limit on the like-sign top-quark production cross section of 3.7 pb is more than 4 times more restrictive than previous results. The lower mass limit on doubly charged Higgs bosons with a 100% (33%) branching ratio to muons is 355 (244) GeV and 251 (209) GeV for H bosons coupling to left-handed and right-handed fermions, respectively.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We also thank Michael Spira for his help with some of the theoretical aspects of the analysis. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN,

) [GeV] L M(H 100 150 200 250 300 350 ) ± µ ± µ L BR(H 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ±± L M(H 100 150 200 250 300 350 ) ± µ ± µ → ±± L BR(H 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Observed 95% C.L. limit Expected 95% C.L. limit σ 1 ± Expected limit ATLAS

Ldt = 1.6 fb-1 = 7 TeV s ) [GeV] R M(H 100 120 140 160 180 200 220 240 260 280 300 ) ± µ ± µ → R BR(H 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ±± R M(H 100 120 140 160 180 200 220 240 260 280 300 ) ± µ ± µ ±± R BR(H 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Observed 95% C.L. limit Expected 95% C.L. limit 1σ ± Expected limit ATLAS

Ldt = 1.6 fb-1 = 7 TeV s

FIG. 3 (color online). Exclusion region at 95% C.L. of the Hmass as a function of the branching ratio to muon pairs, BRðH! Þ, for a) HL bosons and b) HR bosons. The shaded areas show the observed exclusion region, the solid lines show the

expected exclusion region, and the dashed lines show the1 variations of the expected exclusion region.

(9)

Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and

Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] R. M. Barnett, J. Gunion, and H. Haber,Phys. Lett. B 315, 349 (1993).

[2] J. Alwall, P. Schuster, and N. Toro, Phys. Rev. D 79, 075020 (2009).

[3] J. C. Pati and A. Salam,Phys. Rev. D 10, 275 (1974). [4] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566

(1975).

[5] G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975).

[6] T. Rizzo, Phys. Rev. D 25, 1355 (1982); 27, 657 (1983).

[7] J. E. Cieza Montalvo, N. V. Cortez, J. Sa Borges, and M. D. Tonasse, Nucl. Phys. B756, 1 (2006); B796, 422(E) (2008).

[8] H. Georgi and M. Machacek, Nucl. Phys. B262, 463 (1985).

[9] J. F. Gunion, R. Vega, and J. Wudka, Phys. Rev. D 42, 1673 (1990).

[10] N. Arkani-Hamed et al.,J. High Energy Phys. 08 (2002) 021.

[11] P. H. Frampton, P. Q. Hung, and M. Sher,Phys. Rep. 330, 263 (2000).

[12] S. Jung, H. Murayama, A. Pierce, and J. D. Wells,Phys. Rev. D 81, 015004 (2010).

[13] J. Cao, Z. Heng, L. Wu, and J. M. Yang,Phys. Rev. D 81, 014016 (2010).

[14] D. Choudhury, R. M. Godbole, S. D. Rindani, and P. Saha,

Phys. Rev. D 84, 014023 (2011).

[15] J. Cao, L. Wang, L. Wu, and J. M. Yang,Phys. Rev. D 84, 074001 (2011).

[16] B. Bhattacherjee, S. S. Biswal, and D. Ghosh,Phys. Rev. D 83, 091501 (2011).

[17] E. L. Berger, Q.-H. Cao, C.-R. Chen, C.-S. Li, and H. Zhang,Phys. Rev. Lett. 106, 201801 (2011).

[18] J. Aguilar-Saavedra and M. Perez-Victoria,Phys. Lett. B 701, 93 (2011).

[19] P. Ko, Y. Omura, and C. Yu, arXiv:1108.4005 [J. High Energy Phys. (to be published)].

[20] P. Ko, Y. Omura, and C. Yu,arXiv:1108.0350.

[21] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinatesðr; Þ are used in the transverse plane,  being the azimuthal angle

around the beam pipe. The pseudorapidity is defined in terms of the polar angle  as  ¼  lntanð=2Þ.

[22] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 10 (2011) 107.

[23] CDF Collaboration,Phys. Rev. Lett. 98, 221803 (2007). [24] CDF Collaboration,Phys. Rev. Lett. 107, 181801 (2011). [25] CDF Collaboration, CDF Public Note Report No. 10466. [26] S. Chatrchyan et al. (CMS Collaboration),J. High Energy

Phys. 08 (2011) 005.

[27] CDF Collaboration,Phys. Rev. Lett. 93, 221802 (2004). [28] D0 Collaboration,Phys. Rev. Lett. 101, 071803 (2008). [29] D0 Collaboration,Phys. Rev. Lett. 108, 021801 (2012). [30] ATLAS Collaboration,JINST 3, S08003 (2008). [31] ATLAS Collaboration,Eur. Phys. J. C 72, 1849 (2012). [32] G. Corcella et al.,J. High Energy Phys. 01 (2001) 010. [33] J. Alwall et al.,J. High Energy Phys. 06 (2011) 128. [34] T. Sjostrand, S. Mrenna, and P. Skands,J. High Energy

Phys. 05 (2006) 026.

[35] J. M. Campbell, R. K. Ellis, and C. Williams, J. High Energy Phys. 07 (2011) 018.

[36] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa,J. High Energy Phys. 07 (2003) 001. [37] S. Frixione and B. Webber, J. High Energy Phys. 06

(2002) 029.

[38] Q.-H. Cao, H. McKeen, J. L. Rosner, G. Shaughnessy, and C. E. M. Wagner,Phys. Rev. D 81, 114004 (2010). [39] J. A. Aguilar-Saavedra,Nucl. Phys. 843, 638 (2011). [40] V. Rentala, W. Shepherd, and S. Su, Phys. Rev. D 84,

035004 (2011).

[41] F. del Aguila, S. Bar-Shalom, A. Soni, and J. Wudka,

Phys. Lett. B 670, 399 (2009).

[42] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975).

[43] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky, and W. K. Tung,J. High Energy Phys. 07 (2002) 012. [44] P. M. Nadolsky et al. (CTEQ Collaboration),Phys. Rev. D

78, 013004 (2008).

[45] ATLAS Collaboration,Eur. Phys. J. C 70, 823 (2010). [46] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [47] R. Nicolaidou, L. Chevalier, S. Hassani, J. F. Laporte, E.

Le Menedeu, and A. Ouraou, J. Phys. Conf. Ser. 219, 032052 (2010).

[48] ATLAS Collaboration,Phys. Lett. B 707, 438 (2012). [49] ATLAS Collaboration,Eur. Phys. J. C 71, 1577 (2011).

(10)

[50] Theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffitransverse mass is defined as 2Emiss T pTðÞð1  cosð; EmissT ÞÞ q where Emiss T is the

missing transverse energy as explained in Ref. [51] and ð; Emiss

T Þ is the difference between the azimuthal

angles of the muon and Emiss T .

[51] ATLAS Collaboration,Eur. Phys. J. C 72, 1844 (2012). [52] ATLAS Collaboration, Report No.

ATLAS-CONF-2011-110, 2011 (unpublished).

[53] ATLAS Collaboration, Report No. ATLAS-CONF-2011-046, 2011 (unpublished).

[54] ATLAS Collaboration, Report No. ATLAS-CONF-2011-116, 2011 (unpublished).

[55] ATLAS Collaboration, Eur. Phys. J. C 71, 1630 (2011).

[56] A. Lazopoulos, T. McElmurry, K. Melnikov, and F. Petriello,Phys. Lett. B 666, 62 (2008).

[57] F. Petriello (private communication).

[58] B. Ja¨ger, C. Oleari, and D. Zeppenfeld,Phys. Rev. D 80, 034022 (2009).

[59] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt,

Eur. Phys. J. C 63, 189 (2009).

[60] J. Campbell, J. Huston, and W. J. Stirling,Rep. Prog. Phys. 70, 89 (2007).

[61] T. Junk, CDF note Report No. 8128, 2007 (unpublished). [62] J. Heinrich, CDF note Report No. 7587, 2005

(unpub-lished).

[63] J. F. Gunion, J. Grifols, A. Mendez, B. Kayser, and F. Olness,Phys. Rev. D 40, 1546 (1989); N. G. Deshpande, J. F. Gunion, and B. Kayser,Phys. Rev. D 44, 837 (1991). [64] M. Mu¨hlleitner and M. Spira,Phys. Rev. D 68, 117701

(2003).

[65] M. Spira (private communication).

G. Aad,47B. Abbott,110J. Abdallah,11A. A. Abdelalim,48A. Abdesselam,117O. Abdinov,10B. Abi,111M. Abolins,87 O. S. AbouZeid,157H. Abramowicz,152H. Abreu,114E. Acerbi,88a,88bB. S. Acharya,163a,163bL. Adamczyk,37 D. L. Adams,24T. N. Addy,55J. Adelman,174M. Aderholz,98S. Adomeit,97P. Adragna,74T. Adye,128S. Aefsky,22

J. A. Aguilar-Saavedra,123b,bM. Aharrouche,80S. P. Ahlen,21F. Ahles,47A. Ahmad,147M. Ahsan,40 G. Aielli,132a,1323bT. Akdogan,18aT. P. A. A˚ kesson,78G. Akimoto,154A. V. Akimov,93A. Akiyama,66M. S. Alam,1

M. A. Alam,75J. Albert,168S. Albrand,54M. Aleksa,29I. N. Aleksandrov,64F. Alessandria,88aC. Alexa,25a G. Alexander,152G. Alexandre,48T. Alexopoulos,9M. Alhroob,20M. Aliev,15G. Alimonti,88aJ. Alison,119 M. Aliyev,10P. P. Allport,72S. E. Allwood-Spiers,52J. Almond,81A. Aloisio,101a,101bR. Alon,170A. Alonso,78

B. Alvarez Gonzalez,87M. G. Alviggi,101a,101bK. Amako,65P. Amaral,29C. Amelung,22V. V. Ammosov,127 A. Amorim,123a,cG. Amoro´s,166N. Amram,152C. Anastopoulos,29L. S. Ancu,16N. Andari,114T. Andeen,34

C. F. Anders,20G. Anders,57aK. J. Anderson,30A. Andreazza,88a,88bV. Andrei,57aM-L. Andrieux,54 X. S. Anduaga,69A. Angerami,34F. Anghinolfi,29A. Anisenkov,106N. Anjos,123aA. Annovi,46A. Antonaki,8 M. Antonelli,46A. Antonov,95J. Antos,143bF. Anulli,131aS. Aoun,82L. Aperio Bella,4R. Apolle,117,dG. Arabidze,87

I. Aracena,142Y. Arai,65A. T. H. Arce,44J. P. Archambault,28S. Arfaoui,82J-F. Arguin,14E. Arik,18a,aM. Arik,18a A. J. Armbruster,86O. Arnaez,80A. Artamonov,94G. Artoni,131a,131bD. Arutinov,20S. Asai,154R. Asfandiyarov,171

S. Ask,27B. A˚ sman,145a,145bL. Asquith,5K. Assamagan,24A. Astbury,168A. Astvatsatourov,51B. Aubert,4 E. Auge,114K. Augsten,126M. Aurousseau,144aG. Avolio,162R. Avramidou,9D. Axen,167C. Ay,53G. Azuelos,92,e

Y. Azuma,154M. A. Baak,29G. Baccaglioni,88aC. Bacci,133a,133bA. M. Bach,14H. Bachacou,135K. Bachas,29 G. Bachy,29M. Backes,48M. Backhaus,20E. Badescu,25aP. Bagnaia,131a,131bS. Bahinipati,2Y. Bai,32a D. C. Bailey,157T. Bain,157J. T. Baines,128O. K. Baker,174M. D. Baker,24S. Baker,76E. Banas,38P. Banerjee,92 Sw. Banerjee,171D. Banfi,29A. Bangert,149V. Bansal,168H. S. Bansil,17L. Barak,170S. P. Baranov,93A. Barashkou,64 A. Barbaro Galtieri,14T. Barber,47E. L. Barberio,85D. Barberis,49a,49bM. Barbero,20D. Y. Bardin,64T. Barillari,98 M. Barisonzi,173T. Barklow,142N. Barlow,27B. M. Barnett,128R. M. Barnett,14A. Baroncelli,133aG. Barone,48

A. J. Barr,117F. Barreiro,79J. Barreiro Guimara˜es da Costa,56R. Bartoldus,142A. E. Barton,70V. Bartsch,148 R. L. Bates,52L. Batkova,143aJ. R. Batley,27A. Battaglia,16M. Battistin,29F. Bauer,135H. S. Bawa,142,fS. Beale,97

B. Beare,157T. Beau,77P. H. Beauchemin,160R. Beccherle,49aP. Bechtle,20H. P. Beck,16S. Becker,97 M. Beckingham,137K. H. Becks,173A. J. Beddall,18cA. Beddall,18cS. Bedikian,174V. A. Bednyakov,64C. P. Bee,82

M. Begel,24S. Behar Harpaz,151P. K. Behera,62M. Beimforde,98C. Belanger-Champagne,84P. J. Bell,48 W. H. Bell,48G. Bella,152L. Bellagamba,19aF. Bellina,29M. Bellomo,29A. Belloni,56O. Beloborodova,106 K. Belotskiy,95O. Beltramello,29S. Ben Ami,151O. Benary,152D. Benchekroun,134aC. Benchouk,82M. Bendel,80 N. Benekos,164Y. Benhammou,152E. Benhar Noccioli,48J. A. Benitez Garcia,158bD. P. Benjamin,44M. Benoit,114

J. R. Bensinger,22K. Benslama,129S. Bentvelsen,104D. Berge,29E. Bergeaas Kuutmann,41N. Berger,4 F. Berghaus,168E. Berglund,104J. Beringer,14P. Bernat,76R. Bernhard,47C. Bernius,24T. Berry,75C. Bertella,82 A. Bertin,19a,19bF. Bertinelli,29F. Bertolucci,121a,121bM. I. Besana,88a,88bN. Besson,135S. Bethke,98W. Bhimji,45 R. M. Bianchi,29M. Bianco,71a,71bO. Biebel,97S. P. Bieniek,76K. Bierwagen,53J. Biesiada,14M. Biglietti,133a,133b

(11)

H. Bilokon,46M. Bindi,19a,19bS. Binet,114A. Bingul,18cC. Bini,131a,131bC. Biscarat,176U. Bitenc,47K. M. Black,21 R. E. Blair,5J.-B. Blanchard,114G. Blanchot,29T. Blazek,143aC. Blocker,22J. Blocki,38A. Blondel,48W. Blum,80

U. Blumenschein,53G. J. Bobbink,104V. B. Bobrovnikov,106S. S. Bocchetta,78A. Bocci,44C. R. Boddy,117 M. Boehler,41J. Boek,173N. Boelaert,35S. Bo¨ser,76J. A. Bogaerts,29A. Bogdanchikov,106A. Bogouch,89,a

C. Bohm,145aV. Boisvert,75T. Bold,37V. Boldea,25aN. M. Bolnet,135M. Bona,74V. G. Bondarenko,95 M. Bondioli,162M. Boonekamp,135G. Boorman,75C. N. Booth,138S. Bordoni,77C. Borer,16A. Borisov,127 G. Borissov,70I. Borjanovic,12aS. Borroni,86K. Bos,104D. Boscherini,19aM. Bosman,11H. Boterenbrood,104 D. Botterill,128J. Bouchami,92J. Boudreau,122E. V. Bouhova-Thacker,70D. Boumediene,33C. Bourdarios,114 N. Bousson,82A. Boveia,30J. Boyd,29I. R. Boyko,64N. I. Bozhko,127I. Bozovic-Jelisavcic,12bJ. Bracinik,17 A. Braem,29P. Branchini,133aG. W. Brandenburg,56A. Brandt,7G. Brandt,117O. Brandt,53U. Bratzler,155B. Brau,83 J. E. Brau,113H. M. Braun,173B. Brelier,157J. Bremer,29R. Brenner,165S. Bressler,170D. Breton,114D. Britton,52 F. M. Brochu,27I. Brock,20R. Brock,87T. J. Brodbeck,70E. Brodet,152F. Broggi,88aC. Bromberg,87J. Bronner,98

G. Brooijmans,34W. K. Brooks,31bG. Brown,81H. Brown,7P. A. Bruckman de Renstrom,38D. Bruncko,143b R. Bruneliere,47S. Brunet,60A. Bruni,19aG. Bruni,19aM. Bruschi,19aT. Buanes,13Q. Buat,54F. Bucci,48

J. Buchanan,117N. J. Buchanan,2P. Buchholz,140R. M. Buckingham,117A. G. Buckley,45S. I. Buda,25a I. A. Budagov,64B. Budick,107V. Bu¨scher,80L. Bugge,116O. Bulekov,95M. Bunse,42T. Buran,116H. Burckhart,29

S. Burdin,72T. Burgess,13S. Burke,128E. Busato,33P. Bussey,52C. P. Buszello,165F. Butin,29B. Butler,142 J. M. Butler,21C. M. Buttar,52J. M. Butterworth,76W. Buttinger,27S. Cabrera Urba´n,166D. Caforio,19a,19bO. Cakir,3a P. Calafiura,14G. Calderini,77P. Calfayan,97R. Calkins,105L. P. Caloba,23aR. Caloi,131a,131bD. Calvet,33S. Calvet,33 R. Camacho Toro,33P. Camarri,132a,1323bM. Cambiaghi,118a,118bD. Cameron,116L. M. Caminada,14S. Campana,29

M. Campanelli,76V. Canale,101a,101bF. Canelli,30,gA. Canepa,158aJ. Cantero,79L. Capasso,101a,101b M. D. M. Capeans Garrido,29I. Caprini,25aM. Caprini,25aD. Capriotti,98M. Capua,36a,36bR. Caputo,80 R. Cardarelli,132aT. Carli,29G. Carlino,101aL. Carminati,88a,88bS. Caron,47G. D. Carrillo Montoya,171 A. A. Carter,74J. R. Carter,27J. Carvalho,123a,hD. Casadei,107M. P. Casado,11M. Cascella,121a,121bC. Caso,49a,49b,a

A. M. Castaneda Hernandez,171E. Castaneda-Miranda,171V. Castillo Gimenez,166N. F. Castro,123aG. Cataldi,71a F. Cataneo,29A. Catinaccio,29J. R. Catmore,70A. Cattai,29G. Cattani,132a,1323bS. Caughron,87D. Cauz,163a,163c

P. Cavalleri,77D. Cavalli,88aM. Cavalli-Sforza,11V. Cavasinni,121a,121bF. Ceradini,133a,133bA. S. Cerqueira,23b A. Cerri,29L. Cerrito,74F. Cerutti,46S. A. Cetin,18bF. Cevenini,101a,101bA. Chafaq,134aD. Chakraborty,105K. Chan,2

B. Chapleau,84J. D. Chapman,27J. W. Chapman,86E. Chareyre,77D. G. Charlton,17V. Chavda,81

C. A. Chavez Barajas,29S. Cheatham,84S. Chekanov,5S. V. Chekulaev,158aG. A. Chelkov,64M. A. Chelstowska,103 C. Chen,63H. Chen,24S. Chen,32cT. Chen,32cX. Chen,171S. Cheng,32aA. Cheplakov,64V. F. Chepurnov,64 R. Cherkaoui El Moursli,134eV. Chernyatin,24E. Cheu,6S. L. Cheung,157L. Chevalier,135G. Chiefari,101a,101b

L. Chikovani,50aJ. T. Childers,57aA. Chilingarov,70G. Chiodini,71aM. V. Chizhov,64G. Choudalakis,30 S. Chouridou,136I. A. Christidi,76A. Christov,47D. Chromek-Burckhart,29M. L. Chu,150J. Chudoba,124 G. Ciapetti,131a,131bK. Ciba,37A. K. Ciftci,3aR. Ciftci,3aD. Cinca,33V. Cindro,73M. D. Ciobotaru,162C. Ciocca,19a A. Ciocio,14M. Cirilli,86M. Ciubancan,25aA. Clark,48P. J. Clark,45W. Cleland,122J. C. Clemens,82B. Clement,54 C. Clement,145a,145bR. W. Clifft,128Y. Coadou,82M. Cobal,163a,163cA. Coccaro,49a,49bJ. Cochran,63P. Coe,117

J. G. Cogan,142J. Coggeshall,164E. Cogneras,176J. Colas,4A. P. Colijn,104C. Collard,114N. J. Collins,17 C. Collins-Tooth,52J. Collot,54G. Colon,83P. Conde Muin˜o,123aE. Coniavitis,117M. C. Conidi,11M. Consonni,103

V. Consorti,47S. Constantinescu,25aC. Conta,118a,118bF. Conventi,101a,iJ. Cook,29M. Cooke,14B. D. Cooper,76 A. M. Cooper-Sarkar,117K. Copic,14T. Cornelissen,173M. Corradi,19aF. Corriveau,84,jA. Cortes-Gonzalez,164 G. Cortiana,98G. Costa,88aM. J. Costa,166D. Costanzo,138T. Costin,30D. Coˆte´,29L. Courneyea,168G. Cowan,75 C. Cowden,27B. E. Cox,81K. Cranmer,107F. Crescioli,121a,121bM. Cristinziani,20G. Crosetti,36a,36bR. Crupi,71a,71b

S. Cre´pe´-Renaudin,54C.-M. Cuciuc,25aC. Cuenca Almenar,174T. Cuhadar Donszelmann,138M. Curatolo,46 C. J. Curtis,17C. Cuthbert,149P. Cwetanski,60H. Czirr,140P. Czodrowski,43Z. Czyczula,174S. D’Auria,52 M. D’Onofrio,72A. D’Orazio,131a,131bP. V. M. Da Silva,23aC. Da Via,81W. Dabrowski,37T. Dai,86C. Dallapiccola,83

M. Dam,35M. Dameri,49a,49bD. S. Damiani,136H. O. Danielsson,29D. Dannheim,98V. Dao,48G. Darbo,49a G. L. Darlea,25bC. Daum,104W. Davey,20T. Davidek,125N. Davidson,85R. Davidson,70E. Davies,117,dM. Davies,92

A. R. Davison,76Y. Davygora,57aE. Dawe,141I. Dawson,138J. W. Dawson,5,aR. K. Daya,22K. De,7 R. de Asmundis,101aS. De Castro,19a,19bP. E. De Castro Faria Salgado,24S. De Cecco,77J. de Graat,97 N. De Groot,103P. de Jong,104C. De La Taille,114H. De la Torre,79B. De Lotto,163a,163cL. de Mora,70L. De Nooij,104

(12)

D. De Pedis,131aA. De Salvo,131aU. De Sanctis,163a,163cA. De Santo,148J. B. De Vivie De Regie,114S. Dean,76 W. J. Dearnaley,70R. Debbe,24C. Debenedetti,45D. V. Dedovich,64J. Degenhardt,119M. Dehchar,117 C. Del Papa,163a,163cJ. Del Peso,79T. Del Prete,121a,121bT. Delemontex,54M. Deliyergiyev,73A. Dell’Acqua,29

L. Dell’Asta,21M. Della Pietra,101a,iD. della Volpe,101a,101bM. Delmastro,4N. Delruelle,29P. A. Delsart,54 C. Deluca,147S. Demers,174M. Demichev,64B. Demirkoz,11,kJ. Deng,162S. P. Denisov,127D. Derendarz,38 J. E. Derkaoui,134dF. Derue,77P. Dervan,72K. Desch,20E. Devetak,147P. O. Deviveiros,104A. Dewhurst,128 B. DeWilde,147S. Dhaliwal,157R. Dhullipudi,24,lA. Di Ciaccio,132a,1323bL. Di Ciaccio,4A. Di Girolamo,29 B. Di Girolamo,29S. Di Luise,133a,133bA. Di Mattia,171B. Di Micco,29R. Di Nardo,46A. Di Simone,132a,1323b

R. Di Sipio,19a,19bM. A. Diaz,31aF. Diblen,18cE. B. Diehl,86J. Dietrich,41T. A. Dietzsch,57aS. Diglio,85 K. Dindar Yagci,39J. Dingfelder,20C. Dionisi,131a,131bP. Dita,25aS. Dita,25aF. Dittus,29F. Djama,82T. Djobava,50b

M. A. B. do Vale,23cA. Do Valle Wemans,123aT. K. O. Doan,4M. Dobbs,84R. Dobinson,29,aD. Dobos,29 E. Dobson,29,mM. Dobson,162J. Dodd,34C. Doglioni,117T. Doherty,52Y. Doi,65,aJ. Dolejsi,125I. Dolenc,73 Z. Dolezal,125B. A. Dolgoshein,95,aT. Dohmae,154M. Donadelli,23dM. Donega,119J. Donini,33J. Dopke,29 A. Doria,101aA. Dos Anjos,171M. Dosil,11A. Dotti,121a,121bM. T. Dova,69J. D. Dowell,17A. D. Doxiadis,104 A. T. Doyle,52Z. Drasal,125J. Drees,173N. Dressnandt,119H. Drevermann,29C. Driouichi,35M. Dris,9J. Dubbert,98 S. Dube,14E. Duchovni,170G. Duckeck,97A. Dudarev,29F. Dudziak,63M. Du¨hrssen,29I. P. Duerdoth,81L. Duflot,114

M-A. Dufour,84M. Dunford,29H. Duran Yildiz,3bR. Duxfield,138M. Dwuznik,37F. Dydak,29M. Du¨ren,51 W. L. Ebenstein,44J. Ebke,97S. Eckweiler,80K. Edmonds,80C. A. Edwards,75N. C. Edwards,52W. Ehrenfeld,41 T. Ehrich,98T. Eifert,29G. Eigen,13K. Einsweiler,14E. Eisenhandler,74T. Ekelof,165M. El Kacimi,134cM. Ellert,165 S. Elles,4F. Ellinghaus,80K. Ellis,74N. Ellis,29J. Elmsheuser,97M. Elsing,29D. Emeliyanov,128R. Engelmann,147 A. Engl,97B. Epp,61A. Eppig,86J. Erdmann,53A. Ereditato,16D. Eriksson,145aJ. Ernst,1M. Ernst,24J. Ernwein,135 D. Errede,164S. Errede,164E. Ertel,80M. Escalier,114C. Escobar,122X. Espinal Curull,11B. Esposito,46F. Etienne,82 A. I. Etienvre,135E. Etzion,152D. Evangelakou,53H. Evans,60L. Fabbri,19a,19bC. Fabre,29R. M. Fakhrutdinov,127

S. Falciano,131aY. Fang,171M. Fanti,88a,88bA. Farbin,7A. Farilla,133aJ. Farley,147T. Farooque,157 S. M. Farrington,117P. Farthouat,29P. Fassnacht,29D. Fassouliotis,8B. Fatholahzadeh,157A. Favareto,88a,88b L. Fayard,114S. Fazio,36a,36bR. Febbraro,33P. Federic,143aO. L. Fedin,120W. Fedorko,87M. Fehling-Kaschek,47 L. Feligioni,82C. Feng,32dE. J. Feng,30A. B. Fenyuk,127J. Ferencei,143bJ. Ferland,92W. Fernando,108S. Ferrag,52

J. Ferrando,52V. Ferrara,41A. Ferrari,165P. Ferrari,104R. Ferrari,118aA. Ferrer,166M. L. Ferrer,46D. Ferrere,48 C. Ferretti,86A. Ferretto Parodi,49a,49bM. Fiascaris,30F. Fiedler,80A. Filipcˇicˇ,73A. Filippas,9F. Filthaut,103 M. Fincke-Keeler,168M. C. N. Fiolhais,123a,hL. Fiorini,166A. Firan,39P. Fischer,20M. J. Fisher,108M. Flechl,47

I. Fleck,140J. Fleckner,80P. Fleischmann,172S. Fleischmann,173T. Flick,173L. R. Flores Castillo,171 M. J. Flowerdew,98M. Fokitis,9T. Fonseca Martin,16D. A. Forbush,137A. Formica,135A. Forti,81D. Fortin,158a

J. M. Foster,81D. Fournier,114A. Foussat,29A. J. Fowler,44K. Fowler,136H. Fox,70P. Francavilla,121a,121b S. Franchino,118a,118bD. Francis,29T. Frank,170M. Franklin,56S. Franz,29M. Fraternali,118a,118bS. Fratina,119 S. T. French,27F. Friedrich,43R. Froeschl,29D. Froidevaux,29J. A. Frost,27C. Fukunaga,155E. Fullana Torregrosa,29 J. Fuster,166C. Gabaldon,29O. Gabizon,170T. Gadfort,24S. Gadomski,48G. Gagliardi,49a,49bP. Gagnon,60C. Galea,97

E. J. Gallas,117V. Gallo,16B. J. Gallop,128P. Gallus,124K. K. Gan,108Y. S. Gao,142,fV. A. Gapienko,127 A. Gaponenko,14F. Garberson,174M. Garcia-Sciveres,14C. Garcı´a,166J. E. Garcı´a Navarro,166R. W. Gardner,30 N. Garelli,29H. Garitaonandia,104V. Garonne,29J. Garvey,17C. Gatti,46G. Gaudio,118aO. Gaumer,48B. Gaur,140 L. Gauthier,135I. L. Gavrilenko,93C. Gay,167G. Gaycken,20J-C. Gayde,29E. N. Gazis,9P. Ge,32dC. N. P. Gee,128 D. A. A. Geerts,104Ch. Geich-Gimbel,20K. Gellerstedt,145a,145bC. Gemme,49aA. Gemmell,52M. H. Genest,97 S. Gentile,131a,131bM. George,53S. George,75P. Gerlach,173A. Gershon,152C. Geweniger,57aH. Ghazlane,134b N. Ghodbane,33B. Giacobbe,19aS. Giagu,131a,131bV. Giakoumopoulou,8F. Gianotti,29B. Gibbard,24A. Gibson,157 S. M. Gibson,29L. M. Gilbert,117V. Gilewsky,90D. Gillberg,28A. R. Gillman,128D. M. Gingrich,2,eJ. Ginzburg,152 N. Giokaris,8M. P. Giordani,163cR. Giordano,101a,101bF. M. Giorgi,15P. Giovannini,98P. F. Giraud,135D. Giugni,88a M. Giunta,92P. Giusti,19aB. K. Gjelsten,116L. K. Gladilin,96C. Glasman,79J. Glatzer,47A. Glazov,41G. L. Glonti,64

J. R. Goddard,74J. Godfrey,141J. Godlewski,29M. Goebel,41T. Go¨pfert,43C. Goeringer,80C. Go¨ssling,42 T. Go¨ttfert,98S. Goldfarb,86T. Golling,174S. N. Golovnia,127A. Gomes,123a,cL. S. Gomez Fajardo,41R. Gonc¸alo,75

J. Goncalves Pinto Firmino Da Costa,41L. Gonella,20A. Gonidec,29S. Gonzalez,171S. Gonza´lez de la Hoz,166 G. Gonzalez Parra,11M. L. Gonzalez Silva,26S. Gonzalez-Sevilla,48J. J. Goodson,147L. Goossens,29 P. A. Gorbounov,94H. A. Gordon,24I. Gorelov,102G. Gorfine,173B. Gorini,29E. Gorini,71a,71bA. Gorisˇek,73

(13)

E. Gornicki,38S. A. Gorokhov,127V. N. Goryachev,127B. Gosdzik,41M. Gosselink,104M. I. Gostkin,64 I. Gough Eschrich,162M. Gouighri,134aD. Goujdami,134cM. P. Goulette,48A. G. Goussiou,137C. Goy,4 S. Gozpinar,22I. Grabowska-Bold,37P. Grafstro¨m,29K-J. Grahn,41F. Grancagnolo,71aS. Grancagnolo,15 V. Grassi,147V. Gratchev,120N. Grau,34H. M. Gray,29J. A. Gray,147E. Graziani,133aO. G. Grebenyuk,120 T. Greenshaw,72Z. D. Greenwood,24,lK. Gregersen,35I. M. Gregor,41P. Grenier,142J. Griffiths,137N. Grigalashvili,64

A. A. Grillo,136S. Grinstein,11Y. V. Grishkevich,96J.-F. Grivaz,114M. Groh,98E. Gross,170J. Grosse-Knetter,53 J. Groth-Jensen,170K. Grybel,140V. J. Guarino,5D. Guest,174C. Guicheney,33A. Guida,71a,71bS. Guindon,53 H. Guler,84,nJ. Gunther,124B. Guo,157J. Guo,34A. Gupta,30Y. Gusakov,64V. N. Gushchin,127A. Gutierrez,92

P. Gutierrez,110N. Guttman,152O. Gutzwiller,171C. Guyot,135C. Gwenlan,117C. B. Gwilliam,72A. Haas,142 S. Haas,29C. Haber,14R. Hackenburg,24H. K. Hadavand,39D. R. Hadley,17P. Haefner,98F. Hahn,29S. Haider,29

Z. Hajduk,38H. Hakobyan,175J. Haller,53K. Hamacher,173P. Hamal,112M. Hamer,53A. Hamilton,144b S. Hamilton,160H. Han,32aL. Han,32bK. Hanagaki,115K. Hanawa,159M. Hance,14C. Handel,80P. Hanke,57a

J. R. Hansen,35J. B. Hansen,35J. D. Hansen,35P. H. Hansen,35P. Hansson,142K. Hara,159G. A. Hare,136 T. Harenberg,173S. Harkusha,89D. Harper,86R. D. Harrington,45O. M. Harris,137K. Harrison,17J. Hartert,47 F. Hartjes,104T. Haruyama,65A. Harvey,55S. Hasegawa,100Y. Hasegawa,139S. Hassani,135M. Hatch,29D. Hauff,98

S. Haug,16M. Hauschild,29R. Hauser,87M. Havranek,20B. M. Hawes,117C. M. Hawkes,17R. J. Hawkings,29 A. D. Hawkins,78D. Hawkins,162T. Hayakawa,66T. Hayashi,159D. Hayden,75H. S. Hayward,72S. J. Haywood,128

E. Hazen,21M. He,32dS. J. Head,17V. Hedberg,78L. Heelan,7S. Heim,87B. Heinemann,14S. Heisterkamp,35 L. Helary,4C. Heller,97M. Heller,29S. Hellman,145a,145bD. Hellmich,20C. Helsens,11R. C. W. Henderson,70 M. Henke,57aA. Henrichs,53A. M. Henriques Correia,29S. Henrot-Versille,114F. Henry-Couannier,82C. Hensel,53

T. Henß,173C. M. Hernandez,7Y. Herna´ndez Jime´nez,166R. Herrberg,15A. D. Hershenhorn,151G. Herten,47 R. Hertenberger,97L. Hervas,29N. P. Hessey,104E. Higo´n-Rodriguez,166D. Hill,5,aJ. C. Hill,27N. Hill,5 K. H. Hiller,41S. Hillert,20S. J. Hillier,17I. Hinchliffe,14E. Hines,119M. Hirose,115F. Hirsch,42D. Hirschbuehl,173

J. Hobbs,147N. Hod,152M. C. Hodgkinson,138P. Hodgson,138A. Hoecker,29M. R. Hoeferkamp,102J. Hoffman,39 D. Hoffmann,82M. Hohlfeld,80M. Holder,140S. O. Holmgren,145aT. Holy,126J. L. Holzbauer,87Y. Homma,66 T. M. Hong,119L. Hooft van Huysduynen,107T. Horazdovsky,126C. Horn,142S. Horner,47J-Y. Hostachy,54S. Hou,150

M. A. Houlden,72A. Hoummada,134aJ. Howarth,81D. F. Howell,117I. Hristova,15J. Hrivnac,114I. Hruska,124 T. Hryn’ova,4P. J. Hsu,80S.-C. Hsu,14G. S. Huang,110Z. Hubacek,126F. Hubaut,82F. Huegging,20A. Huettmann,41

T. B. Huffman,117E. W. Hughes,34G. Hughes,70R. E. Hughes-Jones,81M. Huhtinen,29P. Hurst,56M. Hurwitz,14 U. Husemann,41N. Huseynov,64,oJ. Huston,87J. Huth,56G. Iacobucci,48G. Iakovidis,9M. Ibbotson,81 I. Ibragimov,140R. Ichimiya,66L. Iconomidou-Fayard,114J. Idarraga,114P. Iengo,101a,101bO. Igonkina,104

Y. Ikegami,65M. Ikeno,65Y. Ilchenko,39D. Iliadis,153N. Ilic,157D. Imbault,77M. Imori,154T. Ince,20 J. Inigo-Golfin,29P. Ioannou,8M. Iodice,133aV. Ippolito,131a,131bA. Irles Quiles,166C. Isaksson,165A. Ishikawa,66 M. Ishino,67R. Ishmukhametov,39C. Issever,117S. Istin,18aA. V. Ivashin,127W. Iwanski,38H. Iwasaki,65J. M. Izen,40 V. Izzo,101aB. Jackson,119J. N. Jackson,72P. Jackson,142M. R. Jaekel,29V. Jain,60K. Jakobs,47S. Jakobsen,35 J. Jakubek,126D. K. Jana,110E. Jankowski,157E. Jansen,76H. Jansen,29A. Jantsch,98M. Janus,20G. Jarlskog,78 L. Jeanty,56K. Jelen,37I. Jen-La Plante,30P. Jenni,29A. Jeremie,4P. Jezˇ,35S. Je´ze´quel,4M. K. Jha,19aH. Ji,171W. Ji,80 J. Jia,147Y. Jiang,32bM. Jimenez Belenguer,41G. Jin,32bS. Jin,32aO. Jinnouchi,156M. D. Joergensen,35D. Joffe,39

L. G. Johansen,13M. Johansen,145a,145bK. E. Johansson,145aP. Johansson,138S. Johnert,41K. A. Johns,6 K. Jon-And,145a,145bG. Jones,81R. W. L. Jones,70T. W. Jones,76T. J. Jones,72O. Jonsson,29C. Joram,29 P. M. Jorge,123aJ. Joseph,14T. Jovin,12bX. Ju,171C. A. Jung,42R. M. Jungst,29V. Juranek,124P. Jussel,61 A. Juste Rozas,11V. V. Kabachenko,127S. Kabana,16M. Kaci,166A. Kaczmarska,38P. Kadlecik,35M. Kado,114

H. Kagan,108M. Kagan,56S. Kaiser,98E. Kajomovitz,151S. Kalinin,173L. V. Kalinovskaya,64S. Kama,39 N. Kanaya,154M. Kaneda,29S. Kaneti,27T. Kanno,156V. A. Kantserov,95J. Kanzaki,65B. Kaplan,174A. Kapliy,30

J. Kaplon,29D. Kar,43M. Karagoz,117M. Karnevskiy,41K. Karr,5V. Kartvelishvili,70A. N. Karyukhin,127 L. Kashif,171G. Kasieczka,57bA. Kasmi,39R. D. Kass,108A. Kastanas,13M. Kataoka,4Y. Kataoka,154E. Katsoufis,9

J. Katzy,41V. Kaushik,6K. Kawagoe,66T. Kawamoto,154G. Kawamura,80M. S. Kayl,104V. A. Kazanin,106 M. Y. Kazarinov,64R. Keeler,168R. Kehoe,39M. Keil,53G. D. Kekelidze,64J. Kennedy,97C. J. Kenney,142

M. Kenyon,52O. Kepka,124N. Kerschen,29B. P. Kersˇevan,73S. Kersten,173K. Kessoku,154J. Keung,157 M. Khakzad,28F. Khalil-zada,10H. Khandanyan,164A. Khanov,111D. Kharchenko,64A. Khodinov,95 A. G. Kholodenko,127A. Khomich,57aT. J. Khoo,27G. Khoriauli,20A. Khoroshilov,173N. Khovanskiy,64

(14)

V. Khovanskiy,94E. Khramov,64J. Khubua,50bH. Kim,145a,145bM. S. Kim,2P. C. Kim,142S. H. Kim,159 N. Kimura,169O. Kind,15B. T. King,72M. King,66R. S. B. King,117J. Kirk,128L. E. Kirsch,22A. E. Kiryunin,98

T. Kishimoto,66D. Kisielewska,37T. Kittelmann,122A. M. Kiver,127E. Kladiva,143bJ. Klaiber-Lodewigs,42 M. Klein,72U. Klein,72K. Kleinknecht,80M. Klemetti,84A. Klier,170P. Klimek,145a,145bA. Klimentov,24 R. Klingenberg,42E. B. Klinkby,35T. Klioutchnikova,29P. F. Klok,103S. Klous,104E.-E. Kluge,57aT. Kluge,72 P. Kluit,104S. Kluth,98N. S. Knecht,157E. Kneringer,61J. Knobloch,29E. B. F. G. Knoops,82A. Knue,53B. R. Ko,44

T. Kobayashi,154M. Kobel,43M. Kocian,142P. Kodys,125K. Ko¨neke,29A. C. Ko¨nig,103S. Koenig,80L. Ko¨pke,80 F. Koetsveld,103P. Koevesarki,20T. Koffas,28E. Koffeman,104L. A. Kogan,117F. Kohn,53Z. Kohout,126T. Kohriki,65

T. Koi,142T. Kokott,20G. M. Kolachev,106H. Kolanoski,15V. Kolesnikov,64I. Koletsou,88aJ. Koll,87D. Kollar,29 M. Kollefrath,47S. D. Kolya,81A. A. Komar,93Y. Komori,154T. Kondo,65T. Kono,41,pA. I. Kononov,47 R. Konoplich,107,qN. Konstantinidis,76A. Kootz,173S. Koperny,37K. Korcyl,38K. Kordas,153V. Koreshev,127

A. Korn,117A. Korol,106I. Korolkov,11E. V. Korolkova,138V. A. Korotkov,127O. Kortner,98S. Kortner,98 V. V. Kostyukhin,20M. J. Kotama¨ki,29S. Kotov,98V. M. Kotov,64A. Kotwal,44C. Kourkoumelis,8V. Kouskoura,153

A. Koutsman,158aR. Kowalewski,168T. Z. Kowalski,37W. Kozanecki,135A. S. Kozhin,127V. Kral,126 V. A. Kramarenko,96G. Kramberger,73M. W. Krasny,77A. Krasznahorkay,107J. Kraus,87J. K. Kraus,20A. Kreisel,152 F. Krejci,126J. Kretzschmar,72N. Krieger,53P. Krieger,157K. Kroeninger,53H. Kroha,98J. Kroll,119J. Kroseberg,20 J. Krstic,12aU. Kruchonak,64H. Kru¨ger,20T. Kruker,16N. Krumnack,63Z. V. Krumshteyn,64A. Kruth,20T. Kubota,85

S. Kuehn,47A. Kugel,57cT. Kuhl,41V. Kukhtin,64Y. Kulchitsky,89S. Kuleshov,31bC. Kummer,97M. Kuna,77 N. Kundu,117J. Kunkle,119A. Kupco,124H. Kurashige,66M. Kurata,159Y. A. Kurochkin,89V. Kus,124 E. S. Kuwertz,146M. Kuze,156J. Kvita,141R. Kwee,15A. La Rosa,48L. La Rotonda,36a,36bL. Labarga,79J. Labbe,4

S. Lablak,134aC. Lacasta,166F. Lacava,131a,131bH. Lacker,15D. Lacour,77V. R. Lacuesta,166E. Ladygin,64 R. Lafaye,4B. Laforge,77T. Lagouri,79S. Lai,47E. Laisne,54M. Lamanna,29C. L. Lampen,6W. Lampl,6 E. Lancon,135U. Landgraf,47M. P. J. Landon,74H. Landsman,151J. L. Lane,81C. Lange,41A. J. Lankford,162 F. Lanni,24K. Lantzsch,173S. Laplace,77C. Lapoire,20J. F. Laporte,135T. Lari,88aA. V. Larionov,127A. Larner,117

C. Lasseur,29M. Lassnig,29P. Laurelli,46W. Lavrijsen,14P. Laycock,72A. B. Lazarev,64O. Le Dortz,77 E. Le Guirriec,82C. Le Maner,157E. Le Menedeu,9C. Lebel,92T. LeCompte,5F. Ledroit-Guillon,54H. Lee,104 J. S. H. Lee,115S. C. Lee,150L. Lee,174M. Lefebvre,168M. Legendre,135A. Leger,48B. C. LeGeyt,119F. Legger,97

C. Leggett,14M. Lehmacher,20G. Lehmann Miotto,29X. Lei,6M. A. L. Leite,23dR. Leitner,125D. Lellouch,170 M. Leltchouk,34B. Lemmer,53V. Lendermann,57aK. J. C. Leney,144bT. Lenz,104G. Lenzen,173B. Lenzi,29 K. Leonhardt,43S. Leontsinis,9C. Leroy,92J-R. Lessard,168J. Lesser,145aC. G. Lester,27A. Leung Fook Cheong,171

J. Leveˆque,4D. Levin,86L. J. Levinson,170M. S. Levitski,127A. Lewis,117G. H. Lewis,107A. M. Leyko,20 M. Leyton,15B. Li,82H. Li,171S. Li,32b,rX. Li,86Z. Liang,117,sH. Liao,33B. Liberti,132aP. Lichard,29 M. Lichtnecker,97K. Lie,164W. Liebig,13R. Lifshitz,151J. N. Lilley,17C. Limbach,20A. Limosani,85M. Limper,62

S. C. Lin,150,tF. Linde,104J. T. Linnemann,87E. Lipeles,119L. Lipinsky,124A. Lipniacka,13T. M. Liss,164 D. Lissauer,24A. Lister,48A. M. Litke,136C. Liu,28D. Liu,150H. Liu,86J. B. Liu,86M. Liu,32bS. Liu,2Y. Liu,32b M. Livan,118a,118bS. S. A. Livermore,117A. Lleres,54J. Llorente Merino,79S. L. Lloyd,74E. Lobodzinska,41P. Loch,6 W. S. Lockman,136T. Loddenkoetter,20F. K. Loebinger,81A. Loginov,174C. W. Loh,167T. Lohse,15K. Lohwasser,47

M. Lokajicek,124J. Loken,117V. P. Lombardo,4R. E. Long,70L. Lopes,123a,cD. Lopez Mateos,56J. Lorenz,97 M. Losada,161P. Loscutoff,14F. Lo Sterzo,131a,131bM. J. Losty,158aX. Lou,40A. Lounis,114K. F. Loureiro,161 J. Love,21P. A. Love,70A. J. Lowe,142,fF. Lu,32aH. J. Lubatti,137C. Luci,131a,131bA. Lucotte,54A. Ludwig,43 D. Ludwig,41I. Ludwig,47J. Ludwig,47F. Luehring,60G. Luijckx,104D. Lumb,47L. Luminari,131aE. Lund,116

B. Lund-Jensen,146B. Lundberg,78J. Lundberg,145a,145bJ. Lundquist,35M. Lungwitz,80G. Lutz,98D. Lynn,24 J. Lys,14E. Lytken,78H. Ma,24L. L. Ma,171J. A. Macana Goia,92G. Maccarrone,46A. Macchiolo,98B. Macˇek,73 J. Machado Miguens,123aR. Mackeprang,35R. J. Madaras,14W. F. Mader,43R. Maenner,57cT. Maeno,24P. Ma¨ttig,173

S. Ma¨ttig,41L. Magnoni,29E. Magradze,53Y. Mahalalel,152K. Mahboubi,47G. Mahout,17C. Maiani,131a,131b C. Maidantchik,23aA. Maio,123a,cS. Majewski,24Y. Makida,65N. Makovec,114P. Mal,135B. Malaescu,29 Pa. Malecki,38P. Malecki,38V. P. Maleev,120F. Malek,54U. Mallik,62D. Malon,5C. Malone,142S. Maltezos,9

V. Malyshev,106S. Malyukov,29R. Mameghani,97J. Mamuzic,12bA. Manabe,65L. Mandelli,88aI. Mandic´,73 R. Mandrysch,15J. Maneira,123aP. S. Mangeard,87L. Manhaes de Andrade Filho,23aI. D. Manjavidze,64A. Mann,53 P. M. Manning,136A. Manousakis-Katsikakis,8B. Mansoulie,135A. Manz,98A. Mapelli,29L. Mapelli,29L. March,79

J. F. Marchand,28F. Marchese,132a,1323bG. Marchiori,77M. Marcisovsky,124A. Marin,21,aC. P. Marino,168

(15)

F. Marroquim,23aR. Marshall,81Z. Marshall,29F. K. Martens,157S. Marti-Garcia,166A. J. Martin,174B. Martin,29 B. Martin,87F. F. Martin,119J. P. Martin,92Ph. Martin,54T. A. Martin,17V. J. Martin,45B. Martin dit Latour,48 S. Martin-Haugh,148M. Martinez,11V. Martinez Outschoorn,56A. C. Martyniuk,168M. Marx,81F. Marzano,131a

A. Marzin,110L. Masetti,80T. Mashimo,154R. Mashinistov,93J. Masik,81A. L. Maslennikov,106I. Massa,19a,19b G. Massaro,104N. Massol,4P. Mastrandrea,131a,131bA. Mastroberardino,36a,36bT. Masubuchi,154M. Mathes,20

H. Matsumoto,154H. Matsunaga,154T. Matsushita,66C. Mattravers,117,dJ. M. Maugain,29J. Maurer,82 S. J. Maxfield,72D. A. Maximov,106E. N. May,5A. Mayne,138R. Mazini,150M. Mazur,20M. Mazzanti,88a E. Mazzoni,121a,121bS. P. Mc Kee,86A. McCarn,164R. L. McCarthy,147T. G. McCarthy,28N. A. McCubbin,128

K. W. McFarlane,55J. A. Mcfayden,138H. McGlone,52G. Mchedlidze,50bR. A. McLaren,29T. Mclaughlan,17 S. J. McMahon,128R. A. McPherson,168,jA. Meade,83J. Mechnich,104M. Mechtel,173M. Medinnis,41 R. Meera-Lebbai,110T. Meguro,115R. Mehdiyev,92S. Mehlhase,35A. Mehta,72K. Meier,57aB. Meirose,78 C. Melachrinos,30B. R. Mellado Garcia,171L. Mendoza Navas,161Z. Meng,150,uA. Mengarelli,19a,19bS. Menke,98

C. Menot,29E. Meoni,11K. M. Mercurio,56P. Mermod,48L. Merola,101a,101bC. Meroni,88aF. S. Merritt,30 A. Messina,29J. Metcalfe,102A. S. Mete,63C. Meyer,80C. Meyer,30J-P. Meyer,135J. Meyer,172J. Meyer,53 T. C. Meyer,29W. T. Meyer,63J. Miao,32dS. Michal,29L. Micu,25aR. P. Middleton,128S. Migas,72L. Mijovic´,41

G. Mikenberg,170M. Mikestikova,124M. Mikuzˇ,73D. W. Miller,30R. J. Miller,87W. J. Mills,167C. Mills,56 A. Milov,170D. A. Milstead,145a,145bD. Milstein,170A. A. Minaenko,127M. Min˜ano Moya,166I. A. Minashvili,64

A. I. Mincer,107B. Mindur,37M. Mineev,64Y. Ming,171L. M. Mir,11G. Mirabelli,131aL. Miralles Verge,11 A. Misiejuk,75J. Mitrevski,136G. Y. Mitrofanov,127V. A. Mitsou,166S. Mitsui,65P. S. Miyagawa,138K. Miyazaki,66

J. U. Mjo¨rnmark,78T. Moa,145a,145bP. Mockett,137S. Moed,56V. Moeller,27K. Mo¨nig,41N. Mo¨ser,20 S. Mohapatra,147W. Mohr,47S. Mohrdieck-Mo¨ck,98A. M. Moisseev,127,aR. Moles-Valls,166J. Molina-Perez,29 J. Monk,76E. Monnier,82S. Montesano,88a,88bF. Monticelli,69S. Monzani,19a,19bR. W. Moore,2G. F. Moorhead,85 C. Mora Herrera,48A. Moraes,52N. Morange,135J. Morel,53G. Morello,36a,36bD. Moreno,80M. Moreno Lla´cer,166

P. Morettini,49aM. Morii,56J. Morin,74A. K. Morley,29G. Mornacchi,29S. V. Morozov,95J. D. Morris,74 L. Morvaj,100H. G. Moser,98M. Mosidze,50bJ. Moss,108R. Mount,142E. Mountricha,9S. V. Mouraviev,93

E. J. W. Moyse,83M. Mudrinic,12bF. Mueller,57aJ. Mueller,122K. Mueller,20T. A. Mu¨ller,97T. Mueller,80 D. Muenstermann,29A. Muir,167Y. Munwes,152W. J. Murray,128I. Mussche,104E. Musto,101a,101bA. G. Myagkov,127 J. Nadal,11K. Nagai,159K. Nagano,65Y. Nagasaka,59M. Nagel,98A. M. Nairz,29Y. Nakahama,29K. Nakamura,154

T. Nakamura,154I. Nakano,109G. Nanava,20A. Napier,160R. Narayan,57bM. Nash,76,dN. R. Nation,21 T. Nattermann,20T. Naumann,41G. Navarro,161H. A. Neal,86E. Nebot,79P. Yu. Nechaeva,93A. Negri,118a,118b

G. Negri,29S. Nektarijevic,48A. Nelson,162S. Nelson,142T. K. Nelson,142S. Nemecek,124P. Nemethy,107 A. A. Nepomuceno,23aM. Nessi,29,vM. S. Neubauer,164A. Neusiedl,80R. M. Neves,107P. Nevski,24P. R. Newman,17

V. Nguyen Thi Hong,135R. B. Nickerson,117R. Nicolaidou,135L. Nicolas,138B. Nicquevert,29F. Niedercorn,114 J. Nielsen,136T. Niinikoski,29N. Nikiforou,34A. Nikiforov,15V. Nikolaenko,127K. Nikolaev,64I. Nikolic-Audit,77

K. Nikolics,48K. Nikolopoulos,24H. Nilsen,47P. Nilsson,7Y. Ninomiya,154A. Nisati,131aT. Nishiyama,66 R. Nisius,98L. Nodulman,5M. Nomachi,115I. Nomidis,153M. Nordberg,29B. Nordkvist,145a,145bP. R. Norton,128

J. Novakova,125M. Nozaki,65L. Nozka,112I. M. Nugent,158aA.-E. Nuncio-Quiroz,20G. Nunes Hanninger,85 T. Nunnemann,97E. Nurse,76T. Nyman,29B. J. O’Brien,45S. W. O’Neale,17,aD. C. O’Neil,141V. O’Shea,52 L. B. Oakes,97F. G. Oakham,28,eH. Oberlack,98J. Ocariz,77A. Ochi,66S. Oda,154S. Odaka,65J. Odier,82H. Ogren,60

A. Oh,81S. H. Oh,44C. C. Ohm,145a,145bT. Ohshima,100H. Ohshita,139T. Ohsugi,58S. Okada,66H. Okawa,162 Y. Okumura,100T. Okuyama,154A. Olariu,25aM. Olcese,49aA. G. Olchevski,64M. Oliveira,123a,h D. Oliveira Damazio,24E. Oliver Garcia,166D. Olivito,119A. Olszewski,38J. Olszowska,38C. Omachi,66

A. Onofre,123a,wP. U. E. Onyisi,30C. J. Oram,158aM. J. Oreglia,30Y. Oren,152D. Orestano,133a,133b C. Oropeza Barrera,52R. S. Orr,157B. Osculati,49a,49bR. Ospanov,119C. Osuna,11G. Otero y Garzon,26

J. P. Ottersbach,104M. Ouchrif,134dE. A. Ouellette,168F. Ould-Saada,116A. Ouraou,135Q. Ouyang,32a A. Ovcharova,14M. Owen,81S. Owen,138V. E. Ozcan,18aN. Ozturk,7A. Pacheco Pages,11C. Padilla Aranda,11 S. Pagan Griso,14E. Paganis,138F. Paige,24P. Pais,83K. Pajchel,116G. Palacino,158bC. P. Paleari,6S. Palestini,29

D. Pallin,33A. Palma,123aJ. D. Palmer,17Y. B. Pan,171E. Panagiotopoulou,9B. Panes,31aN. Panikashvili,86 S. Panitkin,24D. Pantea,25aM. Panuskova,124V. Paolone,122A. Papadelis,145aTh. D. Papadopoulou,9A. Paramonov,5

W. Park,24,xM. A. Parker,27F. Parodi,49a,49bJ. A. Parsons,34U. Parzefall,47E. Pasqualucci,131aS. Passaggio,49a A. Passeri,133aF. Pastore,133a,133bFr. Pastore,75G. Pa´sztor,48,yS. Pataraia,173N. Patel,149J. R. Pater,81

Şekil

FIG. 1 (color online). Distribution of the dimuon invariant mass for (a)     pairs, (b)  þ  þ pairs, and (c)     pairs
Table I summarizes the number of observed and ex- ex-pected muon pairs for     ,  þ  þ , and      produc-tion for four cuts on the dimuon invariant mass
TABLE II. Expected and observed 95% C.L. upper limit on the cross section,  fid
FIG. 2 (color online). Upper limit at 95% C.L. on the cross section times branching ratio for pair production of doubly charged Higgs bosons decaying to two muons
+2

Referanslar

Benzer Belgeler

The purpose of this study was to determine cu- rrent number and types of errors in eight peer revi- ewed, widely read nursing journals: Journal of Co- mmunity Health Nursing, Public

sahabi zikredilerek nakilde bulunulmaktadır. 462 Zaman zaman ilk önce hadis verilip sonra onun hangi kaynakta geçtiği belirtilmektedir. 463 Bazen de herhangi bir

In conclusion, this study showed that the application of numerical analysis, coupled with the utilization of a stan- dardized identification system, instead of simple quantita-

Th ird article longer than second; 1 plumose seta on proximal margin and several rows of setae along medial anterior margin (Figure 2D): (1) 5 sparsely plumose setae of

The present study was conducted for the purposes of exploring the perspectives of secondary social studies teachers concerning the impact of the Ohio Graduation Test (OGT)

Alış-verişi yapılmak için elde bulundurulan senetler de (kambiyo senet- leri; çek, bono, poliçe gibi) ticaret malı özelliğinde olup, bu tür senet bulun- duran şahıs,

Kilic, in [10], calculated all rank 3 residually connected geometries for the Mathieu group M 23 whose object stabilizer are maximal subgroups.. Now we give explicit description

Tarla denemeleri tesadüf bloklar ı deneme desenine göre üç tekerrürlü olarak yürütülmü ş ve bitki boyu ile bitkide tane verimi belirlenmi ştir.. ilk geli şme devresinde