• Sonuç bulunamadı

Surfaces Satisfying (X,Y).H=0

N/A
N/A
Protected

Academic year: 2021

Share "Surfaces Satisfying (X,Y).H=0"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

SURFACES SATISFYING

R (X,Y).H=0 Bengü KILIÇ

Balikesir University Faculty of Art and Sciences Department of Mathematics

Balikesir, TURKEY E-mail:benguklc@yahoo.com

Abstract

In this study we consider the surfaces n

M in IE5satisfying the condition (X,Y).H=0

R

where H is the mean curvature vector of M.

Keywords: Semi-parallel, Semi-symmetric space, Özet

Bu çalışmada, H ortalama eğrilik vektörü olmak üzere, R(X,Y).H=0 şartını sağlayan IE5 deki

n

M yüzeyleri gözönüne alındı.

Anahtar Kelimeler:Semi-paralel, Semi-simetrik uzay. 1- INTRODUCTION

Let x: be an isometric immersion of an n-dimensional Riemannian manifold m n E Mn

M into m-dimensional Euclidean space IE . Denote by m

R the curvature tensor of the van der Waerden-Bortolotti connection of x and by h the second fundamental form of x. x is called semi-parallel if , i.e. for all tangent vectors X and Y to M, where acts as a derivation on h. This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which R.R=0, and a direct generalization of parallel immersions, i.e. isometric immersions for which . In [1], J. Deprez showed the fact that x: is semi-parallel implies that M is semi-symmetric.

− ∇ 0 . = − h R ( , ). =0 − h Y X R ) , (X Y R − 0 = ∇− h m E M

For references on semi-symmetric space, see [2]; for references on parallel immersions, see [3]. In [1], J. Deprez gave a local classification of semi-parallel hypersurfaces in Euclidean space. It is easily seen that all surfaces are semi-symmetric. In [4] J. Deprez gave a full classification of semi-parallel surfaces in m

IE . In the present study we consider the surfaces n

M in IE satisfying the condition 5 0 ). , ( = − H Y X R (1) where H is the mean curvature vector of M. We have shown that surfaces in 5

IE satisfying the property (1) are minimal or totally umbilic or has trivial normal connections.

(2)

2-BASIC RESULTS

Let x: be an isometric immersion of an n-dimensional (connected) Riemannian manifold m n E Mn

M into m-dimensional Euclidean space IE . Let m ν be a local unit normal section on M. In the sequel X, Y, Z, U, V denote vector fields which are tangent to n

M . Then the formulas of Gauss and Weingarten are given by

) , ( ~ Y X h Y Y X X =∇ + ∇ (2) and ν ν ν X X =−A X +D ∇~ (3)

respectively, where ∇~ is the Levi Civita connection on m

IE , the Levi Civita connection on

n

M and D the normal connection of x. The second fundamental tensor is related to the second fundamental form h by

ν

A

> >=<

< AνX,Y h(X,Y),ν (4)

where < , > is a standart metric of m

IE .

If M is a surface, the Gaussian curvature of M at x∈M becomes

> =< R X Y X Y x

K( ) ( , ) , (5)

where X and Y form an orthonormal basis for . The mean curvature vector H of x is given by M Tx

= = n i i i e e h n H 1 ) , ( 1 (6) where is the orthonormal basis of . The mean curvature α of x becomes n e e e1, 2,..., TxM > < = H ,H α .

A totaly geodesic immersion x is an isometric immersion for which h=0. If H=0 then x is called minimal and x is called totally umbilical if

H Y X Y X h( , )=< , >

where X, Y is an orthonormal basis of M. The immersion x is called isotropic (in the sense of O'Neill [5] ) if for each x in M h(X,X) is independent of the choice of a unit vector X in TxM.

Let XΛY denote the endomorphism Z →< Z,Y > X−<Z,X >Y. Then the

curvature tensor R of M is given by the equation of Gauss:

= Λ = p i i iX AY A Y X R 1 ) , ( (7) where and i A

Ai = ν {ν1,...,νp} is a local orthonormal basis for . The equation of

Ricci becomes M Tx⊥ > >=< < ⊥ Y X A A Y X R ( , )ν,η [ ν, η] , (8) for ν and η normal vectors to M . An isometric immersion x is said to have trivial normal connection if ⊥ =0. (8) shows that triviality of the normal connection of x is

(3)

Let M be an n-dimensional Riemannian manifold and T be a (0, k)-type tensor on M. The tensor R.T is defined by

) ) , ( ~ , , , ( ) , ) , ( ~ , , ( ) , , ) , ( ~ , ( ) , , , ) , ( ~ ( ) , , , )( ). , ( ~ ( ) , ; , , , )( . ( 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 X Y X R X X X T X X Y X R X X T X X X Y X R X T X X X X Y X R T X X X X T Y X R Y X X X X X T R − − − = = (9) where )X1,X2,X3,X4,X,Y∈χ(M .

Let be the connection of van der Waerden-Bortolotti of x, denote the curvature tensor of by − ∇ − ∇ R then − ) ) , ( , ( ) , ) , ( ( ) , ( ) , ( ) , )( ). , ( (R X Y h U V = RX Y hU Vh R X Y U VhU R X Y V − (10) Lemma 1. Let M be a surface in IE then 5

3 3 2 3 2 2 3 2 1 3 3 2 2 1 1 2 1 ] 2 2 ) ( ] 2 2 ) ( [ ) )( ( ) , )( ). , ( ( ν β µ λ λ ν β µ λ λ ν µ λ Kb a b Kb a b b a b a e e h e e R + − − + + + − − + + − = − (11) and 3 3 2 3 2 2 3 2 1 3 3 2 2 2 2 2 1 ] 2 2 ) ( ] 2 2 ) ( [ ) )( ( ) , )( ). , ( ( ν β µ λ µ ν β µ λ µ ν µ λ Kb a b Kb a b b a b a e e h e e R − + − + − − − − + + − − = − (12) where K is the Gaussian curvature of M⊂ 5

IE and β =a2b3a3b2. Proof. (see [6]).

3-SURFACES SATISFYING

R (X,Y).H=0

Definition 2. Let M be a surface in IE5 then we define R .H by

− )} , )( . ( ) , )( . {( 2 1 ). , (e1 e2 H Rh e1 e1 R h e2 e2 R − − − + = (13)

where e1,e2 is an orthonormal basis of the surface M.

Corollary 3. } ) )( ( ) )( ( { 2 1 } ] ) ( ) ( [ ] ) ( ) ( {[ 2 1 ) , ( 3 3 2 2 3 3 3 2 2 2 2 1 ν µ λ µ λ ν µ λ µ λ ν µ λ µ µ λ λ ν µ λ µ µ λ λ + − − + − − = − − − − + − − − − = − b b b b b b H e e R (14)

Proof. By Lemma 1 and (6) we get the result.

Proposition 4. [7] Let M be a surfaces in IE5 and ν1,...,νp orthonormal vectors in N(M) such that ν1 is in the direction of the mean curvature vector and such that

(4)

. 0 ...

4 = = A p =

Aν ν If we choose an orthonormal basis of TM of eigenvectors of . Identifying linear transformations and their matrices in this basis, we obtain

1 1 Aν A = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = = µ λ ν 0 0 1 1 A A , , . (15) ⎦ ⎤ ⎢ ⎣ ⎡ − = = 2 2 2 2 2 2 a b b a A A ν ⎦ ⎤ ⎢ ⎣ ⎡ − = = 3 3 3 3 3 3 a b b a A A ν

Theorem 5. Let M be a surface in IE satisfying the property 5 then M is one of the following surfaces:

0

. =

H R

1) a totally umbilic surface with λ =µ, or

2) a surfaces with trivial normal connection and H =2λ, or 3) a minimal surface.

Proof. If . =0 then by previous Corollary we get

H R 0 ) )( ( ) )( ( 2 3 3 2 − + − − + = −b λ µ λ µ ν b λ µ λ µν . (16) Thus, we have b2(λ−µ)(λ+µ)=0 and b3(λ−µ)(λ+µ)=0. (17) Therefore we have three possibilities

1) If b2 = b3 = 0, a2 = a3 = 0 then the equations (16) and (17) are automatically satisfied. Therefore M is totally umbilic.

2) If b2 = b3 = 0, a2 0, a3 0 then by (15) we get ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = µ λ 0 0 1 A , , ⎦ ⎤ ⎢ ⎣ ⎡ − = 2 2 2 0 0 a a A ⎦ ⎤ ⎢ ⎣ ⎡ − = 3 3 3 0 0 a a A

which implies that ⊥ =0 i.e. M has trivial normal connection.

R

If λ =µ then the equations (16) and (17) are automatically satisfied and by (15) we get H=2λ.

3) If λ =−µ then the equations (16) and (17) are automatically satisfied and by (15) we get H=0 (i.e. M is minimal).

REFERENCES

[1] J. Deprez, “Semi-parallel Hypersurfaces”, Rend. Sem. Mat. Univers. Politechn. Torino (1986) 44, 2, 303-316.

[2] Z. I. Szabo,“StructureTheorems on Riemannian Spaces Satisfying R(X,Y).R=0”, I. The local version, J. Differential Geometry (1982) 17, 531-582.

[3] D. Ferus, “Symmetric Submanifolds of Euclidean Space”, Math. Ann. (1980) 247, 81-93.

[4] J. Deprez, “Semi-parallel Surfaces in Euclidean Space”, Journal of Geometry (1985) vol 25, 192-200.

[5] B. O' Neill, “Isotropic and Kaehler Immersions”, Canad. J. Math. (1976) 17, 909-915.

[6] C. Özgür, “Pseudo Simetrik Manifoldlar”, PhD. Thesis, Uludag University, Bursa (2001).

[7] U. Lumiste, “Small Dimensional Irreducible Submanifolds with Parallel Third Fundamental Form”, Tartu Ulikooli Toimetised Acta et comm. Univ.

(5)

Referanslar

Benzer Belgeler

“Pandemik İnfluenza Ulusal Hazırlık Planı” oluşturulmasına rağmen yeterli olamaması ve “Afet ve Acil Durum Yönetim Planı” ile bütünleşik

Bu yönteme göre (1) denkleminin (2) biçiminde bir çözüme sahip oldu¼ gu kabul edilerek kuvvet serisi yöntemindekine benzer as¬mlar izlerinir.Daha sonra sabiti ve a n (n

[r]

Gerçel ( reel ) sayı ekseninde herhangi bir sayının sağında bulunan sayılar daima o sayıdan büyük, solunda bulunan sayılar da o sayıdan küçüktür. Bir eşitsizliğin her

˙Istanbul Ticaret ¨ Universitesi M¨ uhendislik Fak¨ ultesi MAT121-Matematiksel Analiz I. 2019 G¨ uz D¨ onemi Alı¸ stırma Soruları 3: T¨

f fonksiyonunun ve te˘ get do˘ grusunun grafi˘ gini ¸

Eğri çizimleri için son aracımızı ele alalım: Asiptotlar. Bu iki eğik asimtot çakışık olabilir. Örnek: Aşağıda verilen eğrilerin asimtotlarını bulunuz.. 3)

Sonuç itibariyle davacılar lehine gerçekleştirilen havaleler geçerli bir sebepten yoksun olduklarından, söz konusu havale tutarını 21 Eylül 2000 tarihinde (B.)’nin hesabına