• Sonuç bulunamadı

Influence of the sol – gel preparation method on the photocatalytic NO oxidation performance of TiO2/Al2O3 binary oxides

N/A
N/A
Protected

Academic year: 2021

Share "Influence of the sol – gel preparation method on the photocatalytic NO oxidation performance of TiO2/Al2O3 binary oxides"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Catalysis

Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Influence

of

the

sol–gel

preparation

method

on

the

photocatalytic

NO

oxidation

performance

of

TiO2/Al2O3

binary

oxides

Meryem

Polat

a

,

Asli

M.

Soylu

a

,

Deniz

A.

Erdogan

a

,

Huseyin

Erguven

a

,

Evgeny

I.

Vovk

a,b

,

Emrah

Ozensoy

a,∗

aDepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey bBoreskovInstituteofCatalysis,630090Novosibirsk,RussianFederation

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10January2014

Receivedinrevisedform20March2014 Accepted2April2014

Availableonline13May2014 Keywords: TiO2 Al2O3 Airpurification Photocatalysis NO NO2

a

b

s

t

r

a

c

t

Inthecurrentwork,TiO2/Al2O3binaryoxidephotocatalystsweresynthesizedviatwodifferentsol–gel

protocols(P1andP2),wherevariousTiO2toAl2O3moleratios(0.5and1.0)andcalcinationtemperatures

(150–1000◦C)wereutilizedinthesynthesis.Structuralcharacterizationofthesynthesizedbinaryoxide

photocatalystswasalsoperformedviaBETsurfaceareaanalysis,X-raydiffraction(XRD)andRaman

spectroscopy.ThephotocatalyticNO(g)oxidationperformancesofthesebinaryoxidesweremeasured

underUVAirradiationinacomparativefashiontothatofaDegussaP25industrialbenchmark.TiO2/Al2O3

binaryoxidephotocatalystsdemonstrateanovelapproachwhichisessentiallyafusionofNSR(NOx

stor-agereduction)andPCO(photocatalyticoxidation)technologies.Inthisapproach,ratherthanattempting

toperformcompleteNOxreduction,NO(g)isoxidizedonaphotocatalystsurfaceandstoredinthesolid

state.CurrentresultssuggestthataluminadomainscanbeutilizedasactiveNOxcapturingsitesthat

cansignificantlyeliminatethereleaseoftoxicNO2(g)intotheatmosphere.Usingeither(P1)or(P2)

protocols,structurallydifferentbinaryoxidesystemscanbesynthesizedenablingmuchsuperior

photo-catalytictotalNOxremoval(i.e.upto176%higher)thanDegussaP25.Furthermore,suchbinaryoxides

canalsosimultaneouslydecreasethetoxicNO2(g)emissiontotheatmosphereby75%withrespectto

thatofDegussaP25.Thereisacomplexinterplaybetweencalcinationtemperature,crystalstructure,

compositionandspecificsurfacearea,whichdictatetheultimatephotocatalyticactivityina

coordina-tivemanner.Twostructurallydifferentphotocatalystspreparedviadifferentpreparationprotocolsreveal

comparablyhighphotocatalyticactivitiesimplyingthattheactivesitesresponsibleforthephotocatalytic

NO(g)oxidationandstoragehaveanon-trivialnature.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Airpollutionintheurbansettingsleadstosignificantly detri-mentalimplicationsonhumanhealth.Someofthemainairborne contaminantsintheatmospherearenitrogenoxides(NOx),sulfur oxides (SOx), volatile organic compounds (VOCs) and particu-latematter(PM)[1].NOx-basedcontaminantsareemittedtothe atmospherethroughvariousanthropological,industrialor natu-ral combustion processes [1–3]. Under atmospheric conditions, NO(g)canbehomogeneouslyoxidizedtoNO2(g)viathermal (non-catalytic)chemicalpathways.NO2(g)isconsideredtobeevenmore toxicthanNO(g),asitcancauseasthmaandmanyother respira-toryillnesses[4].Inthelastfewdecades,varioustechnologieshave

∗ Correspondingauthor.Tel.:+903122902121. E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

beendevelopedinordertoreduceairbornetoxicNOxspecieswhich includeselectivenon-catalyticreduction(SNCR),selectivecatalytic reduction (SCR),NOx Storage and Reduction (NSR)(also called LeanNOxTraps,LNT)andThreeWayCatalysis(TWC)technologies [4–13].However,almostwithoutexception,thesetechnologiesare effectiveonlyatelevatedtemperatures(i.e.T≥250◦C).

Heterogeneousphotocatalyticoxidation(PCO)isanalternative approachthatcanbeutilizedunderambientconditions(i.e.room temperatureandatmosphericpressures)forairandwater purifi-cation[14–18].Alargevarietyofphotocatalyticmaterialsthatcan provideairpurificationunderUVorvisiblelightexcitationhave beenreportedintheliterature[15,19–28].TiO2-basedmaterialsare amongthemosteffectivephotocatalystsoperatingunderambient conditionsforairpurificationapplications[15,22,25,26,29]. How-ever,TiO2 isalsoknowntohavesomedrawbacks,suchaspoor mechanicalpropertiesandlowspecificsurfacearea(SSA),which limititscatalyticperformance[30–32].

http://dx.doi.org/10.1016/j.cattod.2014.04.001 0920-5861/©2014ElsevierB.V.Allrightsreserved.

(2)

In a recent study, we have reported a TiO2/Al2O3 binary oxidesystemdemonstratingapromisinggas-phasephotocatalytic DeNOxperformance, whichwasfoundtobesuperiortoa com-mercialTiO2(DegussaP25)benchmarkphotocatalyst[33,34].This materialwasdesignedtodemonstrateanovelapproachwhichis essentiallyafusionofNSRandPCOtechnologies.Inthisapproach, ratherthanattemptingtoperformcompleteNOxreduction,NOx isoxidizedonaphotocatalystsurfaceandstoredinthesolidstate intheformofnitratesandnitritesonastoragecomponent.Unlike thephotocatalyticmetal-oxidesurface,whichisnotwater-soluble, storednitratesandnitrites(ortheirprotonatedsurfacederivatives) canbereadilywashedoffthephotocatalystsurface(e.g.viarainor wetscrubbing),restoringthephotocatalyticactivityofthesurface andregeneratingthephotocatalyst.

Chemicalandstructuralpropertiesofthebinaryoxidesystems stronglyinfluencetheNOxoxidationandstoragecapacity[16,18]. Alongtheselines, inthecurrent work,wefocus onTiO2/Al2O3 binaryoxidephotocatalystswhicharesynthesizedusingtwo differ-entsol–gelroutes(i.e.P1andP2)andthermallytreatedatvarious temperatures.ThefirstfamilyofTiO2/Al2O3binaryoxide materi-alspreparedviaP1manifestsitselfasinhomogeneouslydispersed TiO2crystallitesdepositedonalumina,whilethesecondone pre-paredviaP2isamostlyamorphoussponge-likeAlxTiyOz mixed oxidewithamorehomogenousmorphology[35].Thus,inthe cur-rentcontribution,theinfluenceofthephotocatalystbinaryoxide structureonthephotocatalyticperformanceandNOxstorage capa-bilityareinvestigated.Photocatalyticperformancesofthesetwo differentfamiliesofTiO2/Al2O3binaryoxidesarealsocomparedto acommercialbenchmarkphotocatalyst(i.e.DegussaP25)inorder toshowthatphotocatalyticNOx(g)abatementcanbesignificantly improvedbyutilizingTiO2/Al2O3binaryoxidesystems.

2. Experimental

2.1. PreparationandstructuralcharacterizationofTiO2/Al2O3 binaryoxides

TiO2/Al2O3binaryoxidematerialswerepreparedbytwo dif-ferent sol–gelsynthesis protocolsdenoted as P1 and P2 which weredescribedindetailinourearlierreports[11,12,33,35].Briefly, in thefirst synthetic protocol(P1), ␥-Al2O3 (PURALOXS Ba200, 200m2/g,SASOLGmbH,Germany)andTiCl

4(Fluka,titanium(IV) chloridesolution)wereusedasstartingmaterials.Inordertoform agel,25vol%NH3 wasaddedtotheaqueous␥-Al2O3 andTiCl4 mixtureunderconstantstirring.Inthesecondprotocol(P2), tita-nium(IV)isopropoxide(TIP,97%,Sigma–Aldrich)andaluminum tri-sec-butoxide(ASB,97%,Sigma–Aldrich)wereusedas precur-sors.SynthesizedP1andP2materialsweresubsequentlycalcined inairfor2hattemperaturesrangingbetween150and1000◦C.In thesynthesizedmaterials,TiO2toAl2O3moleratioswereadjusted tobeeither0.5or1.0.Theseratioswerechosenbasedonour pre-viousstudies,whichindicatedthatfor(P2)Ti/Almaterials,TiO2to Al2O3moleratiosof0.5and1.0yieldedsomeofthebest perform-ingphotocatalysts[33].Currentlysynthesizedsamplesarelabeled as“(P#)nTi/Al-T”,whereP#denotestheutilizedsynthesis proto-col(i.e.P1orP2),nstandsfortheTiO2toAl2O3moleratio(i.e.0.5 or1.0)andTcorrespondstothecalcinationtemperatureinCelsius scale.AcommerciallyobtainedTiO2photocatalyst(DegussaP25, 99.5%,Sigma–Aldrich)comprisedofapproximately80–85%anatase and15–20%rutilebymass;wasalsousedasabenchmarksample inordertocomparephotocatalyticactivitiesofdifferentsamples underidenticalphotocatalyticconditions[36].

BETspecificsurfaceareameasurementswereperformedusing a Micromeritics Tristar 3000 surface area and pore size ana-lyzer via low-temperatureisothermal adsorption–desorption of

N2.Before thesurfaceareameasurements, materialswere out-gassedinvacuumat350◦Cfor4h.ThepowderX-raydiffraction (XRD)patternswererecordedusingaRigakupowder diffractome-ter, equipped witha Miniflex goniometer and an X-ray source withCuK␣radiation,=1.5418 ˚A,30kV,and15mA.TheXRD pat-ternswererecordedinthe2rangeof10–60◦ withascanrate of0.02◦s−1.DiffractionpatternswereassignedusingJoint Com-mitteeonPowderDiffractionStandards(JCPDS)cardssuppliedby theInternationalCentrefor DiffractionDatabase(ICDD). Raman spectrawererecordedusingaHORIBAJobinYvonLabRamHR800 spectrometer,equippedwithaconfocalRamanBX41microscope andaCCDdetector.TheRamanspectrometerwasalsoequipped withaNd:YAGlaser(=532.1nm);thelaserpowerwasadjusted to20mWfordataacquisition.

2.2. Gasphasephotocatalyticactivitymeasurements

Acustom-designphotocatalyticflowreactorsystemwasusedin thephotocatalyticactivitymeasurements[33,37].Theflowreactor systemconsistedofagasmanifoldsystem,massflowcontrollers (MKS1479A),acapacitancepressuregauge(MKSBaratron622B), acustom-madephotocatalyticreactorandachemiluminescence NOxanalyzer(HoribaAPNA370).Thegasmanifoldsystemwas con-nectedtogascylinderscontainingN2(g)(99.998%,LindeGmbH), O2(g)(99.998%,LindeGmbH),and100ppmNOdilutedinN2(g) (LindeGmbH).Massflowcontrollers(MFC)calibratedforN2andO2 gaseswereusedtocontrolthevolumetricflowratesofthegases. Flowrateofthegaseswereadjustedto0.750standardlitersper minute(SLM)forN2(g),0.250SLMfor O2(g)and0.010SLMfor themixtureof100ppmNO(g)dilutedinN2(g).Themixedgases werebubbledthroughathermostatichumidifierfilledwith deion-izedwaterwhichwaskeptat25◦C.Therelativehumidityofthe totalgasmixturewas70%whichwasmeasuredatthesample posi-tionintheflowreactorwithaHannaHI9565humidityanalyzer. Foratypicalphotocatalyticperformancemeasurement,950mgof apowdersamplewasplacedona2mm×40mm×40mm poly-methylmethacrylate(PMMA)planarsampleholder andthegas mixture was allowedto sweep over the photocatalyst powder which was packed into the sample holder. Before the photo-catalyticperformance measurements,theembeddedTiO2/Al2O3 sampleswereirradiatedwithUVAlight(F8W/T5/BL368,Sylvania orF8W/T5/BL350,Sylvania)underatmosphericconditionsfor18h inordertoremovethesurfacecontaminationsandtoactivatethe photocatalysts.Afterthisinitialexsitupretreatmentstep,activated photocatalystpowderswereplacedintheflowreactorwhichwas equippedwithan8WUVAlamp.Duringtheperformance analy-sisexperiments,(P1)Ti/Alsampleswereirradiatedwitha368nm wavelengthlightsource(F8W/T5/BL368,Sylvania,Germany)and (P2)Ti/Alsampleswereirradiatedwitha350nmwavelengthlight source(F8W/T5/BL350,Sylvania,Germany).Forbothcases, photo-catalyticperformancesoftheTi/Alphotocatalystswerenormalized usingthephotocatalyticperformancevaluesoftheDegussaP25 benchmarksamples, which weremeasuredunder the identical photocatalyticconditionsusingthecorrespondingUVAlightsource utilizedintheTi/Alsamplemeasurements.

Forthedeterminationoftherelative photocatalytic perform-ances,percentphotonicefficiencies(%)wereutilizedwhichare describedinEqs.(1)and(2).

%=



nNOx nphoton



×100 (1)

where,nNOxrepresentseitherthedecreaseinthetotalnumberof molesofallgaseousNOxspeciesorthenumberofmolesofNO2(g) generated in a60minphotocatalytic activitytest.Furthermore, nphotoncorrespondstothetotalnumberofmolesofincidentUVA

(3)

photonsimpingingonthephotocatalystsurfacein60min,which iscalculatedviaEq.(2)as:

nphoton=ISt

Nhc (2)

whereIstandsforthepowerdensityoftheUVAlamp experimen-tallymeasuredatthesamplepositioninthephotocatalyticreactor (typically,7.5Wm−2),istherepresentativeemissionwavelength oftheUVAlamp(i.e.350nmor368nm),Sisthesurfaceareaofthe planarPMMAsampleholderinthereactorthatisexposedtothe UVAirradiation(i.e.40mm×40mm=1600mm2);tistheduration oftheperformancetest(i.e.3600s),NistheAvogadro’snumber,h isPlanck’sconstantandcisthespeedoflight.

Inthecurrentwork,experimentallymeasuredpercentphotonic efficienciesof(P1)Ti/Alsampleswerenormalizedbyusingtheper centphotonicefficiencyvaluesoftheDegussaP25benchmark pho-tocatalyst(SupportingInformationFig.S1)whosephotocatalytic performancewasmeasuredunderidenticalflowandillumination conditionswiththe(P1)Ti/Alsamples.Thus,normalized photo-catalyticperformancesofthe(P1)Ti/Alsampleswerereportedby dividingthepercentphotonicefficiencyofthe(P1)Ti/Alsampleto thepercentphotonicefficiencyofDegussaP25benchmark photo-catalystandbymultiplyingthisratioby100,asshowninEq.(3): %relativephotonicefficiencyof(P1)Ti/AlwithrespecttoP25

=



%(P1)Ti/Al %P25



×100 (3)

Thesameapproachwasalsofollowedforthe(P2)Ti/Al fam-ily, where thenormalized photocatalytic activity values of the (P2)Ti/Alsampleswerereportedusingthepercentphotonic effi-ciencyvaluesoftheDegussaP25benchmarksample(Supporting InformationFig.S1)whichwasanalyzedunderidenticalflowand illuminationconditionswiththe(P2)Ti/Alfamily.

Notethatallofthereportedphotocatalyticperformance mea-surements in this workcorrespondto950mg ofphotocatalyst. Inotherwords,thesevaluesareintentionallyneithernormalized usingthephotocatalystspecificsurfaceareanorusingthe pho-tocatalystmass.Drawbacksassociatedwiththenormalizationof thephotocatalyticreactionratesusingphotocatalystmasswas dis-cussed recentlyin detail by Wachs et al.[38].We believe that normalizationofthephotocatalyticactivityvaluesinthecurrent studyviaSSAcouldalsobequitemisleading;astheoverallSSA ofthecurrentlyemployedcomplexmixed oxideheterogeneous catalystsmaynotbesimplyrelatedtothespecificsurfaceareas oftheactivephase(s).Furthermore,tothebestofourknowledge, theexactchemical/electronic/morphologicalnatureoftheactive site(s)responsibleforthephotocatalyticNOxoxidationandstorage onTiO2/Al2O3binaryoxidesarealsonotclear[39–46].This compli-cationalsopreventsanunambiguousexperimentaldetermination ofthesurfacecoverageoftheactivesites,precludingthe unequiv-ocalcalculationofaturnoverfrequency(TOF)value.Furthermore, anotheradditionalcomplicationregardingthecomparisonof abso-lutephotocatalyticactivitiesofdifferentpowderphotocatalystsin agas/solidphotochemicalreactionisassociatedwiththe macro-scopic packing of the micron/millimeter-sized grains that are formingthepowdersamples.Duetothemacroscopicgrainsizeand graindensitydistributiondifferences,lightpenetration/scattering towardthegrainswhich arephysicallylocatedfartherfromthe PMMAsampleholdersurfacelevelvariesina complexmanner. Thissuggeststhatmacroscopicgrainsizeandgrainpacking den-sityofdifferentphotocatalystpowdersareimportantparameters that play anactive role in themagnitude of theabsolute pho-tonicefficiencyvalues.Consideringallofthesecomplications,we believethatreportingphotocatalyticactivityvaluesasdescribedin

0 20 40 60 80 0.0 0.2 0.4 0.6 0.8 1.0 C oncent ration ( ppm ) Time(min) Light-on Light-off Adsorpon NOx (g) NO(g) NO2 (g)

Fig.1. Concentrationversustimeplotforarepresentativephotocatalytic perfor-mancetest.Blue,blackandredcurvescorrespondtotheconcentrationsoftotal NOx(g),NO(g)andNO2(g),respectively(seetextfordetails).(Forinterpretationof

thereferencestocolorinfigurelegend,thereaderisreferredtothewebversionof thearticle.)

Eqs.(1)–(3)providesarelativelyunambiguouscomparisonofthe (P1)Ti/Al,(P2)Ti/AlandDegussaP25samples.Inthelightofthis approach,byconsideringtherelativeperformanceofTi/Alsamples withrespecttoP25;onecanalsoreadilycompareTi/Albinaryoxide sampleswithmanyotherexistingphotocatalyticsystemsreported intheliterature.

Inthephotocatalyticperformanceanalysistests,concentrations versustimeplotsacquiredbythechemiluminescenceNOxanalyzer wereexploited.Fig.1illustratesatypicalconcentrationversustime plotrecordedduringaphotocatalyticperformancetest.Inthisplot, (blue-colored)totalNOxconcentration(i.e.sumofthe concentra-tionsofalloftheNOxspeciesexistinginthereactor)aswellas NO(g)(blackcurve)andNO2(g)(redcurve)concentrationsinthe photocatalyticreactorarepresentedasafunctionoftime.Inthe first∼20minoftheanalysis,agasmixturecontainingN2(g),O2(g), H2O(g)and1ppmNO(g)issuppliedtothephotocatalystsurface underdarkconditions,wheretheUVAlampisoffandany back-groundlightexposureofthephotocatalystsurfaceisprevented.In thisperiod(i.e.att∼7min),gasfeedisswitchedfromtheby-pass linetothereactorwhichisaccompaniedbyatransientdecreasein thetotalNOx(g)andNO(g)concentrations.Thiscanbeattributed tothedilutionofthegasinthereactorandtheadsorptionofNOx speciesonthegaslines,reactorwallsaswellasadsorptiononthe photocatalystsurface.SinceundertheseconditionsnoUVorVIS radiationisallowedtoimpingeonthephotocatalystsurface,no photocatalyticactivityisobservedduringthisinitialstage,evident bythepresenceofaminoramountofNO2(g)productionwhichis mostlyduetothermalcatalyticoxidationprocessesoccurringon thecatalystsurface.Afterthisinitialdarkperiod,reactorwallsand thephotocatalystsurfacearesaturatedwithNOx,whichis appar-entbythereturnoftheNOx(g)andNO(g)tracestotheoriginalinlet concentrationvalueofc.a.1ppm,signifyingtheendofthethermal catalyticactivity.

Afterthisinitialtransientperiodthatisatt∼25min,UVA irra-diationisturnedonandthephotocatalyticreactionisstarted.Due totheUVAillumination,asignificantandapermanentdecreasein theNO(g)andtotalNOx(g)concentrationsconcomitanttoavisible permanentriseintheNO2(g)levelareobserved.Thisindicatesthe conversionofNO(g)intoNO2(g)viaPCOprocess.Furthermore, pro-ducedNO2(g)canadsorbonthephotocatalystsurfaceintheform ofchemisorbedNO2,nitritesandnitrates[11,12,35]andstoredin thesolidstate,resultinginafurtherfallintheNO(g)andtotalNOx

(4)

300 400 500 600 700 800 900 1000 1100 0 100 200 300 400 500 Temperature(oC) Spe cific Sur fac e Area (m 2 /g ) (b) (P2) 0.5T (P2) 1.0Ti/Ali/Al 300 400 500 600 700 800 900 1000 1100 0 100 200 300 400 500 S pe cific S ur fa ce A rea (m 2 /g ) Temperature(oC) (P1) 0.5Ti/Al (P1) 1.0Ti/Al (a) 243 175 161 101 99 216 148 124 86 79 424 393 131 64 9 9 25 86 390 470

Fig.2.Specificsurfaceareavaluesforthesynthesized(a)(P1)Ti/Aland(b)(P2)Ti/Albinaryoxidesamplesaftercalcinationatvarioustemperatures.

signals.Itshouldbenotedthat,decreaseintheNO(g)concentration mightalsohavesomecontributionfromthedirectphotocatalytic decompositionandphoto-reductionofNO(g)formingN2(g)and/or N2O(g)[47]. However,sincethedirect photocatalytic reduction isarelativelyinefficientpathway,thisreactionchannelmaybe expectedtobeaminorphotochemicalroute.Consequently,the totalNOxconcentration(blue)curve(whichismostlycomprised ofthesumofNO(g)andNO2(g)signals)inFig.1remainsmostly below1ppmduringtheUVA-activatedregime,illustratingthe con-tinuousphotocatalyticactivityandphotochemicalNOxstoragein thesolidstate.

3. Resultsanddiscussion

Thermalevolutionandthestructuralchangesofthe(P1)Ti/Al and(P2)Ti/Alsampleswerestudiedasafunctionofthecalcination temperatures.Thespecificsurfaceareas(SSA)ofthesynthesized Ti/Albinaryoxidescalcinedatdifferenttemperaturesarepresented inFig.2.Beforecalcination(P2)Ti/Alsampleshavesignificantly (almosttwotimes)higherSSAvaluesthanthecorresponding(P1)

Ti/Alsamples.Thisdifference canbeassociated withdissimilar morphologiesof P1 andP2 samples.TEM-EDXanalysis ofTi/Al samplessynthesizedviaP1andP2suggeststhat(P1)Ti/Al mate-rialconsistsofTiO2crystallitesdispersedratherinhomogeneously on␥-Al2O3,while(P2) Ti/Almaterialpresentsamore homoge-nousandanamorphousAlxTiyOzmixedoxidesystemwithahigher porosity[35].TheSSAvaluesof both(P1) and(P2)Ti/Albinary oxidesdrasticallydecreaseinamonotonicfashionwith increas-ingcalcinationtemperature.AswillbeshownbelowviaXRDdata (Fig.3),thismonotonicdecreaseinSSAvaluesisassociatedwith theorderingandcrystallizationofthemixedoxidesystemand for-mationofnewphases.Anotherimportantbehavior observedin Fig.2isthatforlowercalcinationtemperaturestheTi/Almixed oxidespreparedviaP2revealmuchhigherSSAvaluescompared tothat of P1;for higher calcination temperaturesthis trend is reversedandP2samplescontinuetoloseSSAinaradical man-nerwhileSSAlossforP1samplesremainatamoderatelevel.This isduetothefactthatintheP1materials,titaniaisdispersedonto the␥-Al2O3supportmaterialwherealuminaandtitaniadomains existasseparatephases.Inthissystem,␥-Al2O3servesasastrong

(5)

backboneenablingarelativelyhighintrinsicsinteringresistance, where␥-Al2O3→␣-Al2O3(corundum)andTiO2(anatase)→TiO2 (rutile)phasetransitionsarehindered(Fig.3).Incontrast,P2 sys-temiscomprisedofaAlxTiyOzmixedoxidewhichcanreadilyform low-surfaceareaphasessuchascorundumandrutileatelevated temperatures(Fig.3).

Structuralalterationsofthe(P1)and(P2)Ti/Alphotocatalysts werealsoinvestigatedasafunctioncalcinationtemperaturevia XRDmethod(Fig.3).Fig.3showstherepresentativeXRDpatterns ofthesebinaryoxidesampleswithatitaniatoaluminamoleratio of0.5.ItcanbeseeninFig.3athatthe(P1)0.5Ti/Al-700 sam-pleyieldsbroaddiffractionpeakscorrespondingtoanatasephase (JCPDS21-1272)andevenbroaderdiffractionsignalsassociated with␥-Al2O3 (JCPDS 29-0063)indicating smallcrystallite sizes. Furthercalcinationat800◦C,doesnotresultinasignificantchange intheXRDpatternofthe(P1)Ti/Alsystem.However,calcination at900◦Cleadstothesharpeningoftheanatasediffractionsignals suggestingcrystallographicorderingofthisparticularphase. Fur-thermore,atthiscalcinationtemperature,sharpandintenserutile diffractionsignals(JCPDS04-0551)alsobecomeapparent;clearly demonstratingthebeginningofananatase→rutilephase trans-formation.Calcinationofthe(P1)0.5Ti/Alsampleat1000◦Cleads tosignificantsuppressionofanatasediffractionsignals,alongwith theformationofweakbutdiscernible␣-Al2O3(corundum)phase (JCPDS10-0173).Itisworthmentioningthatthecorresponding XRDpatternsofthe(P1)1.0Ti/Alsamplerevealidentical crystal-lographictrendstothatofthe(P1)0.5Ti/Alsampleandhenceare notbeshownhere(SupportingInformationFig.S2).

Fig.3b shows XRD patternsof the(P2) 0.5 Ti/Al photocata-lysts calcinedat various temperatures. It is apparentin Fig.3b thatuponcalcinationattemperaturesbelow900◦C,(P2)0.5Ti/Al systemrevealsamostlyamorphousstructureandrelatively dis-orderedphaseswithsmallparticlesizes.Calcinationofthe(P2) 0.5 Ti/Al sample at 900◦C leadsto the formation of the rutile phase.Itshouldbenotedthatinthe(P2)0.5Ti/Alsystem, amor-phousAlxTiyOzmixedoxidetransformsreadilyintotherutilephase withoutrevealingasubstantialamountofanatase.Increasingthe

calcinationtemperatureto1000◦C,resultsinthesharpeningand strengtheningoftherutilesignalsandformationofintense␣-Al2O3 signals.XRDpatternsofthe(P2)1.0Ti/Alsample(datanotshown) revealanalogoustrendstotheonesgiveninFig.3bwheretheonly noticeable differenceis theshiftintheonset ofthe crystalliza-tion/orderingtemperatureto800◦C;asaresultoftheincreasing titanialoadinginthebinaryoxidemixture.

Comparisonofthethermallyinducedstructuralchangesof(P1) Ti/Aland(P2) Ti/Alsamplesrevealsthatforthe(P1)Ti/Al sam-ple,anatasephaseexistsinalargerthermalwindowincontrastto the(P2)Ti/Alsystem.Inaddition,althoughcorundumformationis observedinaratherlimitedfashiononthe(P1)Ti/Alsystemwithin theinvestigatedthermalwindow,presenceofcorundumismuch moresignificantforthe(P2)Ti/Alsystem.Furthermore,XRDdata giveninFig.3areinverygoodagreementwiththeBETresults pre-sentedinFig.2.ItisapparentthatthedrasticfallintheSSAvalues ofthe(P2)Ti/Alsystematelevatedcalcinationtemperaturescan belinkedtotheformationofhighlycrystallineand low-surface areaphasessuchasrutileandcorundum,whilesuchphasesare notexpressedinastrongfashionforthe(P1)Ti/Alsystem.

Fig.4presentsRamanspectraofthesynthesized(P1)and(P2) 0.5Ti/Alsamplesaftercalcinationatvarioustemperatures.Raman spectrumofthe(P1)0.5Ti/Alsamplecalcinedat700◦Cgivenin Fig.4ashowsweakRamanfeaturesat144,400,519and639cm−1 whichcanbereadilyassignedtotheanatasephase[11].Increasing thecalcinationtemperatureto800◦Cleadstosharperandmore intense anataseRaman signals suggesting ordering and further crystallizationofthisparticularphase.Calcinationofthe(P1)0.5 Ti/Alsampleat900◦Cresultsinadecreaseintherelative intensi-tiesofanatasesignalswhilenewRamanfeaturesassociatedwith rutilephasestarttoappearat236,447and612cm−1[11]. Fur-thercalcinationat1000◦Cleadstoalmostcompletesuppression oftheanatasefeatureswhilerutilesignalssignificantlyintensify (Fig.4a)inverygoodagreementwiththecorrespondingXRDdata presentedinFig.3a.

Forthe(P2)0.5Ti/Alsamples,noRamanbandsweredetected forcalcinationtemperatureslessthanorequalto600◦C(Fig.4b).

(6)

Fig.5. RelativephotocatalyticperformancesofthesynthesizedTi/AlbinaryoxidesamplesnormalizedwithrespecttothephotocatalyticactivityofDegussaP25industrial benchmark(seetextfordetails).

Ontheotherhand,calcinationat800◦Cyieldsacomplicatedand convolutedsetofRamanbandswhichcontainbothanataseand rutilefeatures.Itshouldbenotedthatsuchfeaturesareelusive todetectinthecorrespondingXRDdatapresentedinFig.3b sug-gestingthe presenceof relativelysmalland disorderedanatase andrutile crystallitesat this temperature.Athighercalcination temperaturessuchas900◦Cand1000◦C,(P2)0.5Ti/Alsampleis dominatedbytherutilephasealongwiththegradual disappear-anceoftheanatasephase;inaccordancewiththecorresponding XRDdatapresentedinFig.3b.

PhotocatalyticNOoxidation and storageperformancesof all ofthesynthesizedbinaryoxidesamplesaswellastheDegussa P25benchmarkphotocatalystwerealsomeasuredinthe custom-designphotocatalyticflowreactor.Percentphotonicefficiencies for “Photocatalytic total NOx(g) decrease” and “Photocatalytic NO2(g)generation”werecalculatedbyintegratingthetimeversus concentrationplotssimilartotheonegiveninFig.1andusingEqs. (1)and(2).Next,percentphotonicefficiencyvaluesoftheTi/Al sampleswerenormalizedusingthecorrespondingvaluesoftheP25 DegussabenchmarkcatalystasdescribedinEq.(3).Thesevalues aredenotedas“%RelativephotonicefficiencywithrespecttoP25”. Fig.5presentsthesenormalizedpercentphotonicefficiencyvalues for“PhotocatalyticTotalNOxDecrease”(bluebars)andfor “Photo-catalyticNO2(g)Generation”(redbars).Inthisnormalizedvertical axis,100%correspondstoaphotocatalyticactivitythatisidentical tothatofDegussaP25benchmarkphotocatalyst(illustratedbythe horizontalflatlineinthehistogram).

NotethatforanultimatephotocatalystwithasupremeDeNOx performance,bluebarsshouldbemaximized(toobtainmaximum photocatalyticNOx(g)storage/conversion);whileredbarsshould besimultaneouslyminimized(toreleaseminimumamountoftoxic NO2(g)intotheatmosphere).DegussaP25benchmark photocata-lysthasahighphotocatalyticNO(g)oxidationabilityleadingtothe generationoflargequantitiesofunwanted NO2(g)alongwitha verylimitedNOxstoragecapability(SupportingInformationFig. S1).Keepinginmind thatNO2(g)isa much moretoxic chemi-calthanNO(g),highphotocatalyticNOoxidationactivityofthe

DegussaP25industrialbenchmarkphotocatalystwithouta signif-icantNOxstoragecapabilityrendersthismaterialanon-idealNOx removalphotocatalyst.

AnalysisoftheperformanceresultspresentedinFig.5reveals interesting observations.For all of thesynthesized Ti/Albinary oxidesystems,NO2(g)sliptotheatmosphere(i.e.redbarsinFig.5) is alwaysless than thatof theDegussa P25 benchmark photo-catalyst.Thisobservationmayhavetwodifferentorigins.Firstly, for a largenumber of theanalyzed Ti/Al samples,overall pho-tocatalyticNOoxidation andfurtherNO2 storageintheformof nitrates/nitritesaregreaterthanthatofP25(thisisevidentbythe bluebarsabove100% mark,concomitanttothered barsbelow the100%mark). Forthesesystems, althoughalargeamountof NO2isgeneratedviaphotocatalyticNOoxidation,theseoxidized speciescannotfindtheopportunitytoslipintotheatmospheredue tothehighNOxstoragecapacityofthebinaryoxidesystem pro-videdbythealuminadomainswhichareabletorapidlycapture theoxidizedNOxspeciesinthesolidstate.Thisisalsoconsistent withthefactthatNOxadsorptionenergyonaluminaistypically higherthanthatoftitania[12].Thesecondoriginoftherelatively lowNO2 slipofasmallgroupofTi/Alsamples(suchas(P2)0.5 Ti/Aland(P2) 1.0Ti/AlsamplescalcinedatT<800◦C)are asso-ciatedwiththefactthatthesephotocatalystshaveanextremely poorphotocatalyticNOoxidationcapability.Sincethese photocata-lystscannotgenerateNO2(g)viaphotocatalyticoxidation(verified by smallblue bars in Fig. 5), NO2 slip is accordingly also very limited.Thusingeneral,performancedatainFig.5indicatethat forhighlyactivephotocatalystswhichcanefficientlyconvertNO(g) intoNO2(g),aluminadomainscanbeutilizedasactiveNOx captur-ingsitesthatcansignificantlyeliminatethereleaseoftoxicNO2(g) intotheatmospherebyadsorptionandsolidstatestorage.Aswill bediscussedinmoredetailbelow,aluminaadditionalsotypically improvestheSSAofthebinaryoxidesystems(Fig.2)andenables themtohave generallyhigher SSAvalues thanthat ofDegussa P25(i.e.55m2/g).Ontheotherhand,itis alsoworth mention-ingthatintheabsenceofaphotocatalyticoxidationcomponent suchasTiO2,pure␥-Al2O3hasanextremelylimitedphotocatalytic

(7)

NO(g)storage/adsorptionandNO2(g)generationcapability(data notshown).Thisobservationclearlydemonstratestheneedforthe co-existenceofphotocatalyticNO(g)→NO2(g)oxidation function-alitiestogetherwithNO2(g)adsorption/storagefunctionalitiesin anultimatephotocatalyst.

Inordertoinvestigatetheeffectofcalcinationtemperatureon thephotocatalyticperformanceoftheTi/Alsystems,onecanfocus onthecorrespondingdataforthe(P2)0.5Ti/Alphotocatalystfamily giveninFig.5.Assessmentofthissetofdataclearlyrevealsthatfor calcinationtemperatureslessthan900◦C,(P2)0.5Ti/Alsamples do notpresent anysignificantphotocatalyticactivity.However, calcinationat900◦Cleadstoamajorboostinthephotocatalytic activity,whilethisincreasedactivityfallsdrasticallyuponfurther calcinationat 1000◦C. Structural characterizationdata given in Figs.2–4indicatethatforcalcinationtemperaturesbelow900◦C, (P2)0.5Ti/AlsystemiscomposedofamostlyamorphousAlxTiyOz mixedoxide,whichalsocontainspoorlyorderedandsmallanatase andrutilecrystallites(Figs.3band4b)renderingarelativelyhigh SSA (i.e. ≥131m2/g)(Fig. 2b).Upon calcination of the (P2) 0.5 Ti/Alphotocatalystat900◦C,formationofanorderedrutilephase, togetherwitharelativelyminorcontributionfromanataseparticles (Figs.3band4b)areobserved;concomitanttoadrasticdecrease inSSAto64m2/g(Fig.2b).

Note that analogous temperature-dependent performance trendsarealsovalidforthe(P2)1.0Ti/AlfamilygiveninFig.5, wheretheonsetofthephotocatalyticactivitiesobservedatalower temperatureof800◦Cwithincreasingtitanialoadinginthebinary oxidesystem.Thisminortemperatureshiftintheonsetof pho-tocatalyticactivityfor thehigher titanialoadingis in linewith theshiftintheanatase/rutilecrystallizationtemperaturesforthe (P2)1.0Ti/Alsamples,discussedabove.Furthermore,thedecline in the photocatalytic activity of the Ti/Al systems at T>900◦C canbeexplained withthealmost completeloss ofthe anatase phase(Figs.3 and4).It isknownthattheco-existenceof both anataseandrutilephasesiscriticalforobtainingahigh photocat-alyticNOoxidationandstorageactivity[34,48,49].Thusinoverall, theseobservationssuggestthatalthough Ti/Alsystemscalcined atlowertemperaturesrevealrelativelyhigherSSA,thesepoorly orderedoramorphous systemsdonot possesstheproper crys-tallographic/electronic/morphological features required for the generationofthephotocatalyticactivesiteswithsufficient qual-ity/quantity.

Comparison of thephotocatalytic performance results given in Fig. 5 for the(P1) Ti/Al family with that of (P2) Ti/Al fam-ilyimpliesthatthereisacomplexinterplaybetweencalcination temperature,crystal structure,composition and SSAwhich dic-tatethefinalphotocatalyticactivityinacoordinativemanner.In ordertoillustratethispoint,onecancomparethebest perform-ingphotocatalystintheP1family(e.g.(P1)0.5Ti/Al-800)tothat of P2 (e.g.(P2) 0.5 Ti/Al-900). It can readilybeseen that pho-tocatalytictotal NOxdecrease (i.e.bluebarsin Fig.5)forthese samplesare about 161–176%greater than that of Degussa P25 benchmarkphotocatalystwhiletheirNO2sliptotheatmosphere (i.e.redbarsinFig.5)aresignificantlylowerthanthatofDegussa P25(i.e.75%lowerfor(P1)0.5Ti/Al-800and55%lowerfor(P2) 0.5Ti/Al-900). Inotherwords,bothof thesephotocatalystscan simultaneouslyoxidize NOinto NO2 and captureoxidized NOx speciesinthesolidstateina muchmoreefficientmannerthan Degussa P25.However, comparison ofthestructural properties of thesetwo efficient photocatalysts presents stark dissimilari-ties.Firstly,XRD(Fig.3a)andRaman(Fig.4a)dataforthe(P1) 0.5Ti/Al-800sample revealthat this materialis predominantly comprisedof ananatasephase withaminorcontributionfrom rutile,whilecorrespondingdataforthe(P2) 0.5Ti/Al-900 sam-ple(Figs. 3b and4b)suggesta composition whererutile isthe dominantphasewithanatasebeingtheminorityphase.Thesetwo

structurally different photocatalysts revealing comparably high photocatalyticactivitiesimpliesthatthephotocatalyticallyactive site(s)haveacomplexnaturewhichmayinvolveanamorphous phase,a particularanatase(orrutile)adsorptionsite,a particu-laradsorptionsiteontheanatase/rutilehetero-junctionand/ora particular OHfunctionalityonanyofthesedomainsetc. How-ever,itisclearthatordinaryXRDandRamanmeasurementsdonot revealunambiguousinformationregardingneitherthenaturenor thequantityofsuchactivesites.

It canalsobeemphasizedthatthesetwo differentbut com-parablyactivephotocatalysts(i.e.(P1)0.5Ti/Al-800and(P2)0.5 Ti/Al-900)havequitedissimilarSSAvalues.While(P1)0.5 Ti/Al-800samplehaveaSSAof161m2/g,(P2)0.5Ti/Al-900samplehasa SSAof64m2/g.Thisobservationdemonstratesthatusingabsolute SSAvaluesasthesoleparameterforcomparingthephotocatalytic activitiesof dissimilar materials canbe misleading(Supporting InformationFig.S3).

Consequently, results presented in the current work indi-cate that Ti/Al binary oxide photocatalysts can be synthesized usingdifferentsyntheticprotocolspossessingquitedifferent struc-tural features detectedin BET, Ramanand XRDmeasurements yet,revealingsimilarphotocatalyticactivities.Hence,neitherthe nature,northequantityofthephotocatalyticactivesitescanbe readilyinferreddirectlyfromsuchconventional andlong-range characterizationtechniqueswhichlackspatial/energeticresolution inthenanometerscalethatcanlocallyprobetheelectronicand structuralpropertiesoftheparticularactivesite(s).

4. Conclusions

In thecurrent work,TiO2/Al2O3 binary oxidephotocatalysts were synthesized via two different sol–gel protocols (P1 and P2)where various TiO2 to Al2O3 moleratios(0.5 and 1.0)and calcinationtemperatures(150–1000◦C)wereutilizedinthe syn-thesisprocedures.Structuralcharacterizationofthesynthesized binaryoxidephotocatalysts wasalsoperformedviaBETsurface areaanalysis,X-raydiffraction (XRD)and Ramanspectroscopy; and the photocatalytic NO(g) oxidation performances of these binaryoxides were measuredunderUVA irradiation in a com-parative fashion to that of Degussa P25 industrial benchmark. TiO2/Al2O3binaryoxidephotocatalystsweredesignedto demon-strate a novel approach which is essentially a fusion of NSR (NOxStorageReduction)andPCO(PhotocatalyticOxidation) tech-nologies. In this approach, rather than attempting to perform completeNOxreduction,NO(g)isoxidizedonaphotocatalyst sur-faceandstoredinthesolidstateintheformofnitrates/nitrites (ortheirprotonatedsurfacederivatives)onastoragecomponent. Currentresultssuggestthataluminadomainscanbeutilizedas active NOx capturing sites that can significantly eliminate the release of toxic NO2(g)into theatmosphere by adsorptionand solid statestorage.Using eitherP1or P2protocols, structurally different Ti/Al binary oxide systems can be synthesized which enable much superiorphotocatalytic total NOx removal(i.e.up to 176% higher) than Degussa P25 industrial benchmark. Fur-thermore, suchTi/Al binary oxides can also decrease thetoxic NO2(g) emission into theatmosphere (which is formed due to the photocatalytic oxidation of NO(g)) by 75% with respect to that of Degussa P25. It is apparent that there is a complex interplaybetweenthecalcinationtemperature,crystalstructure, composition and SSA which dictate theultimatephotocatalytic activityinacoordinativemanner.Itwasobservedthattwo struc-turallydifferentphotocatalystspreparedviadifferentpreparation protocols may reveal comparably high photocatalytic activities implying that thephotocatalyticallyactive sites responsiblefor thephotocatalyticNO(g)oxidationandstoragehaveanon-trivial nature.

(8)

Acknowledgements

Theauthorsacknowledgethefinancialsupportfromthe Scien-tificandTechnicalResearchCouncilofTurkey(TUBITAK)(Project Code:109M713). E.O.alsoacknowledgesfinancialsupportfrom TurkishAcademyofSciencesthroughthe“TUBA-GEBIP Outstand-ingYoung ScientistPrize”and fromFevziAkkayaScienceFund (FABED)throughEserTümenScientificAchievementAward. AppendixA. Supplementarydata

Supplementary data associated with this article can be found,intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod. 2014.04.001.

References

[1]T.N.Obee,R.T.Brown,Environ.Sci.Technol.29(1995)1223–1231. [2]Q.L.Yu,H.J.H.Brouwers,Appl.Catal.B:Environ.92(2009)454–461. [3]A.R.Ravishankara,Chem.Rev.103(2003)4505–4507.

[4]K.Skalska,J.S.Miller,S.Ledakowicz,Sci.TotalEnviron.408(2010)3976–3989. [5]S.Roy,M.S.Hegde,G.Madras,Appl.Energy86(2009)2283–2297.

[6]ToyotaPatent,EuropeanPatentApplicationno:0573672A1(1992). [7]N.Takahashi,H.Shinjoh,T.Iijima,T.Suziki,K.Yamazaki,K.Yokota,H.Suziki,N.

Miyoshi,S.Matsumoto,T.Tanizawa,T.Tanaka,S.Tateishi,K.Kasahara,Catal. Today27(1996)63–69.

[8]M.T.Javed,N.Irfan,B.M.Gibbs,J.Environ.Manage.83(2007)251–289. [9]M.A.Uddin,K.Shimizu,K.Ishibe,E.Sasaoka,J.Mol.Catal.A:Chem.309(2009)

178–183.

[10]J.S.Hepburn,E.Thanaslu,D.A.Dobson,W.L.Watkins,SAETechnicalPaper (1996)962051.

[11]S.M.Andonova,G.S.Senturk,E.Kayhan,E.Ozensoy,J.Phys.Chem.C113(2009) 11014–11026.

[12]S.M. Andonova, G.S. Senturk, E. Ozensoy, J. Phys. Chem. C 114 (2010) 17003–17016.

[13]T.Tabata,K.Baba,H.Kawashima,Appl.Catal.B:Environ.7(1995)19–32. [14]J.Lasek,Y.H.Yu,J.C.S.Wu,J.Photochem.Photobiol.C:Photochem.Rev.14

(2013)29–52.

[15]S.Devahaddin,C.Fan,K.Li,D.H.Chen,J.Photochem.Photobiol.A:Chem.156 (2003)161–170.

[16]M.M.Ballari,M.Hunger,G.Husken,H.J.H.Brouwers,Appl.Catal.B:Environ.95 (2010)245–254.

[17]Q.L.Yu,M.M.Ballari,H.J.H.Brouwers,Appl.Catal.B:Environ.99(2010)58–65. [18]M.R.Hoffman,S.T.Martin,W.Choi,D.W.Bahnemann,Chem.Rev.95(1995)

69–96.

[19]N.Meng,M.K.H.Leung,D.Y.C.Leung,K.Sumathy,Renew.Sust.Energ.Rev.11 (2007)401–425.

[20]T.Martinez,A.Bertron,E.Ringot,G. Escadeillas,BuiltEnviron.46(2011) 1808–1816.

[21]N.Bowering,G.S.Walker,P.G.Harrison,Appl.Catal.B:Environ.62(2006) 208–216.

[22]K.Hashimoto,K.Wasada,N.Toukai,H.Kominami,Y.Kera,J.Photochem. Pho-tobiol.A136(2000)103–109.

[23]H.Wang,Z.Wu,W.Zhao,B.Guan,Chemosphere66(2007)185–190. [24]L.Yang,Y.Wang,L.Zhao,Chin.Opt.Lett.10(6)(2012),063102(3).

[25]A.D.Paola,G.Cufalo,M.Addamo,M.Bellardita,R.Campostrini,M.Ischia,R. Ceccato,L.Palmisano,ColloidsSurf.A:Physicochem.Eng.Aspects317(2008) 366–376.

[26]A.Mitsionis,T.Vaimakis,C.Trapalis,N.Todorova,D.Bahnemann,R.Dillert, Appl.Catal.B:Environ.106(2011)398–404.

[27]N.Negishi,K.Takeuchi,T.Ibusuki,J.Sol–GelSci.Technol.13(1998)691–694. [28]C.L.Bianchi,C. Pirola,E.Selli,S.Biella,J. Hazard.Mater.211–212(2012)

203–207.

[29]J.S.Dalton,P.A.Janes,N.G.Jones,J.A.Nicholson,K.R.Hallam,G.C.Allen,Environ. Pollut.120(2002)415–422.

[30]A.Fujishima,X.Zhang,D.A.Tryk,Surf.Sci.Rep.63(2008)515582.

[31]W.Wang,Y.Yang,H.Luo,T.Hu,F.Wang,W.Liu,J.AlloysCompd.509(2011) 3430–3434.

[32]B.N.Shelimov,N.N.Tolkachev,O.P.Tkachenko,G.N.Baeva,K.V.Klementiev, A.Yu.Stakheev,V.B.Kazansky,J.Photochem.Photobiol.A195(2008)81–88. [33]A.M. Soylu, M. Polat, D.A. Erdogan, C. Yildirim, O. Birer, E.

Ozen-soy, Applied Surface Science, 2014, In Press, Corrected Proof, http://dx.doi.org/10.1016/j.apsusc.2014.02.065.

[34]A.Folli,S.B.Campbell,J.A.Anderson,D.E.Macphee,J.Photochem.Photobiol.A 220(2011)85–93.

[35]G.S.Senturk,E.I.Vovk,V.I.Zaikovskii,Z.Say,A.M.Soylu,V.I.Buktiyarov,E. Ozensoy,Catal.Today184(2012)54–71.

[36]M. Nargiello, T.Herz, Physical–chemical characteristics ofP-25makingit extremelysuitedasthecatalystinphotodegradationoforganic-compounds, in:B.V.Amsterdam(Ed.),PhotocatalyticPurificationandTreatmentofWater andAir,vol.3,ElsevierSciencePublication,1993,pp.801–807.

[37]D.A. Erdogan, M. Polat, R. Garifullin, M.O. Guler, E. Ozensoy, Applied Surface Science, 2014, In Press, Accepted Manuscript, http://dx.doi.org/10.1016/j.apsusc.2014.04.082.

[38]I.E.Wachs,S.P.Phivilay,C.A.Roberts,ACSCatal.3(2013)2606–2611. [39]M.Anpo,T.Kawamura,S.Kodama,J.Phys.Chem.92(1988)438–440. [40]M.Anpo,M.Takeuchi,J.Catal.216(2003)505–516.

[41]C.Anderson,A.J.Bard,J.Phys.Chem.B101(1997)2611–2616.

[42]V.Loddo,G.Marci,L.Palmisano,A.Sclafani,Mater.Chem.Phys.53(1998) 217–224.

[43]H.Nishiguchi,J-L.Zhang,M.Anpo,H.Masuhara,J.Phys.Chem.B105(2001) 3218–3222.

[44]M.I.Franch,J.Peral,X.Domenech,R.F.Howe,J.A.Ayllon,Appl.Catal.B55(2005) 105–113.

[45]M.Kitano,M.Matsuoka,M.Ueshima,M.Anpo,Appl.Catal.A325(2007)1–14. [46]B.N.Shelimov,N.N.Tolkachev,O.P.Tkachenko,G.N.Baeva,K.V.Klementiev,A.Y. Stakheev,V.B.Kazansky,J.Photochem.Photobiol.A:Chem.195(2008)81–88. [47]O.Carp,C.L.Huisman,A.Reller,Prog.SolidStateChem.32(2004)33–177. [48]D.O.Scanlon,C.W.Dunnill,J.Buckeridge,S.A.Shevlin,A.J.Logsdail,S.M.

Wood-ley,C.R.A.Catlow,M.J.Powell,R.G.Palgrave,I.P.Parkin,G.W.Watson,T.W.Keal, P.Sherwood,A.Walsh,A.A.Sokol,Nat.Mater.12(2013)798–801.

[49]T.Luttrell,S.Halpegamage,J.Tao,A.Kramer,E.Sutter,M.Batzill,Sci.Rep.4 (2014)1–8.

Şekil

Fig. 1. Concentration versus time plot for a representative photocatalytic perfor- perfor-mance test
Fig. 3. XRD patterns corresponding to the (a) (P1) 0.5 Ti/Al and (b) (P2) 0.5 Ti/Al binary oxide samples after calcination at various temperatures.
Fig. 3b shows XRD patterns of the (P2) 0.5 Ti/Al photocata- photocata-lysts calcined at various temperatures
Fig. 5. Relative photocatalytic performances of the synthesized Ti/Al binary oxide samples normalized with respect to the photocatalytic activity of Degussa P25 industrial benchmark (see text for details).

Referanslar

Benzer Belgeler

Despite the absence of SIP1 in cultured carcinoma cells, negative effects of SIP1 on cell cycle progression and its ability to induce replicative senescence, the idea that SIP1

EBCPG provides a comprehensive way to assist clinicians in making decision according to the visualized clinical practice guidelines while

VVestfallen bölgesi Hameln.de BESMER ve OKA TETEX, 1963 de Rheinberg de HER- BERT - REİCHEL tekstil ve halı firmalarında Halı uzma­ nı ve ressamı olarak Türk

Örneğin, bu çalışmanın da akım ve notasyon anlamında inceleme örnekleri olan Serializm, İntegral Serializm, Rastlamsal ya da Deneysel Müzik gibi yeni

Table 4 (page 556) indicates that women with wage work experience outside the household prior to emigration had a greater tendency to become pioneer migrants whereas all

sensitivity to anticancer drugs, but definitive evidence of this is polymorphic variants of mutants identified in head and neck squamous cell cancers (HNSCC) to inhibit

Küçük bey, ellerine pek az para geçenler, bu paranın temiz olup olmadığına dik­ kat etmek için daha çok vakit sahibidirler!” Nahid. Sırrı Örik, Bütün Oyunları,

Ortalamalar›, minumum ve maksi- mum de¤erleri ile gruplar aras›nda istatistik fark ola- rak anlaml› olup olmad›klar› incelendi¤inde, Trabzon bölgesinde yaflayan hastalar›n