• Sonuç bulunamadı

The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue spaces

N/A
N/A
Protected

Academic year: 2021

Share "The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue spaces"

Copied!
26
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

The refined direct and converse inequalities of trigonometric approximation

in weighted variable exponent Lebesgue spaces

Article  in  Georgian Mathematical Journal · September 2011 DOI: 10.1515/GMJ.2011.0037 CITATIONS 19 READS 98 2 authors:

Some of the authors of this publication are also working on these related projects:

Approximation in Variable Lebesgue and Smirnov spacesView project

New function spacesView project Ramazan Akgün

Balikesir University 40PUBLICATIONS   303CITATIONS   

SEE PROFILE

Vakhtang Kokilashvili

A. Razmadze Mathematical Institute 322PUBLICATIONS   2,755CITATIONS   

(2)

DOI 10.1515 / GMJ.2011.0037 © de Gruyter 2011

The refined direct and converse inequalities

of trigonometric approximation in

weighted variable exponent Lebesgue spaces

Ramazan Akgün and Vakhtang Kokilashvili

Abstract. Refined direct and converse theorems of trigonometric approximation are proved in the variable exponent Lebesgue spaces with weights satisfying some Mucken-houpt Ap-condition. As a consequence, the refined versions of Marchaud and its converse inequalities are obtained.

Keywords. Weighted fractional modulus of smoothness, direct theorem, converse theo-rem, fractional derivative, variable exponent Lebesgue space.

2010 Mathematics Subject Classification. 26A33, 41A10, 41A17, 41A25, 42A10.

1

Introduction and auxiliary results

It is well known that sharp Jackson [51] and converse [50] inequalities1

c1.r; p/ nr ² n X D1 ˇ r 1E 1ˇ .f /p ³ˇ1  !r  f;1 n  p  c2.r; p/ nr ² n X D1  r 1E 1 .f /p ³ 1 (1)

of trigonometric approximation for the classical Lebesgue space Lp.T /, with

1 < p <1, hold with positive constants c1.r; p/ and c2.r; p/. We define

En.f /p WD inf¹kf TkpW T 2 Tnº;

whereTnis the class of trigonometric polynomials of degree not greater than n,

and f 2 Lp.T /. Also we set WD min¹2; pº, r 2 N WD ¹1; 2; 3; : : :º and

ˇ WD max¹2; pº. Finally Thf ./ WD f . C h/, h 2 R, is a translation operator,

1 We will denote by c

1.   /; c2.   /; : : : ; ci.   /; : : : constants that are different on different occurrences and absolute or dependent only on the parameters given in brackets.

(3)

I is an identity operator,

!r.f; ı/pWD sup¹k.Th I /rfkpW 0 < h  ıº

is the r -th modulus of smoothness of f and T WD Œ0; 2/. Inequalities like (1)

have wide applications in embedding theorems [39, 47], in the study of absolute convergent Fourier series [24, 25, 48], investigation of the properties of conjugate functions [8] and characterizations of Lipschitz classes [31, 47, 50, 51]. Using

weights satisfying the Muckenhoupt Ap-condition (see the definition below)

in-equalities (1) also hold, in a certain form, for Lebesgue spaces Lp.T ; !/ with

Ap-weights [1]:

Theorem A. Let 1 < p < 1, ! 2 Ap and f 2 Lp.T ; !/. If n 2 N and

r 2 RCWD .0; 1/, then there exist constants c3.r; p/, c4.r; p/ > 0 such that

c3.r; p/ n2r ² n X D1 2ˇ r 1Eˇ.f /p;! ³ˇ1  r  f;1 n  p;!  c4.r; p/ n2r ² n X D1 2 r 1E 1 .f /p;! ³ 1 holds.

Here we used fractional weighted moduli of smoothness r.f;/p;!(cf. [3, 7])

other than !r.f;/p because the translation operator Th is, in general, not

con-tinuous in weighted spaces, for example in weighted Lebesgue spaces Lp.T ; !/,

in (weighted) variable exponent Lebesgue spaces. Variable exponent Lebesgue

spaces Lp.x/ and the corresponding Sobolev type spaces Wp.x/have wide

ap-plications in elasticity theory [52], fluid mechanics [40, 41], differential operators [13, 41], non-linear Dirichlet boundary value problems [33], non-standard growth

[34, 52] and variational calculus [43]. The first article on Lp.x/was [37] and later

the research was carried out for rather general modular spaces [36]. Lp.x/is an

ex-ample of modular spaces [18, 35] and Sharapudinov [45] obtained the topological

properties of Lp.x/. Furthermore, if p WD ess supx2Tp.x/ <1, then Lp.x/is a

particular case of Musielak–Orlicz spaces [35]. In subsequent years various

math-ematicians investigated the main properties of spaces Lp.x/, e.g. [15, 33, 42, 45].

In Lp.x/there is a rich theory of boundedness of integral transforms of various

type; see [12, 26, 43, 46]. For p.x/ WD p, 1 < p < 1, Lp.x/ coincides with

the Lebesgue space Lp.T / and basic problems of trigonometric approximation in

Lp.T / are well known. For a complete treatise of polynomial approximation we

(4)

and rational functions in Lebesgue spaces, Orlicz spaces, symmetric spaces and their weighted versions in sufficiently smooth complex domains and curves was investigated in [4–6, 19, 20, 22]. In harmonic and Fourier analysis some of the operators (for example a partial sum operator of Fourier series, a conjugate

opera-tor, differentiation operaopera-tor, translation operator Th, h2 R) have been extensively

used to prove direct and converse type approximation inequalities. Since Lp.x/

is not translation invariant [33], using Butzer–Wehrens type moduli of smooth-ness (see [10, 14, 16, 30]), Israfilov, Kokilashvili and Samko [21] obtained direct and converse trigonometric approximation theorems in weighted variable

expo-nent Lebesgue spaces Lp./! .

In the present paper we investigate the approximation properties of a

trigono-metric system in Lp./! . We consider the fractional order moduli of smoothness

and obtain the improved direct and converse theorems of trigonometric

polyno-mial approximation in Lp./! .

A function ! W T ! Œ0; 1 will be called a weight if ! is measurable and

almost everywhere (a.e.) positive. For a weight ! we denote by Lp.T ; !/ the

weighted Lebesgue space of 2 periodic measurable functions f W T ! C such

that f !1=p2 Lp.T /, where C is a complex plane. We setkf kp;! WD kf !1=pkp

for f 2 Lp.T ; !/.

LetP be the class of Lebesgue measurable functions p.x/W T ! .1; 1/ such

that 1 < p WD ess infx2Tp.x/  p < 1. We define the class Lp./2 of 2

periodic measurable functions f W T ! C satisfying

Z Cc

Ccjf .x/j

p.x/dx <1

for any real number c and p 2 P .

The class Lp./2 is a Banach space [33] with the norm

kf kT ;p./WD inf˛>0 ²Z T ˇ ˇ ˇ f .x/ ˛ ˇ ˇ ˇ p.x/ dx 1 ³ :

Let ! W T ! Œ0; 1 be a 2 periodic weight. We will denote by Lp./! the

class of Lebesgue measurable functions f W T ! C satisfying !f 2 Lp./2 . The

weighted Lebesgue space with variable exponent Lp./! is a Banach space with the

normkf kp./;!WD k!f kT ;p./.

For given p2 P the class of weights ! satisfying the condition [17]

k!p.x/kAp./ WD sup B2B 1 jBjpBk! p.x/ kL1.B/k 1 !p.x/kB;.p0./=p.//<1

(5)

will be denoted by Ap./. Here pB WD  1 jBj Z B 1 p.x/dx  1

andB is the class of all balls in T .

The variable exponent p.x/ is said to satisfy the local log-Hölder continuity

conditionif there exists a positive constant c5such that

jp.x1/ p.x2/j 

c5

log.eC 1=jx1 x2j/

for all x1; x22 T : (2)

We will denote byP˙logthe class of all p2 P satisfying (2).

Let f 2 Lp./! and Ahf .x/WD 1 h Z xCh=2 x h=2 f .t /dt; x2 T ;

be Steklov’s mean operator. If p2 P˙log, then it was proved in [17] that the Hardy–

Littlewood maximal operatorM is bounded in Lp./! if and only if !2 Ap./.

Therefore if p 2 P˙logand !2 Ap./, thenAhis bounded in Lp./! . Using these

facts and setting x; h2 T , 0  r we define, via binomial expansion, that

hrf .x/WD .I Ah/rf .x/ D 1 X kD0 . 1/k r k ! 1 hk Z h=2 h=2   Z h=2 h=2 f .xC u1C    C uk/du1   duk; where f 2 Lp./! , kr WD r.r 1/.r kC1/kŠ for k > 1, r 1 WD r and r 0 WD 1.

Since the binomial coefficients satisfy ˇ ˇ ˇ ˇ r k !ˇ ˇ ˇ ˇ c6.r/ krC1; k 2 N; we get 1 X kD0 ˇ ˇ ˇ ˇ r k !ˇ ˇ ˇ ˇ <1

and therefore if p 2 P˙log, ! 2 Ap./ and f 2 Lp./! , then there is a positive

constant c7.r; p/ such that

(6)

holds. For 0 r, we can now define the fractional moduli of smoothness of index

r for p 2 P˙log, ! 2 Ap./and f 2 Lp./! as

r.f; ı/p./;! WD sup 0<hi;t ı Œr Y i D1 .I Ahi/ r Œr t f p./;! ; ı 0; where 0.f; ı/p./;!WD kf kp./;!; 0 Y i D1 .I Ahi/ r tf WD trf for 0 < r < 1I

and Œr  denotes the integer part of the real number r .

We have by (3) that if p 2 P˙log, ! 2 Ap./and f 2 Lp./! , then there exists a

positive constant c8.r; p/ such that

r.f; ı/p./;! c8.r; p/kf kp./;!:

Remark 1. The modulus of smoothness r.f; ı/p./;!, r 2 RC, has the following

properties for p 2 P˙log, !2 Ap./and f 2 Lp./! :

(i) r.f; ı/p./;!is a non-negative and non-decreasing function of ı 0,

(ii) r.f1C f2;/p./;!  r.f1;/p./;!C r.f2;/p./;!,

(iii) limı!0Cr.f; ı/p./;!D 0.

If p 2 P˙log and ! 2 Ap./, then !p.x/ 2 L1.T /. This implies that the set

of trigonometric polynomials is dense in Lp./! ; cf. [27]. Therefore approximation

problems make sense in Lp./! . On the other hand, if p2 P˙logand !2 Ap./, then

Lp./!  L1.T /, where p0.x/ WD p.x/=.p.x/ 1/ is the conjugate exponent of

p.x/.

For a given f 2 L1.T /, let

f .x/ a0.f / 2 C 1 X kD1 .ak.f / cos kxC bk.f / sin kx/D 1 X kD 1 ck.f /ei kx (4)

be the Fourier series of f with ck.f /D 12.ak.f / i bk.f //. We set

(7)

Let ˛2 RCbe given. We define the fractional derivative of a function f 2 L10.T / as f.˛/.x/WD 1 X kD 1 ck.f /.i k/˛ei kx

provided the right-hand side exists, where .i k/˛ WD jkj˛e.1=2/ i ˛ sign k as the

principal value. We will say that a function f 2 Lp./! has fractional derivative of

degree ˛ 2 RCif there exists a function g2 Lp./! such that its Fourier coefficients

satisfy ck.g/D ck.f /.i k/˛. In that case we will write f.˛/D g.

Let Wp./;!˛ , p 2 P , ˛ > 0, be the class of functions f 2 Lp./! such that f.˛/

is an element of Lp./! . Then Wp./;!˛ becomes a Banach space with the norm

kf kW˛ p./;! WD kf kp./;!C kf .˛/k p./;!: For f 2 Lp./! we set En.f /p./;!WD inf¹kf Tkp./;! W T 2 Tnº

The following approximation theorems were proved in [2]:

Theorem B. Ifp2 P˙log,! p0 2 A

.p./p0/0 for somep02 .1; p/ and f 2 Lp./! ,

then there is a positive constantc9.r; p/ such that

En.f /p./;!  c9.r; p/r  f; 1 nC 1  p./;!

holds forr 2 RCandnD 0; 1; 2; 3; : : :

Theorem C. Under the conditions of Theorem B there exists a positive constant

c10.r; p/ such that the inequality

r  f; 1 nC 1  p./;!  c10.r; p/ .nC 1/r n X D0 .C 1/r 1E.f /p./;!

holds forr 2 RCandnD 0; 1; 2; 3; : : :

Theorem D. Under the conditions of Theorem B if

1

X

D1

(8)

for some˛2 .0; 1/, then f 2 Wp./;!˛ and there is a positive constantc11.˛; p/ such that En.f.˛//p./;!  c11.˛; p/  .nC 1/˛En.f /p./;!C 1 X DnC1 ˛ 1E.f /p./;! 

holds forr 2 RCandnD 0; 1; 2; 3; : : :

Theorem E. Under the conditions of Theorem B if r 2 RCand

1

X

D1

˛ 1E.f /p./;!<1

for some˛ > 0, then there exists a positive constant c12.˛; r; p/ such that

r  f.˛/; 1 nC 1  p./;!  c12.˛; r; p/  1 .nC 1/r n X D0 .C 1/˛Cr 1E.f /p./;! C 1 X DnC1 ˛ 1E.f /p./;!  holds, wherenD 0; 1; 2; 3; : : :

These inequalities are not the best possible ones, and in the present paper we investigate the improvements of Theorems B–E.

We need the following Marcinkiewicz multiplier and Littlewood–Paley type theorems:

Theorem F ([29]). Let a sequence¹º of real numbers satisfy

jj  A;

2m 1

X

D2m 1

j C1j  A (5)

for all; m 2 N, where A does not depend on  and m. Under the conditions of

TheoremB there is a function F 2 Lp./! such that the seriesP1kD 1kckei kx

is a Fourier series forF and

kF kp./;!  c13Akf kp./;!

(9)

Theorem G ([29]). Under the conditions of Theorem B there are constants c14.r; p/, c15.r; p/ > 0 such that c14.p/  1 X D jj2 12 p./;!  1 X jjD2 1 cei x p./;!  c15.p/  1 X D jj2 12 p./;! ; (6) where WD .x; f /WD 2 1 X jjD2 1 cei x:

Theorem H ([23]). The space Lp./! is q-concave, i.e., for0  fi 2 Lp./! ,i D

1; 2; 3; : : : ; n2 N the (generalized Minkowski) inequality

² n X i D1 kfikp./;!q ³q1  c16  n X i D1 fiq 1q p./;!

holds if and only ifp.x/ q a.e.

Proposition 1. If p 2 P˙log and ! p0 2 A

.p./

p0/0

for somep0 2 .1; p/, then

! 2 Ap./.

Proof. Using the Extrapolation Theorem 3.2 of [29] we obtain that the Hardy–

Littlewood maximal operatorM is bounded in Lp./! . This implies that !2 Ap./;

cf. [17].

The following weighted fractional Bernstein inequality holds.

Lemma A ([2]). If p2 P˙log,! p0 2 A

.p.p0//0 for somep02 .1; p/ and n2 N,

then there exists a constantc17.˛; p/ > 0 such that the inequality

kTn.˛/kp./;!  c17.˛; p/n˛kTnkp./;!

(10)

Lemma 1. Let1 < p 2. Then for an arbitrary system of functions ¹'j.x/ºj D1m , 'j 2 Lp./! we have  m X j D1 'j2 12 p./;!   m X j D1 k'jkp./;!p p1 :

Proof. The result follows from

 m X j D1 'j2 12 p./;! D  m X j D1 'j2 p2 p1 p./;!   m X j D1 j'jjp p1 p./;! D m X j D1 j'jjp 1 p p./ p;!   m X j D1 k'p j kp./ p;! p1 D  m X j D1 k'jkp./;!p p1 :

Lemma 2. Let p > 2. Then for an arbitrary system of functions ¹'j.x/ºj D1m ,

'j 2 Lp./! we have  m X j D1 'j2 12 p./;!   m X j D1 k'jkp./;!2 12 : Proof. We have  m X j D1 'j2 12 p./;! D m X j D1 'j2 1 2 p./ 2 ;!   m X j D1 k'j2kp./ 2 ;! 12 D  m X j D1 k'jkp./;!2 12 :

2

Main results

The following theorem is an improvement of Theorem B.

Theorem 1. Ifp2 P˙log,! p02 A

.p.p0//0for somep02 .1; p/, n2 N, r 2 RC,

ˇ1WD max.2; p/ and f 2 Lp./! , then there is a positive constantc18.r; p/ such

that 1 n2r ² n X D1 2ˇ1r 1Eˇ1  .f /p./;! ³ˇ11  c18.r; p/r  f;1 n  p./;! holds.

(11)

Remark 2. Since En.f /p./;! # 0 we have En.f /p./;!  c.r; p/ n2r ² n X D1 2ˇ1r 1Eˇ1  .f /p./;! ³ˇ11

and therefore the inequality in Theorem 1 is an improvement of the inequality in Theorem B.

By A a;b4 B we mean that there exists a constant c > 0 depending only on the

parameters a; b such that A cB.

Proof of Theorem1. Let r 2 RC, ˇ1 D max.2; p/, n 2 N, and suppose that

the number m 2 N satisfies 2m  n  2mC1. Using En.f /p./;! # 0 and the

Littlewood–Paley type inequality (6) we have

Jˇ1 n;r WD 1 n2r ² n X D1 2ˇ1r 1Eˇ1  .f /p./;! ³ˇ11  1 n2r ²mC1 X D1 2 1 X jjD2 1 2ˇ1r 1Eˇ1  .f /p./;! ³ˇ11  1 n2r ²mC1 X D1 22ˇ1rEˇ1 2 1 1.f /p./;! ³ˇ11  1 n2r ²mC1 X D1 22ˇ1r 1 X jjD2 1 ceix ˇ1 p./;! ³ˇ11 r;p 4 1 n2r ²mC1 X D1 22ˇ1r  1 X D jj2 12 ˇ1 p./;! ³ˇ11 D ²mC1 X D1  24r n4r 1 X D jj2 12 ˇ1 p./;! ³ˇ11 :

We assume ˇ1D 2. Then 2 > pand

Jn;r2 r;p4 ²mC1 X D1  24r n4r 1 X D jj2 12 2 p./;! ³12 :

(12)

By Theorem H, Lp./! is 2-concave [23] and we obtain Jn;r2 r;p 4 mC1 X D1 24r n4r 1 X D jj2 12 p./;! : (7)

Using Abel’s transformation, .aC b/1=2  a1=2C b1=2(for a; b2 RC[ ¹0º) and

Minkowski’s inequality, we get Jn;r2 r;p 4  m X D1 24r n4r jj 2C24r.mC1/ n4r 1 X DmC1 jj2 12 p./;!   m X D1 24r n4r jj 2 1 2 p./;! C  24r.mC1/ n4r 1 X DmC1 jj2 12 p./;!  m X D1 22r n2r jj p./;!C 1 X DmC1 jj p./;!  m X D1 2 1 X jjD2 1 22r n2r jce ix j p./;! C 1 X jjD2m ceix p./;! : Since kf ./ Sn.; f /kp./;! r;p 4 En.f /p./;! we have Jn;r2 r;p 4 m X D1 2 1 X jjD2 1 22r jj2r jj n 2r 1 sin  n  n r  1 sin  n  n r jceixj p./;! C E2m 1.f /p./;! and by Theorem B, Jn;r2 r;p4 2m 1 X jjD1 22r jj2r jj n 2r 1 sin  n  n r  1 sin  n  n r jceixj p./;! C r  f;1 n  p./;!: Now we define hWD 8 ˆ ˆ ˆ < ˆ ˆ ˆ : 22r jj2r for 1 jj  2m 1; D 1; : : : ; m; 22mr jj2r for 2m  jj  n; 0 forjj > n

(13)

and WD 8 ˆ < ˆ : jj n 2r 1 sin  n  n r for 1 jj  n; 0 forjj > n:

Hence, forjj D 1; 2; 3; : : :, ¹hº satisfies (5) with A D 22r and¹º satisfies

(5) with AD .1 sin 1/ r. Therefore taking

I WD 2m 1 X jjD1 22r jj2r jj n 2r 1 sin  n  n r  1 sin  n  n r jceixj p./;! we get I D 1 X jjD1 h  1 sin  n  n r jceixj p./;!

and, using Theorem F twice, we have

Jn;r2 4p 2 2r .1 sin 1/r 1 X jjD1  1 sin  n  n r jceixj p./;! p 4 2 2r .1 sin 1/rk.I 1=n/ rf kp./;! D 2 2r .1 sin 1/rk.I 1=n/ Œr.I  1=n/r Œrfkp./;!  2 2r .1 sin 1/r 0<hsup i;t <1n Œr Y i D1 .I hi/.I t/ r Œrf p./;! r;p 4 rf;1 n  p./;!: Therefore Jn;r2 r;p 4 rf;1 n  p./;!:

Now, we assume ˇ1D p. Then 2 < pand

Jˇ1 n;r r;p 4 ²mC1 X D1  24r n4r 1 X D jj2 12 p p./;! ³p1 :

(14)

The p-concavity of Lp./! (see Theorem H) and .aC b/p=2 a.p=2/C b.p=2/

(for a; b2 RC[ ¹0º) imply that

Jˇ1 n;r r;p 4 mC1 X D1  24r n4r 1 X D jj2 p2 p1 p./;!  mC1 X D1 24r n4r 1 X D jj2 12 p./;! :

Proceeding as above (see (7)) we conclude Jˇ1 n;r r;p 4 rf;1 n  p./;! as desired.

We have also an improvement of the inverse Theorem C.

Theorem 2. Ifp2 P˙log,! p02 A

.p./p0/0for somep02 .1; p/, n2 N, r 2 RC,

1 WD min¹2; pº and f 2 Lp./! , then there is a positive constantc19.r; p/ such

that r  f;1 n  p./;! c19.r; p/ n2r ² n X D1 2 1r 1E 1  1.f /p./;! ³ 11 holds.

Remark 3. Since x is convex for 1D min¹2; pº, we have

2r 1E.f /p./;! 1 . 1/2r 1E.f /p./;! 1    X D1 2r 1E.f /p./;!  1  1 X D1 2r 1E.f /p./;!  1 :

Summing the last inequality with D 1; 2; 3; : : : we find

n X D1 ® 2r 1E .f /p./;! 1 . 1/2r 1E.f /p./;! 1¯  n X D1 ²  X D1 2r 1E.f /p./;!  1  1 X D1 2r 1E.f /p./;!  1³

(15)

and hence ² n X D1 2 1r 1E 1  1.f /p./;! ³1= 1  2 n X D1 2r 1E 1.f /p./;!:

The last inequality implies that the inequality in Theorem 2 is better than the in-equality in Theorem C. Furthermore, in some cases, the inequalities in Theorems 1 and 2 give more precise results: If

En.f /p./;! 1

n2r; n2 N;

then from Theorems B and C we have

r  f;1 n  p./;! 1 n2r ˇ ˇ ˇlog 1 n ˇ ˇ ˇ and from Theorems 1 and 2

c n2r ˇ ˇ ˇlog 1 n ˇ ˇ ˇ 1 ˇ  r  f;1 n  p./;!  C n2r ˇ ˇ ˇlog 1 n ˇ ˇ ˇ 1 :

Proof of Theorem2. As is well known,

t;hr 1;h2;:::;hŒrf WD Œr Y i D1 .I hi/.I t/ r Œrf

has Fourier series t;hr 1;h2;:::;hŒrf ./  1 X D 1  1 sin  t  t r Œr 1 sin h1 h1    1 sin hŒr hŒr  cei  and t;hr 1;h2;:::;hŒrf ./ D t;hr 1;h2;:::;hŒr.f ./ S2m 1.; f // C  r t;h1;h2;:::;hŒrS2m 1.; f /: From En.f /p./;!# 0 we have kt;hr 1;h2;:::;hŒr.f ./ S2m 1.; f //kp./;! r;p 4 kf ./ S2m 1.; f /kp./;! r;p 4 E2m 1.f /p./;! r;p 4 1 n2r ² n X D1 2 1r 1E 1  1.f /p./;! ³ 11 :

(16)

On the other hand, from (6) we get kt;hr 1;h2;:::;hŒrS2m 1.; f /kp./;! r;p 4 ² m X D1 jıj2 ³12 p./;! ; where ıWD 2 1 X jjD2 1  1 sin  t  t r Œr 1 sin h1 h1    1 sin hŒr hŒr  cei x:

By Lemmas 1 and 2 we have that (cf. [28]) ² m X D1 jıj2 ³12 p./;!  ² m X D1 kıkp./;! 1 ³ 11 : We estimatekıkp./;!. Since kıkp./;! D 2 1 X jjD2 1 h jjr1 sin  t  t r Œr 1 sin h1 h1    1 sin hŒr hŒr ih 1 jjrce i xi p./;! ; using Abel’s transformation we get

kıkp./;! 2 2 X jjD2 1 ˇ ˇ ˇ ˇ r1 sin  t  t r Œr 1 sin h1 h1    1 sin hŒr hŒr  .C 1/r1 sin.C 1/t .C 1/t r Œr 1 sin.C 1/h1 .C 1/h1    1 sin.C 1/hŒr .C 1/hŒr ˇˇ ˇ ˇ  X jljD2 1 1 jljrjcle i lx j p./;! C ˇ ˇ ˇ ˇ .2 1/r1 sin.2  1/t .2 1/t r Œr 1 sin.2  1/h 1 .2 1/h 1    1 sin.2  1/h Œr .2 1/hŒr ˇˇ ˇ ˇ 2 1 X jljD2 1 1 jljrjcle i lx j p./;! :

(17)

We have 2 1 X jljD2 1 1 jljrjcle i lxj p./;! r;p 4 1 j2 1jr 2 1 X jljD2 1 jclei lxj p./;!  1 j2 1jr 2 1 X jljD2 1 clei lx p./;! r;p 4 1 2rE2 1 1.f /p;! and, similarly,  X jljD2 1 1 jljrjcle i lxj p./;! r;p 4 1 2rE2 1 1.f /p;!:

Since xr.1 sin xx /r is non-decreasing and .1 sin xx / x2for x > 0, we obtain

kıkp./;! r;p 4 2 r tr Œrh 1   hŒr " 2 2 X jjD2 1 ˇ ˇ ˇ ˇ . t /r Œr1 sin  t  t r Œr  .h1/  1 sin h1 h1     .hŒr/  1 sin hŒr hŒr  ..C 1/t/r Œr1 sin.C 1/t .C 1/t r Œr  .. C 1/h1/  1 sin.C 1/h1 .C 1/h1     .. C 1/hŒr/  1 sin.C 1/hŒr .C 1/hŒr ˇˇ ˇ ˇ #  E2 1 1.f /p./;! C 2 r ˇ ˇ ˇ ˇ ..2 1/t /r Œr1 sin.2  1/t .2 1/t r Œr  .2 1/h1  1 sin.2  1/h 1 .2 1/h 1     .2 1/hŒr  1 sin.2  1/h Œr .2 1/h Œr ˇˇ ˇ ˇ E2  1 1.f /p./;!

(18)

 21 sin.2  1/t .2 1/t r Œr 1 sin.2  1/h 1 .2 1/h 1    1 sin.2  1/h Œr .2 1/h Œr   E2 1 1.f /p./;!  2:22rt2r 2Œrh21   h2ŒrE2 1 1.f /p./;! and therefore kıkp./;! r;p 4 22rt2.r Œr/h21   h2 ŒrE2 1 1.f /p./;!: Then t;hr 1;h2;:::;hŒrS2m 1.; f / p./;! r;p 4 t2.r Œr/h21   h2 Œr ² m X D1 22r 1E 1 2 1 1.f /p./;! ³ 11 r;p 4 t2.r Œr/h21   h2 Œr®2 2 1rE 1 0 .f /p./;! ¯ 11 C t2.r Œr/h21   h2Œr ² m X D2 2 1 1 X D2 2 2 1r 1E 1  1.f /p./;! ³ 11 r;p 4 t2.r Œr/h21   h2 Œr ²2m 1 1 X D1 2 1r 1E 1  1.f /p./;! ³ 11 : The last inequality implies that

r  f;1 n  p./;! r;p 4 1 n2r ² n X D1 2 1r 1E 1  1.f /p./;! ³ 11 :

As a corollary of Theorems 1 and 2 we have the following improvements of the Marchaud inequality and its converse inequality.

Corollary 1. Under the conditions of Theorem B if r; l 2 RC,r < l, and 0 < t 

1=2, then there exist positive constants c20.l; r; p/, c21.l; r; p/ such that

c20.l; r; p/t2r ²Z 1 t hl.f; u/p./;! u2r iˇ1du u ³ˇ11  r.f; t /p./;!  c21.l; r; p/t2r ²Z 1 t hl.f; u/p./;! u2r i 1du u ³ 11 hold.

(19)

The following Theorem 3 and Corollary 2 are improved versions of Theorem D and Theorem E, respectively.

Theorem 3. Under the conditions of Theorem B if

1

X

kD1

k 1˛ 1E 1

k .f /p./;! <1 (8)

for some ˛ 2 RC, then f 2 Wp./;!˛ . Furthermore, for n 2 N there exists a

constantc22.˛; p/ > 0 such that

En.f.˛//p./;!  c22.˛; p/  n˛En.f /p./;!C ² 1 X DnC1 ˛ 1 1E 1  .f /p./;! ³ 11 holds.

As a corollary of Theorem 3 we have

Corollary 2. Under the conditions of Theorem B there exists a constant

c23.˛; r; p/ > 0 such that r  f.˛/;1 n  p./;! c23.˛; r; p/  1 n2r  n X D1  1.2rC˛/ 1E 1  .f /p./;!  11 C  1 X DnC1 ˛ 1 1E 1  .f /p./;!  11

holds forn2 N and ˛; r 2 RC.

Proof of Theorem3. Let Tn be a polynomial of the classTn such that we have

En.f /p./;!D kf Tnkp./;!and set U0.x/WD T1.x/ T0.x/I U.x/WD T2.x/ T2 1.x/; D 1; 2; 3; : : : Hence T2N.x/D T0.x/C N X D0 U.x/; N D 0; 1; 2; : : :

(20)

For given " > 0, by (8) there exists 2 N such that 1 X D2  1˛ 1E 1  .f /p./;!< ": (9)

From the fractional Bernstein inequality (Lemma A) we have kU.˛/ kp./;!

˛;p

4 2kUkp./;! ˛;p4 2E2 1.f /p./;!; 2 N:

On the other hand, it is easily seen that

2˛E2 1.f /p./;! ˛;p 4 ² 2 1 X D2 2C1  1˛ 1E 1  .f /p./;! ³ 11 ; D 2; 3; 4; : : :

For the positive integers satisfying K < N , we have

T2.˛/N.x/ T .˛/ 2K.x/D N X DKC1 U.˛/.x/; x2 T ;

and hence if K; N are large enough we obtain from (9)

kT2.˛/N.x/ T .˛/ 2K.x/kp./;!  N X DKC1 kU.˛/ .x/kp./;! ˛;p 4 N X DKC1 2˛E2 1.f /p./;! ˛;p 4 N X DKC1 ² 2 1 X D2 2  1˛ 1E 1  .f /p./;! ³ 11 ˛;p 4 ² 2N 1 X D2K 1C1  1˛ 1E 1  .f /p./;! ³ 11 ˛;p 4 " 11:

Therefore ¹T2.˛/Nº is a Cauchy sequence in L

p./

! . Then there exists ' 2 Lp./!

satisfying

(21)

On the other hand, we have (cf. [2, Theorem 5])

kT2.˛/N f

.˛/

kp./;! ! 0 as N ! 1:

Then f.˛/D ' a.e. Therefore f 2 Wp./;!˛ .

We note that En.f.˛//p./;!  kf.˛/ Snf.˛/kp./;!  kS2mC2f.˛/ Snf.˛/kp./;! C 1 X kDmC2 ŒS2kC1f.˛/ S2kf.˛/ p./;! : (10)

By Lemma A we get for 2m < n < 2mC1

kS2mC2f.˛/ Snf.˛/kp./;! ˛;p 4 2.mC2/˛En.f /p./;!˛;p4 n˛En.f /p./;!: (11) By (6) we find 1 X kDmC2 ŒS2kC1f.˛/ S2kf.˛/ p./;! ˛;p 4 ² 1 X kDmC2 ˇ ˇ ˇ ˇ 2kC1 X jjD2kC1 .i /˛cei x ˇ ˇ ˇ ˇ 2³12 p./;! and therefore 1 X kDmC2 ŒS2kC1f.˛/ S2kf.˛/ p./;! ˛;p 4  1 X kDmC2 2kC1 X jjD2kC1 .i /˛cei x 1 p./;!  11 : Putting jıj WD 2kC1 X jjD2kC1 .i /˛cei xD 2kC1 X D2kC1 ˛2 Re.cei.xC˛=2//;

(22)

we have kıkp./;!D 2kC1 X D2kC1 ˛U.x/ p./;! ;

where U.x/D 2 Re.cei.xC˛=2//. Using Abel’s transformation we get

kıkp./;!  2kC1 1 X D2kC1 j˛ .C 1/˛j  X lD2kC1 Ul.x/ p./;! C j.2kC1/˛j 2kC1 1 X lD2kC1 Ul.x/ p./;! : For 2kC 1    2kC1, k2 N we have  X lD2kC1 Ul.x/ p./;! ˛;p 4 E2k.f /p./;! and since .C 1/˛ ˛ ´ ˛.C 1/˛ 1; ˛ 1; ˛˛ 1; 0 ˛ < 1; we obtain kıkp./;! ˛;p 4 2E2k 1.f /p./;!: Therefore 1 X kDmC2 ŒS2kC1f.˛/ S2kf.˛/ p./;! ˛;p 4 ² 1 X kDmC2 2k˛ 1E 1 2k 1.f /p./;! ³ 11 ˛;p 4 ² 1 X DnC1  1˛ 1E 1  .f /p./;! ³ 11 (12)

(23)

Bibliography

[1] R. Akgün, Sharp Jackson and converse theorems of trigonometric approximation in weighted Lebesgue spaces, Proc. A. Razmadze Math. Inst. 152 (2010), 1–18. [2] R. Akgün, Polynomial approximation of functions in weighted Lebesgue and

Smirnov spaces with nonstandard growth, Georgian Math. J. 11 (2011), no. 2, 203-235.

[3] R. Akgün, Approximating polynomials for functions of weighted Smirnov–Orlicz spaces, J. Funct. Spaces Appl., to appear.

[4] R. Akgün and D. M. Israfilov, Polynomial approximation in weighted Smirnov– Orlicz space, Proc. A. Razmadze Math. Inst. 139 (2005), 89–92.

[5] R. Akgün and D. M. Israfilov, Approximation by interpolating polynomials in Smirnov–Orlicz class, J. Korean Math. Soc. 43 (2006), no. 2, 413–424.

[6] R. Akgün and D. M. Israfilov, Approximation and moduli of fractional orders in Smirnov–Orlicz classes, Glas. Mat. Ser. III 43(63) (2008), no. 1, 121–136.

[7] R. Akgün and D. M. Israfilov, Simultaneous and inverse approximation theorems in weighted Orlicz spaces, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 1, 13–28. [8] N. K. Bari and S. B. Steˇckin, Best approximations and differential properties of two

conjugate functions, Trudy Moskov. Mat. Obšˇc. 5 (1956), 483–522 (in Russian). [9] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Volume 1:

One-Dimensional Theory, Pure and Applied Mathematics 40, Academic Press, New York, London, 1971.

[10] P. L. Butzer, R. L. Stens and M. Wehrens, Approximation by algebraic convolution integrals, in: Approximation theory and functional analysis (Proc. Internat. Sympos. Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977), pp. 71–120, North-Holland Math. Stud. 35, North-Holland, Amsterdam, New York, 1979. [11] R. A. De Vore and G. G. Lorentz, Constructive Approximation, Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-ences] 303, Springer-Verlag, Berlin, 1993.

[12] L. Diening, Maximal function on generalized Lebesgue spaces Lp./, Math. Inequal. Appl.7 (2004), no. 2, 245–253.

[13] L. Diening and M. R˚užiˇcka, Calderon–Zymund operators on generalized Lebesgue spacesLp.x/ and problems related to fluid dynamics, J. Reine Angew. Math. 563 (2003), 197–220.

[14] L. Ephremidze, V. Kokilashvili and Y. E. Yildirir, On the inverse inequalities for trigonometric polynomial approximations in weighted Lorentz spaces, Proc. A. Raz-madze Math. Inst.144 (2007), 132–136.

[15] X. Fan and D. Zhao, On the spaces Lp.x/./ and Wm;p.x/./, J. Math. Anal. Appl. 263 (2001), no. 2, 424–446.

(24)

[16] E. A. Gadjieva, Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolskii–Besov spaces, Author’s summary of dissertation, Tbilisi, 1986 (in Russian).

[17] P. Hästö and L. Diening, Muckenhoupt weights in variable exponent spaces, preprint, www.helsinki.fi/~pharjule/varsob/publications.shtml.

[18] H. Hudzik, On generalized Orlicz–Sobolev space, Funct. Approximatio Comment. Math.4 (1976), 37–51.

[19] D. M. Israfilov and R. Akgün, Approximation in weighted Smirnov–Orlicz classes, J. Math. Kyoto Univ.46 (2006), no. 4, 755–770.

[20] D. M. Israfilov and R. Akgün, Approximation by polynomials and rational functions in weighted rearrangement invariant spaces, J. Math. Anal. Appl. 346 (2008), no. 2, 489–500.

[21] D. M. Israfilov, V. Kokilashvili and S. Samko, Approximation in weighted Lebesgue and Smirnov spaces with variable exponents, Proc. A. Razmadze Math. Inst. 143 (2007), 25–35.

[22] D. M. Israfilov, B. Oktay and R. Akgün, Approximation in Smirnov–Orlicz classes, Glas. Mat. Ser. III40(60) (2005), no. 1, 87–102.

[23] A. Kami´nska, Indices, convexity and concavity in Musielak–Orlicz spaces, Funct. Approx. Comment. Math. 26 (1998), 67–84.

[24] V. M. Kokilashvili, Approximation of analytic functions of class Ep, Soobshch. Akad. Nauk. Gruzin. SSR34 (1968), 82–102 (in Russian).

[25] V. M. Kokilashvili, The approximation of periodic functions, Soobshch. Akad. Nauk. Gruzin. SSR34 (1968), 51–81 (in Russian).

[26] V. Kokilashvili and S. Samko, Singular integrals and potentials in some Banach func-tion spaces with variable exponent, J. Funct. Spaces Appl. 1 (2003), no. 1, 45–59. [27] V. Kokilashvili and S. Samko, Singular integrals in weighted Lebesgue spaces with

variable exponent, Georgian Math. J. 10 (2003), no. 1, 145–156.

[28] V. M. Kokilashvili and S. G. Samko, A refined inverse inequality of approximation in weighted variable exponent Lebesgue spaces, Proc. A. Razmadze Math. Inst. 151 (2009), 134–138.

[29] V. M. Kokilashvili and S. G. Samko, Operators of harmonic analysis in weighted spaces with non-standard growth, J. Math. Anal. Appl. 352 (2009), no. 1, 15–34. [30] V. Kokilashvili and Y. E. Yildirir, On the approximation in weighted Lebesgue

spaces, Proc. A. Razmadze Math. Inst. 143 (2007), 103–113.

[31] A. A. Konyuškov, Best approximations by trigonometric polynomials and Fourier coefficients, Mat. Sb. N.S. 44(86) (1958), 53–84 (in Russian).

(25)

[32] N. Korne˘ıchuk, Exact Constants in Approximation Theory, translated from the Rus-sian by K. Ivanov, Encyclopedia of Mathematics and its Applications 38, Cambridge University Press, Cambridge, 1991.

[33] Z. O. Kováˇcik and J. Rákosnik, On spaces Lp.x/and Wk;p.x/, Czechoslovak Math. J.41(116) (1991), no. 4, 592–618.

[34] P. Marcellini, Regularity and existence of solutions of elliptic equations with p; q-growth conditions, J. Differential Equations 90 (1991), no. 1, 1–30.

[35] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983.

[36] H. Nakano, Topology of Linear Topological Spaces, Maruzen Co., Tokyo, 1951. [37] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–212. [38] P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions,

En-cyclopedia of Mathematics and its Applications 28, Cambridge University Press, Cambridge, 1987.

[39] M. K. Potapov and B. V. Simonov, On the interrelation of the generalized Besov– Nikol’skii and Weyl–Nikol’skii classes of functions, Anal. Math. 22 (1996), no. 4, 299–316.

[40] K. R. Rajagopal and M. R˚užiˇcka, On the modeling elektroreological materials, Mech. Res. Commun.23(1996), no. 4, 401–407.

[41] M. R˚užiˇcka, Electrorheological Fluids: Modeling and Mathematical Theory, Lec-ture Notes in Mathematics 1748, Springer-Verlag, Berlin, 2000.

[42] S. Samko, Differentiation and integration of variable order and the spaces Lp.x/, in: Operator theory for complex and hypercomplex analysis (Mexico City, 1994), pp. 203–219, Contemp. Math. 212, Amer. Math. Soc., Providence, RI, 1998. [43] S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent:

maximal and singular operators, Integral Transforms Spec. Funct. 16 (2005), no. 5-6, 461–482.

[44] B. Sendov and V. A. Popov, The Averaged Moduli of Smoothness, Applications in Numerical Methods and Approximation, Pure and Applied Mathematics, John Wiley & Sons, Chichester, 1988.

[45] I. I. Sharapudinov, The topology of the spaceLp.t /.Œ0; 1/, Mat. Zametki 26 (1979), no. 4, 613–632 (in Russian).

[46] I. I. Sharapudinov, On the uniform boundedness in Lp.p D p.x// of some fami-lies of convolution operators, Mat. Zametki 59 (1996), no. 2, 291–302 (in Russian); translation in Math. Notes 59 (1996), no. 1–2, 205–212.

[47] B. V. Simonov and S. Yu. Tikhonov, Embedding theorems in the constructive theory of approximations, Mat. Sb. 199 (2008), no. 9, 107–148 (in Russian); translation in Sb. Math.199 (2008), no. 9–10, 1367–1407.

(26)

[48] S. B. Steˇckin, On the theorem of Kolmogorov–Seliverstov, Izvestiya Akad. Nauk SSSR. Ser. Mat.17 (1953), 499–512 (in Russian).

[49] A. F. Timan, Theory of approximation of functions of a real variable, translated from the Russian by J. Berry, International Series of Monographs in Pure and Applied Mathematics 34, Pergamnon Press, Oxford, 1963; Russian original: Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1960.

[50] M. F. Timan, Inverse theorems of the constructive theory of functions in Lpspaces .1 p  1/, Mat. Sb. N.S. 46(88) (1958), 125–132 (in Russian).

[51] M. F. Timan, On Jackson’s theorem in Lp-spaces, Ukrain. Mat. Z. 18 (1966), no. 1, 134–137 (in Russian).

[52] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710 (in Russian).

Received February 17, 2010. Author information

Ramazan Akgün, Department of Mathematics, Faculty of Arts and Sciences, Balikesir University, 10145 Balikesir, Turkey.

E-mail: rakgun@balikesir.edu.tr

Vakhtang Kokilashvili, A. Razmadze Mathematical Institute, I. Javakhisvili State University, Tbilisi 0186, Georgia. E-mail: kokil@rmi.ge

Referanslar

Benzer Belgeler

[17] determined fatigue properties of ductile iron which were applied on four different grades austem- pered heat treatment under bending fatigue test.. They observed that the

HC: healthy controls; ADHD: attention-deficit hyperactivity disorder; CCN: cognitive control network; DMN: default mode network; SN: salience network; PFC: prefrontal cortex;

Our study with the retinoid derivative 17 on 11 different breast cancer cells and a comparative analysis of RAR and RXR gene expression reveal the importance of RXRs in breast

In this work we present an extensive first-principle analy- sis of the effect of radial deformation on the atomic structure, energetics and electronic structure of SWNT’s. We find

İnan (2006) Anasınıfı çocuklarının duygu ve düşüncelerini ifade etmelerinde çocuk resimlerinin önemi (6 Yaş Grubu) isimli çalışmada çocukların duygu ve

Lütfen aşağıdaki soruları Çorum ilinin destinasyon imajını düşünerek, ilgili ifadeye ilişkin görüşünüze en uygun gelecek cevabı (X) işaretleyerek belirtiniz. 2

1-NAPP1 selectively suppressed PERK_ASKA kinase activity (along with lipid-induced caspase-1 cleavage and IL-1 b secretion in macrophages) but not wild-type PERK’s activity ( Figure