• Sonuç bulunamadı

TB’a karşı inflamatuvar cevapta rol alan pro-inflamatuvar sitokin IL-1β ile aşırı inflamatuvar yanıtın doku ve hücreleri harabedici özelliğini kontrol altına alma adına vücudun doğal immun cevapta rol alan IL-10, A20, SOCS-1, SOCS-3, SIGIRR, ST2, TOLLIP, MKP1, IRAK-M gibi anti-inflamatuvar sitokin ve negatif regülatör genlerin TB’a yatkınlıkla ilişkilerini araştırdığımız çalışmamız sonucunda;

1. TOLLIP’e ait rs5743899 ve rs3750920, IL-1β’ya ait +3954 ve IL-10’a ait 1082 polimorfizmleri arasından ki kare testi ile istatistiksel olarak anlam çıkmadığı ancak IL-10’a ait 1082 polimorfizm Hardy Weinberg equilibrium analizine göre anlamlı çıktığı,

2. Üç farklı istatiksel analiz yöntemi ile değerlendirdiğimiz A20, SOCS-1, SOCS-3, SIGIRR, ST2, TOLLIP, MKP1, IRAK-M negatif regülatör genlerinin 2-ΔΔCt istatistiksel yöntem sonucuna göre sırasıyla ST2, TOLLIP ve SIGIRR’in hastalarda sağlıklı kontrol grubuna kıyasla mRNA ekspresyon seviyesinin yüksek olduğu, bunun aksine hasta grupta sağlıklı kontrol grubuna karşın IRAK-m ve MKP1’in IRAK-mRNA ekspresyon sevilerinin ise oldukça düşük olduğu,

3. Çalışmamızda iki grubu kıyasladığımız negatif regülatör genlerin ortalama ve standartlar ile hesaplanan Two-Tailed Student’s T Testi yöntemine göre sırasıyla IRAK-M, ST2, TOLLIP, MKP1 ve SIGIRR genlerinin istatistiksel olarak anlamlı çıktığı;

4. IRAK-M, ST2, SIGIRR, TOLLIP ve MKP1 negatif regülatör genlerin ROC analizine göre hasta ve sağlıklı kontrol grupta anlamlı bulunduğu ve bu iki grubu ayırt etmede bu negatif regülatör genlerin kullanılabileceği;

5. TOLLIP’in rs5743899 polimorfizminin genotiplerinin negatif regülatör genler ile birlikte değerlendirildiği Non-parametrik Kruskal Wallis istatistiksel yönteme göre; hasta grupta ST2 ve IRAK-M negatif regülatör genlerin anlamlı, TOLLIP negatif regülatör genin ise sınırda anlamlı olduğu;

6. TOLLIP’in rs3750920 polimorfizminin genotiplerinin negatif regülatör genler ile birlikte değerlendirildiği Non-parametrik Kruskal Wallis istatistiksel yönteme

52

göre; sağlıklı grupta A20 ve MKP1 negatif regülatörlerin anlamlı, SIGIRR’ın ise sınırda anlamlı olduğu;

7. IL-1β’nın +3954 polimorfizminin genotiplerinin negatif regülatör genler ile Non-parametrik Kruskal Wallis yöntemine göre değerlendirildiğinde hasta ve sağlıklı kontrol grubun ikisinde de anlamlı bir fark yaratmadığı ve

8. IL-10’un +1082 polimorfizmin genotiplerinin negatif regülatör genler ile Non-parametrik Kruskal Wallis yöntemine göre değerlendirildiğinde IRAK-M negatif regülatör genin hasta grupta, SIGIRR’ın ise sağlıklı kontrol grupta anlamlı olduğu belirlendi.

Bildiğimiz kadarıyla, çalışmamız bu biomarkerların birarada TB’a duyarlılıkla ilişkilendirildiği ilk çalışma özelliğini taşımaktadır.

TB’a duyarlılıkta konağa ait faktörlerin bu derece etkili olması fikri TB’a karşı aşılamanın şimdiye kadar neden bu kadar başarısız olduğunu düşündürmektedir.

Çalışmamız içinde yer alan tüm immün mediatörlerin birlikte değerlendirilmesi ileride bu biomarkerların TB’a karşı kullanılabileceğini göstermektedir. Çalışmamızın hızlı tanıya ek olarak bu biomarkerların birlikte değerlendirilmesi ile TB immünpatogenezinin daha iyi anlaşılacağı dolayısıyla kontrol ve tedavi protokollerinin yeniden düzenlenmesine ve daha geniş populasyonlu sürveyans çalışmalarına ışık tutacağı kanaatindeyiz.

53

7. KAYNAKLAR

1- Casanova JL, Abel L. The genetic theory of infectious diseases: a brief history and selected illustrations. Annu Rev Genomics Hum Genet, 2013; 14: 215–43.

2- Quintana-Murci L, Clark AG. Population genetic tools for dissecting innate immunity in humans. Nat Rev Immunol, 2013; 13: 280–93.

3- Chapman SJ, Hill AV. Human genetic susceptibility to infectious disease. Nat Rev Genet, 2012; 13: 175–88.

4- World Health Organization. Global Tuberculosis Report, 2017. (WHO, 2017).)

5- Meenakshi P, Ramya S, Shruthi T, Lavanya J, Mohammed HH, Mohammed SA. et al.

Association of IL-1b +3954 C/T and IL-10-1082 G/A cytokine gene polymorphisms with susceptibility to tuberculosis. Human Immunology, 2013.

6- Blok DC, Kager LM, Hoogendijk AJ, Lede IO, Rahman W, Afroz R, et al. Expression of inhibitory regulators of innate immunity in patients with active tuberculosis. BMC Infectious Diseases, 2015; 15: 98.

7- Shah JA, Vary JC, Chau TTH, Bang ND, Yen NTB, Farrar JJ et al. Human TOLLIP regulates TLR2 and TLR4 signaling and its polymorphisms are associated with susceptibility to tuberculosis. J Immunol, 2012; 15; 189(4): 1737–1746.

8- Lari N, Rindi L, Bonanni D, Tortoli E, Garzelli C. Molecular analysis of clinical isolates of Mycobacterium bovis recovered from humans in Italy, J Clin Microbiol, 2006; 44(11):4218-21.

9- Mignard S, Pichat C, Carret G. Mycobacterium bovis infection, Lyon, France, Emerg Infect Dis, 2006; 12(9):1431-3.) (Wayne LG, Kubica GP. Mycobacteria In: P.H.A.Sneath, Bergey’s Manual of Systematic Bacteriology, vol. 2. The Williams & Wilkins Co. Baltimore.1986; 1435-1457.

10- Kiers A, Klarenbeek A, Mendelts B, Van Soolingen D, Koëter G. Transmission of Mycobacterium pinnipedii to humans in a zoo with marine mammals. Int J Tuberc Lung Dis, 2008 Dec;12(12):1469-73.

54

11- Alexander KA, Laver PN, Michel AL, Williams M, van Helden PD, Warren RM et al.

Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg Infect Dis. 2010 Aug;16(8):1296-9.

12- Gey van Pittius NC, van Helden PD, Warren RM. Characterization of Mycobacterium orygis Emerg Infect Dis. Oct 2012; 18(10): 1708–1709.)

13- Daniel TM. Captain of Death. The Story of Tuberculosis.. Rochester University of Rochester Press, New York, 1997.

14- Dormandy T. A history of Tuberculosis. London and Rio Grande, The Hambledon Press, 1999.

Page 1-50.)( Dubos R, Dubos J. The White Plaque: Tuberculosis, Man and Society. Rutgers University Press, London: 1987.

15- Iribarren SJ, Schnall R, Stone PW, CarballoDiéguez A. Smartphone Applications to Support Tuberculosis Prevention and Treatment: Review and Evaluation. JMIR Mhealth Uhealth, 2016:

13;4(2):e25.

16- Parrish NM, Dick JD, Bishai WD. Mechanisms of latency in Mycobacterium tuberculosis.

Trends Microbiol, 1998. 6, 107–112.

17- Wayne LG. Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin.

Microbiol. Infect. Dis, 1994. 13, 908–914.

18- Flynn JL, Chan J. Tuberculosis: Latency and reactivation. Infect. Immun, 2001. 69, 4195–4201.

19- Kaufmann SHE. How can immunology contribute to the control of tuberculosis? Nature Rev.

Immunol, 2001. 1, 20–30.

20- Russell DG. Who puts the tubercle in tuberculosis? Nature Rev. Microbiol, 2007. 5, 39–47.

21- Krauss H, Schiefer HG, Weber A, Slenczka W, Appel M, von Graevenitz A et al. Bacterial Zoonoses ASM Press, 2003; 216-217.

22- Delogu G, Fadda G. The quest for a new vaccine against tuberculosis. Journal of Infection in Developing Countries, 2009. 3(1), 5-15.

23- Pfyffer GE. Mycobacterium: General Characteristics, Laboratory Detection, and Staining Procedures. Manual of Clinical Microbiology, 2007. 543-572.

24- Gilchrist MJR. Biosafety precautions for airborne pathogens. ASM Press, 1995. 67-76.

55

25- Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet, 2013; 45:1176-82.

26- Raviglione MC, Snider DE, Kochi A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA, 1995; 273:220-6.

27- Chapman HJ, Lauzardo M. Advances in diagnosis and treatment of latent tuberculosis infection. J Am Board Fam Med, 2014; 27(5):704-12.

28- Loudon RG, LR Bumgarner, J Lacy, GK Coffman. Aerial transmission of mycobacteria. Am Rev Respir Dis, 1969;100:165- 71.

29- Urdahl KB, Shafiani S, Ernst JD. Initiation and regulation of T-cell responses in tuberculosis.

Mucosal Immunology, 2011; 4(3), 288–293.

30- Gonzalez-Juarrero M, Turner OC, Turner J, Marietta P, Brooks JV, Orme IM. Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infection and Immunity, 2001; 69(3), 1722–1728.

31- Doherty TM, Andersen P. Vaccines for tuberculosis: novel concepts and recent progress.

Clinical Microbiology Reviews, 2005; 18(4), 687–702.

32- Corbett, CJ Watt, N Walker, D Maher, BG Williams, MC Raviglione et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Archives of Internal Medicine, 2003; 163(9), 1009–1021.

33- Stead WW. Pathogenesis of a first episode of chronic pulmonary tuberculosis in man:

recrudescence of residuals of the primary infection or exogenous reinfection? American Review of Respiratory Disease, 1967; 95(5), 729–745.

34- Merrell DS, Falkow S. Frontal and Stealth Attack Strategies in Microbial Pathogenesis. Online Erişim: https://www.nature.com/articles/nature02760

35- Dorhoi A, Kaufmann SHE. Versatile myeloid cell subsets contribute to tuberculosis-associated inflammation. Eur J Immunol, 2015, 45, 2191–2202.

36- Lowe DM, Redford P, Wilkinson RJ, O’Garra A, Martineau AR. Neutrophils in tuberculosis: Friend or foe? Trends Immunol, 2012, 33, 14–25.

37- Srivastava S, Ernst JD, Desvignes L. Beyond macrophages: The diversity of mononuclear cells in tuberculosis. Immunol Rev, 2014, 262, 179–192.

56

38- Jiao X, Lo-Man R, Guermonprez P, Fiette L, Dériaud E, Burgaud S et al. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J. Immunol, 2002, 168, 1294–1301.

39- Marino S, Fuller PS, Reinhart CL, Flynn TA, Kirschner DE JL. Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J.

Immunol, 2004, 173, 494–506.

40- Savina A, Amigorena S. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev, 2007, 219, 143–156.

41- Armstrong JA, Hart PD. Response of Cultured Macrophages to Mycobacterium Tuberculosis, with Observations on Fusion of Lysosomes with Phagosomes. J Exp Med, 1971; 134, 713–740.

42- Flynn JL, Chan J. Immune evasion by Mycobacterium tuberculosis: Living with the enemy.

Curr Opin Immunol, 2003; 15, 450–455.

43- Korbel DS, Schneider BE, Schaible UE. Innate immunity in tuberculosis: Myths and truth.

Microbes Infect, 2008; 10, 995–1004.

44- Kaisho T, Akira S. Critical roles of Toll-like receptors in host defense. Crit Rev Immunol, 2000;

20, 393–405.

45- Takeda K, Kaisho T, Akira S. Toll-Like Receptors. Annu Rev Immunol, 2003; 21, 335–376.

46- Sugawara I, Yamada H, Hua S, Mizuno S. Role of interleukin (IL)-1 type 1 receptor in mycobacterial infection. Microbiol Immunol, 2001; 45, 743–750.

47- Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe, 2008; 3, 224–232.

48- Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy, 2005; 4, 281–286.

49- Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate Immune Pattern Recognition: A Cell Biological Perspective. Annu Rev Immunol, 2015; 33, 257–290.

50- Stamm CE, Collins AC, Shiloh MU. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev, 2015; 264, 204–219.

57

51- Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. Annu Rev Pathol, 2012; 7, 353–384.

52- Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006; 124, 783–801.

53- Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol, 2010; 11, 373–384.

54- Basu J, Shin DM, Jo EK. Mycobacterial signaling through toll-like receptors. Front Cell Infect Microbiol, 2012. 2.

55- Yu X, Zeng J, Xie J. Navigating through the maze of TLR2 mediated signaling network for better mycobacterium infection control. Biochimie, 2014; 102, 1–8.

56- Shin DM, Yuk JM, Lee HM, Lee SH, Son JW, Harding CV. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol, 2010; 12, 1648–1665.

57- Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol, 2005; 17, 1–14.

58- Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue- specific context. Nat Rev Immunol, 2014; 14, 81–93.

59- Kopf M, Schneider C, Nobs SP. The development and function of lung- resident macrophages and dendritic cells. Nat Immunol, 2015; 16, 36–44.

60- Groschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. ESX secretion systems:

mycobacterial evolution to counter host immunity. Nat Rev Microbiol, 2016; 14, 677–691.

61- Meyer CG. TLR1 variant H305L associated with protection from pulmonary tuberculosis. PLoS ONE, 2016, 11.

62- Shah JA. Genetic variation in toll- interacting protein is associated with leprosy susceptibility and cutaneous expression of interleukin 1 receptor antagonist. J Infect Dis, 2016; 213, 1189–

1197

63- Lu Y. Association of autophagy- related IRGM polymorphisms with latent versus active tuberculosis infection in a Chinese population. Tuberculosis, 2016; 97, 47–51.

64- Picard C. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency.

Medicine, 2010; 89, 403–425.

58

65- Redford PS, Murray PJ, Garra AO. The role of IL-10 in immune regulation during M.

tuberculosis infection. Mucosal Immunol, 2011; 4, 261–270.

66- Leung CC, Lange C, Zhang Y. Tuberculosis: Current state of knowledge: An Epilogue.

Respirology, 2013; 18:1047-55.

67- Davidson PT. Managing tuberculosis during pregnancy. Lancet, 1995; 346:199-200.

68- Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis, 2006; 6:570-81.

69- Wayne LG. Microbiology of the tubercle bacilli. Am Rev Respir Dis, 1982; 125:31-41.

70- American Thoracic Society/Centers for Disease Control and Prevention. Diagnostic standards and classification of tuberculosis in adults and children. Am J Respir Crit Care Med, 2000; 161:1376-1395.

71- Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev, 2014; 1:CD009593.

72- Theron G, Peter J, Richardson M, Barnard M, Donegan S, Warren R et al. The diagnostic accuracy of the GenoType MTBDRsl assay for the detection of resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev, 2014; Oct 29;10:CD010705.

73- Denkinger CM, Schumacher SG, Boehme CC, Dendukuri N, Pai M, Steingart KR. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2014; 44:435-46

74- WHO. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Policy Update. France: World Health Organization, 2013.

75- Champe PC, Harvey RA. Lippincott Biyokimya. 2. Baskı, istanbul: Tayf Ofset, 1997.

76- Green EK. Restriction Fragment- Length Polymorphism. Eds; Rapley R, Walker J. In.

Molecular Biomethods Handbook. New Jersey: Humana Press, 1998: 271-279.

59

77- Newton CR, Graham A, Heptinstall LE. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). 1989, Nucl Acids Res. 17, 2503-2516.

78- Wang T, Brown MJ. Real-Time PCR. Anal. Biochem, 1999; 269, 198–201.

79- Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Cold Spring Harb. Symp Quant Biol, 1986; 51, 263–273.

80- Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE. Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc Natl Acad Sci. 1988;

85(23):8790-4.

81- Vernon A, Burman W, Benator D, Khan A, Bozeman L. Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid.

Lancet, 1999; 1843-1847.

82- Schinnick T. The 65-kilodalton antigen of Mycobacterium tuberculosis. J. Bacteriol. 1987; 169:

1080-1088.

83- McAdam RA, Hermans PW, Van Soolingen D, Zainuddin ZF, Catty D, Van Embden JD, et al. Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the IS3 family. Mol Microbiol. 1990; 4(9): 1607-13.

84- https://www.protocols.io/view/extraction-of-dna-from-blood-samples-using-qiaamp-ihfcb3n?step=1

85- https://assets.thermofisher.com/TFSAssets/LSG/manuals/MAN0012351_HhaI_10_UuL_2000U _UG.pdf

86- https://assets.thermofisher.com/TFSAssets/LSG/manuals/MAN0012141_MspI_HpaII_10_UuL_

3000U_UG.pdf

87- https://www.thermofisher.com/order/catalog/product/ER0671

88- Perrey C, Turner SJ, Pravica V, Howell WM, Hutchinson IV. ARMS-PCR methodologies to determine IL-10, TNF-α, TNF-β and TGF-β1 gene polymorphisms. Transpl Immunol, 1999. 7, 127–128.

89- Talaata RM, Ashoura ME, Bassyounib IH, Raouf AA. Polymorphisms of interleukin 6 and interleukin 10 in Egyptian peoplewith Behcet’s disease. Transpl Immunobiology, 2014 219, 573–582.

60

90- https://assets.thermofisher.com/TFSAssets/LSG/manuals/MAN0012704_DreamTaq_Green_PC R_MasterMix_K1081_UG.pdf

91- https://assets.thermofisher.com/TFSAssets/LSG/manuals/4375222_HighCap_cDNA_ReverseTra nscripKits_PI.pdf

92- Kenneth J, Livak TD. Schmittgen Analysis of Relative Gene Expression Data Using RealTime Quantitative PCR and the 2−ΔΔCt Method. Methods, 2001. 25, 402–408.

93- IBM SPSS Statistics for Windows Version 20.0. Armonk, NY: IBM Corp; 2011.

94- Graffelman, J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. Journal of Statistical Software 2015; 64(3): 1-23.

95- WU S, Huang W, Wang D, Wang Y, Wang M, Zhang M et al. Evaluation of TLR2, TLR4, and TOLLIP polymorphisms for their role in tuberculosis susceptibility APMIS, 2018: 126: 501–

508.

96- Araujo FJ, Silva LDO, Mesquita TG, Pinheiro SK, Vital WS, Talhari A et al.

Polymorphisms in the TOLLIP Gene Influence Susceptibility to Cutaneous Leishmaniasis Caused by Leishmania guyanensis in the Amazonas State of Brazil. PLOS Neglected Tropical Diseases 2015.

97- Mao X, Ke Z, Liu S, Tang B, Wang J, Huang H et al. IL-1β +3953C/T, −511T/C and IL-6

−174C/G polymorphisms in association with tuberculosis susceptibility: A meta-analysis. Gene 2015; 75–83.

98- Akgunes A, Coban AY, Durupinar B. Human leucocyte antigens and cytokine gene polymorphisms and tuberculosis. Indian J Med Microbiol 2011; 29:28–32.

99- Zhao J, Wei J, Mialki KR, Mallampalli DF, Chen BB, Coon T et al. Coon1,F-box protein FBXL19–mediated ubiquitination and degradation of the receptor for IL-33 limits pulmonary inflammation Nat Immunol, 2012; 13(7): 651–658.

100- Laurent A, Jacques F, David W, Erwin S, Geetha S, Michael U et al. Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives.

Lancet, 2018; Vol 18.

101- Mengshi C, Jing D, Congxu S, Jun L, Mian W, Benjamin KA et al. Impact of passive smoking, cooking with solid fuel exposure, and MBL/MASP-2 gene polymorphism upon susceptibility to tuberculosis. International Journal of Infectious Diseases, 2014; 29 1–6.

61

8. ÖZGEÇMİŞ

16.02.1989 tarihinde Ankara Altındağ’da doğan Emel EKER; ilk ve orta okulu Recep Birsin Özen ilköğretim okulunda 2004 yılında, liseyi ise Özel Perihan Üçgül Anadolu lisesinde 2007 yılında bitirdi. 2008 yılında Çukurova Üniversitesi Biyoloji Bölümü’nü kazandı ve 2012 yılında mezun oldu.

2012-2014 yılları arasında Çukurova Üniversitesi Sağlık Bilimleri Enstitüsü Tıp Fakültesi Tıbbi Mikrobiyoloji Anabilim Dalında Yüksek Lisans eğitimini tamamladı.

2014 yılında Çukurova Üniversitesi Sağlık Bilimleri Enstitüsü Tıp Fakültesi Tıbbi Mikrobiyoloji Anabilim Dalında Doktora eğitimine başladı. İyi derece İngilizce bilmektedir.

Benzer Belgeler