• Sonuç bulunamadı

1. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79(1):215–

62.

2.Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 2000;35(3):569–82.

3. Udelson JE, Konstam MA. Relation between left ventricular remodeling and clinical outcomes in heart failure patients with left ventricular systolic dysfunction. J Card Fail 2002;8(6 Suppl): S465–71.

4. Helbing WA, Niezen RA, Le Cessie S, van der Geest RJ, Ottenkamp J, de Roos A. Right ventricular diastolic function in children with pulmonary regurgitation after repair of tetralogy of Fallot: volumetric evaluation by magnetic resonance velocity mapping. J Am Coll Cardiol 1996;28:1827-35

5. Kliegman RM, Behrman RE, Jenson HB, Stanton BF (eds). Nelson Textbook of Pediatrics. 18th edition. Saunders Elseviers, Philadelphia, 2007.

6. Garson A Jr, Bricker JT, Fisher DJ, Neish SR (eds). The Science and Practice of Pediatric Cardiology. 2nd edition. Williams & Wilkins, Baltimore, 1998.

7. Allen HD, Gutgesell HP, Clark EB, Driscoll DJ (eds). Heart Disease in Infants, Children and Adolescents. 6th edition. Lippincott Williams & Wilkins, Philadelphia, 2001.

8. Tuncel E, Yazıcı Z (eds). Çocuk Hastalıklarında Radyolojik Bulgular. Nobel-Güneş Tıp Kitabevi, Bursa, 2002.

9. Snider AR, Serwer GA, Ritter SB (eds). Echocardiography in Pediatric Heart Disease. 2nd edition, Mosby, St. Louis, 1997.

10. Freedom RM, Mawson JB, Yoo SJ, Benson LN (eds). Congenital Heart Disease, Textbook of Angiography. Futura Publishing Co, New York, 1997.

11. Rao PS. Percutaneous balloon pulmonary valvuloplas ty: state of the art. Catheter Cardiovasc Interv.

2007:1;69:747-63.

12. Mastery of Cardiyotorasic surgery second edition Tr vers.2012 sf no:881-892

13. Rao V, Kadletz M, Hornberger LK, Freedom RM, Black MD. Preservation of the pulmonary valve complex in tetralogy of fallot: how small is too small? Ann Thorac Surg 2000;69:176-9.

14. Siwik ES, Patel CR, Zakha KG, Goldmuntz E. Tetralogy of Fallot. In Allen HD, Gutgesell HP, Clark EB, Driscoll DC (eds). Moss and Adams’ Heart Disease in Infants, Children and Adolescents. 6th Ed, Philadelphia: Lippincott Williams & Wilkins, 2000: 880-902.

15. Castaneda AR. Tetralogy of Fallot. In Castaneda AR, Jonas RA, Mayer JE, Hanley FL (eds).

Cardiac Surgery of the Neonate and Infant. 1st edition, Philadelphia: W.B. Saunders Company, 1994:

215-234.

16. Aytaç A. Fallot Tetralojisi. In Pac M, Akçevin A, Aka SA, Büket S, Sarıoğlu T (eds). Kalp ve Damar Cerrahisi. 1. baskı, Ankara: MN Medikal & Nobel, 2004: 1477-1486.

82

17. Murphy JG, Gersh BJ, Mair DD, Fuster V, McGoon MD, Ilstrup DM, McGoon DC, Kirklin JW, Danielson GK. Long-term outcome in patients undergoing surgical repair of tetralogy of Fallot. N Eng J Med, 1993; 329(9); 593-599.

18. Blackstone EH, Kirklin JW, Bertranou EG. Preoperative prediction from cineangiograms of postrepair with right ventricular pressure in tetralogy of Fallot. Thorac Cardiovasc Surg, 1979; 78: 542-552.

19. Sarıoğlu A, Batmaz G, Bilal MS. Total Correction of Tetralogy of Fallot without ‘Routine’, preoperative cardiac catheterization – Mangement of 99 patients. Cardiol Young, 1994; 4: 262-266.

20. Knott-Craig CJ, Elkins RC, Lane MM, Holl J, Mc Cue C, Ward KE. A 26-year experience with surgical management of tetralogy of Fallot: risk analysis for mortality or late reintervention. Ann Thorac Surg, 1998; 66: 506-511.

21. Katz NM, Blackstone EH, Kirklin JW, Pacifico AD, Bargeron LM. Late survival and symptoms after repair of tetralogy of Fallot. Circulation, 1982; 65: 403-410.

22. Misaki T, Tsubota M, Watanabe G, Watanabe Y, Matumoto Y, Ishida K, Iwa T, Okada R.

Surgical treatment of ventricular tachycardia after surgical repair of tetralogy of Fallot. Relation between intraoperative mapping and histological findings. Circulation, 1994; 90: 264-271.

23. Deanfield JE, McKenna WJ, Hallidie-Smith KA. Detection of late arrhythmia and conduction disturbance after correction of tetralogy of Fallot. Br Heart J, 1980; 44: 248-253.

24. Zakha KG, Hornerffer PJ, Rowe SA, Neill CA, Monolia TA, Kidd L, Gardner TJ. Long-term valvular function after total repair of tetralogy of Fallot. Relation to ventricular arrhythmias. Circulation, 1988; 78(Pt 2): 14-19.

25. Gatzoulis MA, Balaji S, Weber SA, Siu SC, Hokanson JS, Poile C, Rosenthal M, Nakazawa M, Moller JH, Gilette PC, Webb GD, Redington AN. Risk factors for arrhythmia and sudden 65 cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet, 2000; 356: 975-981.

26. Therrian J, Siu SC, McLaughlin PR, Liu PP, Williams WG, Webb GD. Pulmonary valve replacement in adults late after repair of tetralogy of Fallot: are we operating too late? J Am Coll Cardiol, 2000; 36: 1670-1675.

27. Shimazaki Y, Blackstone EH, Kirklin JW. The natural history of isolated congenital pulmonary valve incompetence: surgical implications. Thorac Cardiovasc Surgeon, 1984; 32: 257-259.

28. De Ruijer FTH, Weenink I, Hitchcock FJ, Meijbom EJ, Bennink GBWE. Right ventricular dysfunction and pulmonary valve replacement after correction of tetralogy of Fallot. Ann Thorac Surg, 2002; 73: 1794-1800.

29. Kirklin JK, Kirklin JW, Blackstone EH, Milano A, Pasifico AD. Effect of transannuler patching on outcome after repair of tetralogy of Fallot. Ann Thorac Surg, 1989; 48: 783-791.

30. d’Udekem Y, Ovaert C, Grandjean F, Gerin V, Cailteux M, Shango-Lody P, Vliers A, Sluysmans T, Robert A, Rubay J. Tetralogy of Fallot. Transannular and right ventricular patching equally affect late functional status. Circulation, 2000; 102(suppl III): 116-III-122.

31. Munkhammer P, Cullen S, Jogi P, Leval M, Elliot M, Norgard G. Early age at repair prevents restrictive right ventricular (RV) physiology after surgery for tetralogy of Fallot (TOF) – diastolic RV function after TOF repair in infancy. J Am Coll Cardiol, 1998; 32(4): 1083-1087.

83

32. Borowski A, Ghodsizad A, Litmathe J, Lawrenz W, Schmidt KG, Gams E. Severe Pulmonary Regurgitation Late after Total Repair of Tetralogy of Fallot: Surgical Considerations. Pediatr Cardiol, 2004; 25: 466-471.

33. Hazekamp MG, Kurvers MM, Schoof PH, Vliegen HW, Mulder BM, Roest AA, Ottenkamp J, Dion RAE. Pulmonary valve insertion late after repair of Fallot’s tetralogy. European J of Cardio-thoracic Surgery, 2001; 19: 667-670.

34. Gatzoulis MA, Clark AL, Cullen S, Newman CGH, Redington AN. Right Ventricular Diastolic Function 15 to 35 Years after Repair of Tetralogy of Fallot: Restrictive Physiology Predicts Superior Execise Performance. Circulation, 1995; 91: 1775-1781.

35. Norgard G, Gatzoulis MA, Moraes F, Lincoln C, Shore DF, Shinebourne EA, Redington AN.

Relationship Between Type of Outflow Tract Repair and Postoperative Right Ventricular Diastolic Physiology in Tetralogy of Fallot: Implications for Long-term Outcome. Circulation, 1996; 94: 3276-3280.

36. Cullen S, Shore D, Redington AN. Characterization of right ventricular performance after complete repair of tetralogy of Fallot: restrictive physiology predicts slow postoperative recovery. Circulation, 1995; 91: 1782-1789.

37. Ilbawi MN, Idriss FS, DeLeon SY, Muster AJ, Giding SS, Berry TE, Paul MH. Factors that exaggerate the deleterious effects of pulmonary insufficiency on the right ventricle after tetralogy repair. J Thorac Cardiovasc Surg, 1987; 93: 36-44.

38. Vliegen HW, van Straten A, de Ross A, Roest AA, Schoof PH, Zwinderman AH, Ottencamp J, van der Wall EE, Hazecamp MG. Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacement in adults late after repair of tetralogy of Fallot. Circulation, 2002; 106:

1703-1707.

39. Bowe EL, Kavey REW, Byrum CJ, Sondheimer HM, Blackman MS, Thomas FD. Improved right ventricular function following late pulmonary valve replacement for residual pulmonary insufficiency or stenosis. J Thorac Cardiovasc Surg, 1985; 90: 50-55.

40. Warner KG, Anderson JE, Fulton DR, Payne DD, Geggel RL, Marx GR. Resteration of the pulmonary valve reduces right ventricular volume overload after previous repair of tetralogy of Fallot.

Circulation, 1993; 88: part 2189-197.

41. Hausdorf G, Hinrichs C, Nienaber CA, Schark C, Keck EW. Left Ventricular Contractile State after Surgical Correction of Tetralogy of Fallot: Risk Factors for Late Left Ventricular Dysfunction.

Pediatr Cardiol, 1990; 11: 61-68.

42. Kondo C, Nakazawa M, Kasukabe K, Momma K. Left ventricular dysfunction on exercise long term after total repair of tetralogy of Fallot. Circulation, 1995; 92(suppl): 250-255.

43. Konstam, MA, Kronenberg, MW, Rousseau, MF, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators.

Circulation 1993; 88:2277.

44. Carabello BA. Concentric versus eccentric remodeling. J Card Fail 2002;8 (6Suppl):S258– 63.

45. Weber KT, Jalil JE, Janicki JS, Pick R. Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease. Am J Hypertens 1989;2(12 Pt 1):931– 40.

84

46. John Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction.

Pathophysiology and therapy. Circulation 2000;101;2981-2988

47. Ross RS, Borg TK. Integrins and the myocardium. Circ Res 2001;88(11):1112– 9.

48.Sugden PH. Signaling in myocardial hypertrophy: life after calcineurin? Circ Res 1999;84(6):633–

46.

49. Spinale FG, Ishihra K, Zile M, DeFryte G, Crawford FA, Carabello BA. Structural basis for changes in left ventricular function and geometry because of chronic mitral regurgitation and after correction of volume overload. J Thorac Cardiovasc Surg 1993;106(6):1147– 57

50. Takahashi T, Allen PD, Izumo S. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Correlation with expression of the Ca-ATPase gene [abstract]. Circ Res 1992;71:9-17

51. Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle [abstract]. Circ Res 1991;69:1226-33.

52. Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PA. Troponin I phosphorylation in the normal and failing adult human heart abstract]. Circulation 1997;96: 1495-500.

53. Morano M, Zacharzowski U, Maier M, Lange PE, Alexi-Meskishvili V, Haase H, et al.

Regulation of human heart contractility by essential myosin light chain isoforms [abstract]. J Clin Invest 1996;982:467-73.

54. Fedak PWM, Verma S, Weisel RD, Li RK. Cardiac remodeling and failure. From molecules to man (Part 1). Cardiovasc Pathol. 2005; 14: 1–11.

55. Schaper J, Lorenz-Meyer S, Suzuki K. The role of apoptosis in dilated cardiomyopathy. Herz 1999;24(3):219 –24.

56. Condorelli G, Morisco C, Stassi G, Notte A, Farina F, Sgaramella G, de Rienzo A, Roncarati R, Trimarco B, Lembo G. Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 1999;99(23): 3071– 8.

57. Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR, Feuerstein GZ. Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res1998;82(2):166–74.

58. Maytin M, Colucci WS: Molecular and cellular mechanisms of myocardial remodeling. J Nucl Cardiol 9:319–327, 2002

59. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344(23):1750– 7.

60. Fugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix. When is enough enough ? Circulation 2003;108:1395–1403.

61. Opie LH. Heart Physiology. William-Wilkins. Forth Edt. p. 497

85

62. Weber KT, Anversa P, Armstrong PW, Brilla CG, Burnett JC Jr, Cruickshank JM, et al.

Remodeling and reparation of the cardiovascular system [abstract]. J Am Coll Cardiol 1992;20: 3-16.

63. Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF Jr. Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links [abstract]. Am J Pathol 1996;148:1639-48.

64. Peterson JT, Hallak H, Johnson L, Li H, O’Brien PM, Sliskovic DR, et al. Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure [abstract]. Circulation 2001; 103:2303-9.

65. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction [abstract]. J Clin Invest 2000;106:55-62.

66. Houser SR, Lakatta EG. Function of the cardiac myocyte in the conundrum of end- stage, dilated human heart failure. Circulation 1999;99:600-4.

67. Takahashi T, Allen PD, Izumo S. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Correlation with expression of the Ca(2_)-ATPase gene. Circ Res 1992;71:9-17.

68. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, et al. Stretch-induced programmed myocyte cell death [abstract]. J Clin Invest 1995;96:2247-59.

69. Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes [abstract]. Circ Res 2001;89:453-60.

70. Konstam MA, Kronenberg MW, Rousseau MF, Udelson JE, Melin J, Stewart D, Dolan N, Edens TR, Ahn S, Kinan D. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation 1993; 88(5 Pt 1):2277– 83.

71. Jong P, Demers C, McKelvie RS, Liu PP. Angiotensin receptor blockers in heart failure: meta-analysis of randomized controlled trials. J Am Coll Cardiol2002;39(3):463–0.

72. Witherow FN, Helmy A, Webb DJ, Fox KA, Newby DE. Bradykinin contributes to the vasodilator effects of chronic angiotensin- converting enzyme inhibition in patients with heart failure. Circulation 2001;104(18):2177–81.

73. Sadoshima, J, Izumo, S. Molecular characterization of angiotensin II—induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 1993; 73:413

74. Paradis, P, Dali-Youcef, N, Paradis, FW, et al. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A 2000; 97:931.

75. Soberman J, Chafin CC, Weber KT. Aldosterone antagonists in congestive heart failure. Curr Opin Investig Drugs 2002;3(7): 1024– 8.

76. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart

86

failure: insights from the randomized aldactone evaluation study (RALES) Rales Investigators.

Circulation 2000;102(22):2700– 6.

77. Swedberg K, Viquerat C, Rouleau JL, Roizen M, Atherton B, Parmley WW, Chatterjee K. Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol 1984;54(7):783– 6.

79. Mann DL, Kent RL, Parsons B, Cooper G. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992;85:790-804.

80. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in beta 1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U SA 1999;96(12):7059– 64.

81. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T.

Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984;311(13):819– 23.

82. Bristow MR. Mechanistic and clinical rationales for using betablockers in heart failure. J Card Fail 2000;6(2 Suppl 1):8– 14.

83. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure [abstract]. N Engl J Med 1990;323:236-41.

84.Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, et al. Tumor necrosis factor-alpha and tumor 326 Maytin and Colucci Journal of Nuclear Cardiology Molecular remodeling May/June 2002 necrosis factor receptors in the failing human heart. Circulation 1996;93:704-11.

85. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide [abstract]. Science 1992;257: 387-9.

86. Thaik CM, Calderone A, Takahashi N, Colucci WS. Interleukin-1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes [abstract]. J Clin Invest 1995;96: 1093-9

87. Li X, Moody MR, Engel D, Walker S, Clubb FJ Jr, Sivasubramanian N, et al. Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 2000;102:1690- 6.

88. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 2001;103(16):2055– 9.

89. Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction [abstract]. Proc Natl Acad Sci U S A 2000;97:5456-61.

90. Krum H. Tumor necrosis factor-alpha blockade as a therapeutic strategy in heart failure (RENEWAL and ATTACH): unsuccessful, to be specific. J Card Fail 2002;8(6):365 – 8.

91. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II [abstract]. Circulation 1998;98: 794-9.

92. Amin JK, Xiao L, Pimental DR, Pagano PJ, Singh K, Sawyer DB, et al. Reactive oxygen

87

species mediate alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes [abstract]. J Mol Cell Cardiol 2001;33:131-9.

93. Cheng TH, Shih NL, Chen SY, Wang DL, Chen JJ. Reactive oxygen species modulate endothelin-I-induced c-fos gene expression in cardiomyocytes [abstract]. Cardiovasc Res 1999; 41:654-62.

94. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species- induced cardiomyocyte apoptosis. Circulation 1999;99:2934-41.

95. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts [abstract]. Am J Physiol Cell Physiol 2001; 280:C53-60.

96. Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, et al. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice. role of oxidative stres . Circ Res 2000;87:392-8.

97. Antman EM, Braunwald E: ST-Elevation myocardial infarction: Pathology, pathophysiology, and clinical features. In Zipes DP, Libby P, Bonow R, Braunwald E (eds): Braunwald’s Heart Disease. A textbook of cardiovascular medicine. Philadelphia, Elsevier Saunders, 2005, pp 1150-1153.

98. Dell’Italia LJ, Meng QC, Balcells E, et al.. Compartmentalization of angiotensin II generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces. J Clin Invest 100: 253–258, 1997.

99. Ergul A, Walker CA, Goldberg A et al. ET-1 in the myocardial interstitium: relation to myocyte ECE activity and expression. Am J Physiol Heart Circ Physiol 278: H2050–H2056,2000.

100. Cucoranu I, Clempus R, Dikalova A, et al. NAD(P)H oxidase 4 mediates transforminggrowth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97: 900–907, 2005.

101. Chen MM, Lam A, Abraham JA, et al. CTGF expression is induced by TGF-beta in cardiac fibroblasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol 32: 1805–1819, 2000.

102. Lee AA, Delhaas T, McCulloch AD, et al. Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31: 1833–1843, 1999

103. Ortega N, Behonick D, Stickens D, et al. How proteases regulate bone morphogenesis. Ann NY Acad Sci 995: 109–116, 2003.

104. Nardo LG, Nikas G, Makrigiannakis A. Molecules in blastocyst implantation. Role of matrix metalloproteinases, cytokines and growth factors. J Reprod Med 48: 137-147, 2003.

105. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003 2;92(8):827-39

106. Nagase H, Woessner J.F. Matrix metalloproteinases. J Biol Chem (1999) 274:21491–21494 107. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs.

Cardiovasc Res. 2006 15;69(3):562-73.

88

108. Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med 2008;

29(5):290-308

109. Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function.Physiol Rev. 2007 Oct;87(4):1285-342

110. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family.

Proc Natl Acad Sci U S A. 1990;87(14):5578-82.55

111. Vihinen P, Kahari VM. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 2002; 99(2):157-66.

112. Sato H, Takino T, Okada Y, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370: 61–65, 1994.

113. Opdenakker G., Van den Sten P.E., Dubois B., Nelissen I., Coillie E.V., Masure S., Proost P.,and Damme J.V.: Gelatinase B functions as regulator and effector in leukocyte biology. J.Leukoc.

Biol.: 69: 851.859; 2001.

114. Woessner J.F. Jr.: Matrix metalloproteinases and their inhibitors in connective tissue remodeling.

FASEB J.: 5(8):2145-54; 1991.

115. Strickland D.K., Ashcom J.D., Williams S., et al. Sequence identity between the alpha 2- macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J Biol Chem (1990) 265:17401–17404

116. Vanhoutte D, Schellings M, Pinto Y, et al. Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res. 2006 Feb 15;69(3):604-13.

117. Lambert E, Dassé E, Haye B, et al. TIMPs as multifacial proteins. Crit Rev Oncol Hematol.

2004;49(3):187-98

118. Schellings MW, Pinto YM, Heymans S. Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res. 2004 1;64(1):24-31.

119. Xie Z, Singh M, Siwik DA, et al. Osteopontin inhibits interleukin-1beta-stimulated increases in matrix metalloproteinase activity in adult rat cardiac fibroblasts: role of protein kinase C-zeta.J Biol Chem. 2003 5;278(49):48546-52)

120. Philip S, Kundu GC. Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha /IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. J Biol Chem. 2003 18;278(16):14487-97.)

121. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem. 2001 16;276(11):8403-8.)

122. Yang Z, Kyriakides TR, Bornstein P. Matricellular proteins as modulators of cell-matrix interactions: adhesive defect in thrombospondin 2-null fibroblasts is a consequence of increased levels of matrix metalloproteinase-2. Mol Biol Cell. 2000;11(10):3353-64.

123. Deschamps AM, Spinale FG. Matrix modulation and heart failure: new concepts question old

89 beliefs. Curr Opin Cardiol. 2005;20(3):211-6

124. Suzuki K, Enghild JJ, Morodomi T, et al. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29: 10261–10270,1990.

125. Knauper V, Murphy G. Membrane-type matrix metalloproteinases and cell surfaceassociated activation cascades for matrix metalloproteinases. Matrix Metalloproteinases 199– 218, 1998

126. Gearing AJ, Beckett P, Christodoulou M, et al. Matrix metalloproteinases and processing of pro-TNFalpha. J Leukoc Biol 57: 774–777, 1995.), 56

127. Williams LM, Gibbons DL, Gearing A, et al. Paradoxical effects of a synthetic metalloproteinase inhibitor that blocks both p55 and p75 TNF receptor shedding and TNF alpha processing in RA synovial membrane cell cultures. J Clin Invest 97: 2833–2841, 1996.)

128. Lu L, Quinn MT, Sun Y. Oxidative stress in the infarcted heart: role of de novo angiotensin II production. Biochem Biophys Res Commun 2004;325:943–951).

129. Coker ML, Jolly JR, Joffs C, et al. Matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation. Am J Physiol Heart Circ Physiol 281: H543–H551, 2001.

130. Rouet-Benzineb P, Gontero B, Dreyfus P, et al. Angiotensin II induces nuclear factorkappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J Mol Cell Cardiol 32: 1767–1778, 2000.

131. Cleutjens JPM, Kandala JC, Guarda E, et al. Regulation of collagen degradation in the rat

131. Cleutjens JPM, Kandala JC, Guarda E, et al. Regulation of collagen degradation in the rat

Benzer Belgeler