• Sonuç bulunamadı

Genes and molecular mechanisms involved in the epileptogenesis of idiopathic absence epilepsies

N/A
N/A
Protected

Academic year: 2021

Share "Genes and molecular mechanisms involved in the epileptogenesis of idiopathic absence epilepsies"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Review

Genes

and

molecular

mechanisms

involved

in

the

epileptogenesis

of

idiopathic

absence

epilepsies

O

¨ zlem

Yalc¸ın

*

DepartmentofMolecularBiologyandGenetics,T.C.IstanbulArelUniversity,Tepekent-Buyukcekmece,Istanbul,Turkey

1. Introduction

Idiopathic absence epilepsies (IAE) are types of generalized epilepsies (IGE) that are not preceded or occasioned by other disorders,butareinstead,causedbycomplexgeneticfactors.1The

mostcommonformsofIAEsarechildhoodabsenceepilepsy(CAE) andjuvenileabsenceepilepsy(JAE).However,absenceseizurescan be associated with other subtypes of IGEs, such as juvenile myoclonicepilepsy(JME).The clinicalfeatures ofCAEare non-convulsiveepilepticseizurescharacterized bythebrief(5–20s) andsuddenlossofconsciousnesswithageneralizedsynchronous, bilateral,2.5–4Hzspikeandslowwavedischarge(SWD)in the electroencephalogram(EEG).2,3Theonsetoftheabsenceseizures

havinga frequency of up to200 per day (pyknoleptic),begins between the ages of 3 and 8, with seizures disappearing spontaneously at adolescence. JAE, on the other hand, is characterized by non-pyknoleptic absence seizures, primarily occurring after 10 years of age. Unlike CAE,these seizuresare associated frequently with other epileptic symptoms, such as generalizedtonic-clonicseizures(GTCS)andmyoclonicjerks.

Experimentsonanimalmodelsrevealedthatthethalamusand thecortexarebothinvolvedinthegenerationofSWDs.4,5Thereare

three main components of a thalamocortical network: (1) Thalamocorticalrelayneuronswhichtransferinputsfromalarge number ofsourcestopyramidalneuronsintheIII–IVandV–VI layersofthecortexthroughexcitatorysynapticconnections.(2) LayerVIpyramidalcellsofthecortexwhichsendbackexcitatory inputstothethalamus.(3)InhibitoryGABAergicinterneuronsin the thalamic reticular nucleus (nRT), which receive excitatory inputsfromaxoncollateralsofthereciprocalthalamocorticaland corticothalamic pathways. When activated, these GABAergic neuronssendinhibitoryinputstothethalamusandalsotoeach other,butnottothecortex.6

When a thalamocortical circuit works properly, a burst of synchronizedoscillationswithafrequencyof10Hzwilloccur.In this circuit, thalamocortical neurons induce excitatory post-synapticpotentials(EPSPs)inGABAergicnRTneuronsviaNMDA andnon-NMDAreceptors.Low-thresholdcalciumchannelsinnRT neurons are activated leading to the opening of Na channels, initiating action potentials. The activation of these inhibitory neurons induces inhibitory postsynaptic potentials (IPSPs) in thalamocortical neurons via GABAA receptors. This inhibitory

phaseabolishestheburstfiringinthecircuitforatime.Duringthis hyperpolarized state, low-threshold calcium channelsin thala-mocortical neurons recover from inactivation. The calcium channels open, depolarizing the membrane, making the cell available for the next burst of action potentials. However, abnormal activity in this circuit would disrupt the alternating

ARTICLE INFO Articlehistory: Received10May2011

Receivedinrevisedform2December2011 Accepted4December2011

Keywords:

Childhoodabsenceepilepsy Juvenileabsenceepilepsy GABAchannels Calciumchannels Spikewavedischarges

ABSTRACT

Idiopathic absence epilepsies (IAE), that have high prevalence particularly among children and adolescents,arecomplexdisordersmainlycausedbygeneticfactors.Childhoodabsenceepilepsyand juvenileabsenceepilepsyareamongthemostcommonsubtypesofIAEs.Whiletheroleofionchannels hasbeentheprimaryfocusofepilepsyresearch,theanalysisofmutationandassociationinbothpatients withabsenceepilepsiesandanimalmodelsrevealedtheinvolvementofGABAreceptorsandcalcium channels,butalsoofnovelnon-ionchannelproteinsininducingspikewavedischarges(SWD).Functional studiesonamutatedvariantoftheseproteinsalsosupporttheirroleintheepileptogenesisofabsence seizures.StudiesinanimalmodelspointtoboththethalamusandcortexastheoriginofSWDs:the abnormalitiesinthecomponentsofthesecircuitsleadingtoseizureactivity.Thisreviewexaminesthe currentresearchonmutationsand susceptibilityallelesdeterminedinthegenesthatcodeforthe subunitsofGABAreceptors(GABRG2,GABRA1,GABRB3,GABRA5,GABA(B1)andGABA(B2)),calciumchannels (CACNA1A,CACNA1G,CACNA1H,CACNA1I,CACNAB4,CACNAG2andCACNG3),andnovelnon-ionchannel proteins,takingintoaccounttheresultsoffunctionalstudiesonthesevariants.

ß2011BritishEpilepsyAssociation.PublishedbyElsevierLtd.Allrightsreserved.

*Correspondingauthor.Tel.:+902128600480;fax:+902128600314. E-mailaddress:ozlemyalcin@arel.edu.tr.

ContentslistsavailableatSciVerseScienceDirect

Seizure

j o urn a lhom e pa g e :ww w . e l se v i e r. c om / l oca t e / y se i z

1059-1311/$–seefrontmatterß2011BritishEpilepsyAssociation.PublishedbyElsevierLtd.Allrightsreserved. doi:10.1016/j.seizure.2011.12.002

(2)

cyclesofexcitatoryandinhibitoryactivity,leadingto3–4Hzspike wavedischarges.Forexample,increasedexcitatoryactivityinthe cortexorthalamocorticalregionwouldleadtoalongerburstof nRT neurons firing, causing longer IPSPs mediated by GABAB

receptorsviaG-proteincoupledKchannelsinthethalamocortical region.During this long hyperpolarizedstate,calciumchannels open,initiatingseveralactionpotentialsineverycycle,resultingin paroxysmalspikesandslowwavedischarges.

In addition to possible abnormal activity in the cortex or thalamocorticalregions, there areother suggestedmechanisms explainingthegenerationofabnormalspikewavedischarges.For example,thelossofGABAAreceptormediatedinhibitionbetween

thalamicreticularcellscausesthesecellstoproducelongerIPSPs on thalamocortical cells mediated by GABAB receptors and

enhancementoflowthresholdCa2+.7

Thisreviewsummarizesnotonlythemutationsand suscepti-bility alleles determinedin patients and animal modelsin the candidateionchannelandthenovelnon-ionchannelgenesbut alsoexaminesthefunctionalresultsofthesevariationsthroughthe mechanismofSWDsinthethalamocorticalnetwork.

2. Geneticetiologyofidiopathicabsenceepilepsies

Becausethecellularmechanismofabsenceseizuresindicates theinvolvementofionchannelsinthepathogenesisofabsence epilepsies; gene analysis carried out both on patients and on animalmodels,revealedbothmutationsandsusceptibilityalleles ingenesthatcodeforthesubunitsofGABAreceptorsand Ca2+

channels (as shown in Table 1). Unfortunately, most of these variationsarerare andrestricted toafew a patients;thus, the components of the complex genetic factors involved in the triggeringofabsenceseizuresarestillunclear.However,inrecent years,researchintothesefactorshascontinued,andthefocuson using novel non-ion channel genes and approaches, such as studyingthecopynumbervariations(CNV),epigenetic modifica-tions,and exome sequencing,hasdrawnmoreattentionto the importanceofunderstandingtheplaceofgeneticcomponentsin absenceseizures.

2.1. GABAreceptors

GABAis themain inhibitoryneurotransmitter inthecentral nervoussystem.Itinteractswithtwomajorsubtypesofreceptors, GABAAandGABAB,whichareinvolvedinthegenerationofspike

wavedischargesduringabsenceseizures.

2.1.1. GABAAreceptors

IonotropicGABAAreceptorsmediatefastsynapticinhibitionin

thecentralnervoussystem.BindingofGABAtoGABAAreceptors

allowsaninfluxofCIionswhichcauseshyperpolarizationofthe

membraneandinhibitionofactionpotentials.8GABA

Areceptors

arepentamericstructures,consistingoffiveoutofatleast18 sub-units(

a

1-6,

b

1-3,

g

1-3,

d

,

e

,

u

,

r

1-3).9 Each subunit has four

transmembranedomainswiththesecondtransmembraneofeach subunitformingthechannelpore.10Thegenesthatcodeforthese

subunitsarelocalizedasclustersondifferentchromosomes.The mostprevalentGABAAreceptorthroughoutthebrainisformedby

the

a

1,

b

2,andthe

g

2subunits,encodedbyGABRA1,GABRB2and GABRG2geneslocalizedon5q34–35.AnotherGABAgenecluster (GABRA5,GABRB3andGABRG3)resideson15q11–12,codingforthe

a

5,

b

3and

g

3 subunits. These receptorscanbemodulated by steroids, barbiturates and benzodiazepines. The role of GABAA

receptors in epileptic activity has been studied extensively; researchersfoundthatGABAAreceptoragonists,suchas

barbitu-rates and benzodiazepines, suppress seizures while theGABAA

blockers, such as bicuculline, penicillin and picrotoxin induce epilepticactivityinmodelanimals.

InanalysisofGABAAreceptorsinabsenceseizures,theresearch

hasforthemostpartfocusedonthe

g

2subunit,whichwasthefirst mutationidentifiedintheGABRG2geneinafamilywithCAEand febrileseizures.11The

g

2subunitisknowntoberesponsiblefor

modulationofbenzodiazepineandreceptortargeting.8Mutation

intheCAEfamily,argininetoglutaminesubstitutionataminoacid 43(Arg43Glu),ledtothelossofcurrentthroughGABAreceptors duetoanimpairmentintrafficfromthereceptortothemembrane. Functionalstudiesinthisareapointedoutthatthesubunitwith themutation is stuckinthe endoplasmicreticulum,leading to decreasedsurfaceexpression.12Arg43Glumutationwasassessed

inamousemodelwhichwasconstructedbytheinsertionofan Arg43Glu mutation in the heterozygous state.13 The mouse showedasimilarphenotypeindicatingchildhoodabsenceepilepsy andconfirmingthecausativeroleofthe

g

2subunit.Areductionof inhibitioninthecortexofthemousewasdetected,markingthe cortexasthestartregionofSWDs.Further,thalamicburstingis subjecttoinputsfromthecorticalregion,andthus,inhibitionin thecortexwouldaltertheseinputs,triggeringSWDs.

AsecondmutationinGABRG2wasalsofoundinafamilywith CAEandfebrileseizures.14TheIVS6+2T!Gmutationdisrupteda

putativesplicesite,whichprobablycaused atruncatedprotein. Despite these findings, contradictory results in Japanese and Chinese populations limited the potentialimpact of this study because mutation analysis and association studies revealed negativelinkageofCAEtoGABRG2inthesepopulations.15,16

The first study to understand the role of GABRA1 in the pathogenesis of epilepsyincluded 61 JME, 38 JAE,and 29 CAE patients,revealednolinkage.17Furtherstudyidentifiedmutations inaJMEfamily18andaCAEpatient.19IntheCAEpatient,thesingle

basepairdeletion(975delC)hadcausedaprematurestopcodon. Functionalstudiesshowedthatthetruncatedreceptorcouldnot integrateintothemembraneandthuscausednocurrent.Dueto haploinsufficiency there were losses in the function of the inhibitory action of GABA channels in the thalamic neurons. However, in the Japanese population, attempts to find any causative mutation in typical and atypical absence patients revealednegativeresults.15

The GABRB3 gene codes for the

b

3-subunit of the GABAA

receptor.20Associationanalysiscarriedoutwithdifferentethnic

groups for GABRB3gene displayed possibleassociations in CAE patients.21–23InUrak’sstudy,acommonpromoterhaplotypewas foundtobeatahigherfrequencyinCAEpatients.Areportergene assay was carried out to illustrate the possible effects of this haplotypeontranscription.Theresultshowedthatthisparticular haplotype reduced the transcriptionallevel of GABRB3 gene by interferingwiththebindingsiteoftheneuron-specific transcrip-tionalactivatorN-Oct-3.However,reducedlevelsofthe

b

3subunit wouldhavealsodecreasedthelevelofinhibitoryGABAAreceptors.

ThisdiseasesusceptiblehaplotypewhenassessedintheGerman IGEsamplesdidnotconfirmthatthishaplotypewascommonin absencepatientsofdifferentethnicgroups.24

Differences based on ethnicity were further illustrated by mutations found in GABRB3 in 4 families of 48 CAE Mexican familiesofAmericanIndianorSpanishEuropeandescent.Three mutations resided in the exon1a in signal peptide, while the Gly32Arg mutation in exon 2 affected protein maturation, topology, assembly, and subcellular localization of a GABA receptor,resultinginhyperglycosylation.25

GABRB3deficientmiceshowedabnormalEEGactivityincluding generalizedtonicclonicseizures,clonicandmyoclonicseizures,as wellasbehavioralarrestduringtheabnormalEEGactivity,similar to that found in absence seizures.26 However, there was no

evidencethatthemicehad experiencedpureepilepticseizures;

O¨.Yalc¸ın/Seizure21(2012)79–86 80

(3)

Association and mutation analysis of the candidate genes for idiopathic absence epilepsies.

Gene Protein DNA Mutation/association analysis Protein mutation Clinical features and origin of Patient(s)/reference Functional study

GABRG2 g2 subunit of GABAAreceptor c.245G > A R43Q CAE patients with febrile seizures in a large family11 Reduced GABAAreceptor currents12

IVS6 + 2T > G – CAE patient with febrile seizures14

Probably truncated protein

GABRA1 a1subunit of GABAAreceptor 975delC Premature

stop codon

CAE patient19 No GABA

Areceptor current

GABRB3 b3 subunit of the GABAAreceptor Significant association

of a common haplotype

– 45 Austrian CAE patients21

Reduced transcriptional level of GABRB3 gene

c.31C > T P11S CAE Mexican families with American Indian

and Spanish European ancestry25

Altered protein maturation, topology, assembly and subcellular localization of GABA receptors

c.44C > T S15F

c.G962 > A G32R

CACNA1A a1A subunit of P/Q channels 5733C > T R1820stop A patient with severe phenotype of absence

seizures and ataxia39

Reduced Ca2+

current

439G > A E147K In a family with absence seizures and ataxia40 Reduced Ca2+channel function

CACNA1G a1G subunit of LVA channels c.1709C > T A570V A Japanese patient with sporadic case of JME

and with a history of early CAE46

Increased Ca2+

current and faster inactivation decay rates

c.3295G > A A1099T Japanese CAE patients46

No alteration in Ca+

currents

c.3728G > A R1243Q No alteration in Ca+

currents

CACNA1H a1H subunit of LVA channels 562C > A F161L Chinese CAE patients52

Increased T-type channel activity53–55

923G > A E282K 1445T > A C456S 1574G > A G499S 2022C > T P648L 2310G > A R744Q 2322C > T A748V

47152C > T P314S Chinese CAE patient56

Predicted to change potential phosphorylation site

48684C > T P492S Predicted to change the charge status

of the channel and phosphorylation site

47247C > T N345N Predicted to alter potential splicing site

49016C > G L602L Predicted to affect transcription

factor binding site

49067A > G S619S Predicted to affect transcription factor

binding site or splicing Significant association of SNP

(rs2745150) in intron 11

– 100 Chinese CAE patients56 Predicted to change potential splicing site

Significant association of SNP (rs9934839) in exon 9 and haplotype

– 218 Chinese CAE patients57

Predicted to change the transcription binding site

CACNG3 g3 subunit of neuronal

voltage-gated calcium channel

Strong association of 3 common SNPs (rs4787924, rs965830,

rs2214437) and a haplotype

– 217 CAE trios and the 65 nuclear

pedigrees with Caucasian origin66

ME2 Malic enzyme 2 Association of a nine-SNP haplotype – 68 JAE patients with GTCS67

Glud1 glutamate dehydrogenase 833C > T R221C 3 children in the same family with photosensitive

myoclonic absence epilepsy and HI/HA68

Decreased level of GABA in patients compared to the controls

JRK/JH8 JRK jerky homolog (mouse) c.1367C > T T456M CAE patient evolving to JME70

LGI4 leucine-rich, glioma inactivated 4 Association of a polymorphism

(c.1914GC > AT) – 42 CAE patients72 – O ¨ . Yalc ¸ın / Seizure 21 (2012) 79–86 81

(4)

insteadtheyshowedfeaturesoftheAngelmansyndrome,whichis known tohavedeletionson15q11–13.PatientswithAngelman syndrome, like theGABRB3 deficient mice,experience different typesofepilepticseizuressuchas,atypical absence,myoclonic, atonic,tonic,andtonic-clonicseizures.Themiceweretreatedwith carbamazepine,awell-knownantiepilepticdrug(AED),whichis used for thetreatment of focal epilepsies. After treatment, the absenceseizureswereaggravated,asisthecaseinhumanswith absence seizures, indicating an involvement of absence-like pathophysiologyinthesemice.27,28

The

a

5-subunitofGABAAreceptors(GABRA5)of50CAEpatients

werealsosubjectedtomutationanalysis;however,nocausative variationwasidentified.23

2.1.2. GABABreceptors

Metabotropic GABABreceptors mediate their activity via

G-coupledproteinsbyactivatingK+andCa2+ionchannels,second

messenger systems, phospholipase C, and adenylate cyclase.10 These proteins are seven transmembrane receptors, and the functional GABAB receptor is formed from heterodimers of

GABA(B1) and GABA(B2) subunits. These receptorsproduce both

slow and prolonged inhibitory signals, mainly located in the presynapticterminals,whichhaveanessentialrolein neurotrans-mitterrelease.

Themicemodels,withknockeddownGABA(B1)andGABA(B2)

subunits,displayedspontaneousSWDs,whichindicatedapossible role for GABAB receptors in absence epilepsy.29,30 Also, in the

neocortexoftheWag/rijrat(oneoftheestablishedanimalmodels for human absence seizures), researchers found a reduced expressionandfunctionofGABABreceptor.31Althoughtheanimal

models emphasized the possible role of GABAB receptors in

absenceseizures,mutationandassociationanalysisperformedon ChineseCAEpatientsagainrevealednegativeresults.32

2.2. Calciumchannels

Calcium channels are voltage dependent channels whose conductancedependsonchangesintransmembranepotential.In excitablecells,theyconduct Ca2+ionswhichfunctioninmuscle

contraction,aswellasreleasinghormonesandneurotransmitters throughadiversecalciuminvolvedprocesses.33Calciumchannels arecomposedofonemain

a

1subunit,i.e.anintegralmembrane proteinanditssmallerauxiliarysubunits(

b

,

a

2,

d

and

g

).34The

biologicalandphysiologicalpropertiesofcalciumchannelsdepend on the

a

1 subunits, consisting of four repeats of the six transmembranedomains.Asinallothervoltagegatedchannels, thesedomainsincludeoneS4segmentwhichfunctionsasvoltage sensor,aselectiveP-loop,andS6segmentthatformstheinnerpart ofthechannel.TheC-terminusofthe

a

1proteinisalsoessentialfor interactionwiththeauxiliarysubunits,Ca2+-calmodulin-mediated

inactivationandforG-proteinregulation.35Thereareatleasttwo

distinct classes of Ca2+ channels depending on the voltage

requirementforactivation.Low-voltage-activated(LVA)channels activateafterasmalldepolarizationofthemembranewhile high-voltage-activated(HVA)channelsfunctioninthecaseofa larger depolarization.Calciumchannelsarepossibletargetsforinduction ofSWDsbecauseoftheirexcitatoryfunctioninthethalamocortical region. Ethosuximide, which is an essential AED used to treat absenceseizures,isalsoknowntosuppressT-channelcurrents.36

Attempts to locate epilepsy genes in both animal models and absencepatientsrevealedthatboththeLVAandHVAchannelsplay rolesinthepathogenesisofabsenceseizures(showninTable1). 2.2.1. HVAcalciumchannels

HVA calcium channels include L-, P/Q-, N- and R-subtypes dependingontheirdifferentelectrophysiologicaland

pharmaco-Table 1 (Continued ) Gene Protein DNA Mutation/association analysis Protein mutation Clinical features and origin of Patient(s)/reference Functional study SLC2A1 Glut1 glucose transporter c.668G > C R223P Early onset absence epilepsy 74 Decreased level of glucose transport c.971C > T S324L c.376C > T R126C c.680-11G > A 227–228ins PPV c.971C > T S324L Aglo-saxon absence families with different syndromes 75 – c.668G > C R223P INHA inhibin alpha subunit Significant association of SNP (rs7588807) in intron 1 – 7 2 Turkish JAE patients 76 – n.370C > T R124C Turkish JAE patients – n.525C > G H175Q n.747G > A L249L

O¨.Yalc¸ın/Seizure21(2012)79–86 82

(5)

logical properties, along with amino acid identity.37 P/Q type

calciumchannels,mainlyfoundinpresynapticterminal distribu-tion, are known to have an essential role in modulating neurotransmitterrelease.38Therefore,dysfunctionofthese

chan-nelswouldimpairthebalancebetweenneuronalinhibitionand excitationleadingtoburstfiring.

In a patientwith severephenotype ofabsence seizuresand ataxia,forthefirsttime,anonsensemutationhasbeenidentifiedin the

a

1AsubunitofP/Qchannels(CACNA1A).39Thegeneresidedon

19p13,withthemutationlocatedintheC-terminusoftheprotein, whichcausedaprematurestopcodon.Functionalstudiesshowed thatthis mutationhad adominantnegativeeffect,leadingtoa reducedCa2+current.Asecondmutationwasalsoidentifiedinthe

CACNA1Aofafamilywiththreegenerationsofabsenceandataxia intheirmedicalhistory.40The439G!Anucleotidetransitionin exon3inheterozygousstatecausedE147Kaminoacid substitu-tionin thesecondtransmembrane segment of domainIof the channel.Functional studies forthis mutation revealeda partial reductionincalciumchannelfunctionduetoimpairmentintraffic tothemembrane.

Intwoanimalmodels,thetottering andleanermouse, which showedboththeabsenceandataxiaphenotypes,mutationswere foundinCACNA1A(Cav2.1).Inthetotteringmousethemutationwas located in the S4–S5 linker region of the third transmembrane domainnearthepore-formingregionofthechannel.41Thismutation

reduced the whole-cell current density and voltage dependent inactivation during a prolonged depolarization in dissociated Purkinjesomas.42Intheleanermouse,themutationinCACNA1A hadmoresevereeffects,itslocationintheC-terminus,reducedboth currentdensityandopenprobabilityofsingleP/Qtypechannels.43

While Cav2.1 channels appear to be good candidates for absenceseizures,bothpatientsandmousemodelsfailedtoexhibit not only pure absence seizures, but also other neurological disorders like ataxia and dystonia. Therefore, mutations in CACNA1Acouldhavebeenthecauseoftheotherdiseases,with anotherlocus responsible for theepileptic phenotype. Another possibilitycouldbethatmalfunctionsinotherproteins,secondary tothemutationsinCACNA1A,weretheactualcauseoftheabsence seizures.28Recentstudiesindicatethatthis secondpossibilityis

morelikely:specificallyastudyonmousemodelswithCACNA1A mutations,whereanincreaseinthecurrentofLVAchannelswas measuredinthethalamocorticalregionofthebrain.44Inmutant

micewithnullmutationofCACNA1A,LVAcurrentwaselevatedin thethalamocorticalregionandthemicewerefoundtobemore likelytohavespikewavedischarges.45

2.2.2. LVAcalciumchannels

Therearethreegenesthatcodeforthe

a

1subunits,whichhave low-voltage activation, namely CACNA1G (Cav3.1), CACNA1H

(Cav3.2) and CACNA1I (Cav3.3). CACNA1G is located on the

17q21.33,andthis channelismainlyexpressedin the thalamo-cortical neurons where the spike wave discharges occur. As a potentialcandidategene,CACNA1Gwasscreenedin73Japanese and 50 non-Japanese patients. Of this group, 13 variants were identifiedand5ofthosecausedaminoacidsubstitutions.46Oneof

thesevariantswasfoundinapatientwithasporadiccaseofJME andahistoryofearlychildhoodabsenceepilepsy.Themutation caused alanine tovaline amino acid exchangeat position 570, locatedintheintracellularportionoftheproteinwithinI-IIloop. Themutationwasnot foundin360control samplesandwhen expressedinHEKcells,themutatedchannelscausedalargerCa2+

current compared to the wild type, however the result was statistically insignificant. However, other variants may have affectedthealternativesplicingofthegene:atleastfivedifferent isoformswithdifferentkineticsandsteady-statepropertieshave beenidentifiedfortheCav3.1channel.47

Mutationanalysiswasalsoperformedon48Chinesepatients who were shown to have a similar genomic structure to the JapaneseintheHapMapproject.Unfortunately,theresearchdid not reveal any pathological change, but six newvariants were detected.Anassociationanalysiswascarriedouttodetermineif there was a significant difference between controls, but it exhibitednegativeassociation.48

ToassessthepossibleroleoftheCav3.1channelsininducing

spike wave discharges, CACNA1G was deleted in mice models. Interestingly,animalsbecameresistanttospikewavedischarges, duetotheLVAT-typechannelbeingabolished.49Inanotherstudy,

CACNA1G was overexpressed in a mouse with low and high transgene copy numbers. This led to an elevation in

a

1G expression, and consequently, in thefunctionalT-type currents inthalamicneurons.50BothtransgeniclinesshowedSWDbutdid not indicate muchof a difference inthe frequency ofseizures. Further, the mouse did not exhibit any other neurological disorders; providing direct evidencethat an increase in Ca

v

3.1 didleadtopureabsenceseizures.

TheCACNA1Hgene(Ca

v

3.2)islocatedonchromosome16p13.3 andexpressedinthethalamicreticularnucleus.49Itisextensively

alternatively spliced and generates a family of variant tran-scripts.51Thedifferentvariantsshiftvoltage-domainforgating,the

kineticsofactivation,inactivationandrecoveryfrominactivation, andthemagnitudesandvoltagemidpointsforfunctionalwindow currents.Thus,changesthataffecttheESEregulatorysitesinexons orsplicinginintronicregionscouldpredisposeseizures.Thefirst mutationanalysisinCACNA1Hwascarriedoutwith118Chinese CAEpatientsandrevealed12missensemutationsin14patients who were in a heterozygous state.52 These mutations were

introducedintohumanCav3.2acDNAandtransfectedinto

HEK-293 cells for whole-cell patch-clamp recordings.53–55 T-type

channelactivitywasfoundtohaveincreasedinallmutanttypes causing SWD in absence seizures due to a shift in activation potentials.Thechannelswereactivatedinresponsetoasmaller voltagechange,orachangeintherateofrecoveryofchannelsfrom theinactivatedstate(deinactivation),oranincreaseinthesurface expressionofthechannels.

ThepossibleroleofCACNA1Hinabsenceepilepsywas further confirmed by a study performed on another Chinesepopulation wherefiveexonicvariations(P314S,N345N,P492S,L602LandS619S) and nine rare intronic variations were identified. While it was predictedthatexonicvariationswouldchangeeitherthe transcrip-tion binding, or splicing sites,or the secondary structure of the channel,acommonvariation(rs2745150)inintron11wasfoundto be highly associated with CAE, and was suggested to alter the potentialsplicingsite.56LateronLiangetal.carriedoutanassociation analysison218ChineseCAEpatientsandbothacommonvariation (rs9934839)inexon9ofCACNA1Handacommonhaplotypecovering thegenewerefoundtobesignificantlyassociatedbybotha case-controlstudyandatransmissiondisequilibriumtest.57

The CACNA1H gene was also screened in 192 Chinese IGE patientswhiletheresearcherslookedforacommonsusceptibility allele.58Thefour variantsfoundin patients werealsofoundin

some of the patient’s unaffected family members, indicating a polygenicinheritanceofIGEs.Thesevariantswerealsoassessedfor functionalstudiesand showntohaveincreasedT-typecurrents with one exception; the A480T variant which did not lead to differentcurrentwhencomparedtothewildtype.59Considering

the alternative splice variants, this variant may affect the regulationof transcription,causing theexpressionof a channel which is more prone to excitation. However, evaluation of CACNA1HinpopulationsofCaucasianoriginrevealednolinkage ormutationinthisgene.60Thesecontradictoryresultsemphasize

the presence of population specific susceptibility alleles in complexdisorders.

(6)

In a polygenic rat model of absence epilepsy (GAERS), a mutation was found in exon 24 causing Arg158Pro.61 Further studies showed that CACNA1H had two splice variants in the thalamus,onewithexon25andonewithout.Themutationcaused significantlyquickerrecoveryfromchannelinactivationandlarger Ca2+influxesduringhigh-frequencybursts,butonlywhenitwas

on thevariantwithexon 25. Therefore,themutations and the splicedvariantshouldbeconsideredtogetherwhenstudyingthe functionof thechannel.These splicevariants couldprovidean explanationofthemechanismofepilepticseizuresinrelationto thefollowing questions:whyare theytemporal,have celltype specificeffects,andwhyareseizurespresentincertainagegroups, butnotbeforeorafterthatperiod?

The CACNA1I gene is located on the 22q13.1 and mainly expressedinthethalamic reticularnucleus.49However, whena mutational analysis was done with Chinese CAE patients, no mutationsweredetected.62

Non-poreformingmodulatorysubunitsofCa2+channelsisalso a possiblecandidate for burst firingas it can regulate channel function,assembly,andlocalization.The

b

4subunitcaninteract withboth

a

1A(P/Qtype)and

a

1B(N-type)subunits.Amutation identifiedinthe

b

4subunitgene(CACNAB4)ofanepilepsyanimal model (the lethargic mouse) displayed epileptic seizures and ataxia.63 Thismutation caused a truncatedcytoplasmicprotein

and possibly caused other

b

subunits to coassemble with

a

subunits compensating for the mutation at the hippocampal synapses.44However,thethalamus

b

4subunitisexpressedhighly,

whereasthe

b

1–

b

3subunitsarenot;suggestingthattheremay not be a compensatory mechanism in the thalamus for the inhibitoryfunctionandthus,andthemutationmayleadtoSWD. Mutations were also identified in the

g

2 subunit gene (CACNAG2)ofanotherepilepsyanimalmodel(stargazermouse).64

ThissubunithasthepotentialtointeractwithbothHVAandLVA channel types. The

g

2 subunit plays a role in elevating the inactivationofcalciumchannels.65Inbothmutantmicetherewas

anelevationofLVAcurrent,astherewasinthecaseofthetottering andtheleanermutantmicewhichhavemutationsinCACNA1A.44

In humanstudies,the

g

3 subunitgene (CACNG3)locatedon chromosome16p13.1-p12,wasfoundtobeassociatedwithCAEin the European population: confirming the distinct roles of regulatory subunits in channel function, and consequently, in epilepticseizures.66

2.3. Non-ionchannelgenes

Epilepsy hasfor themostpart beenconsidered a channelo-pathy.However,mutationsandsusceptibilityvariationsinnovel non-ionchannelgeneshavealsobeenidentifiedasthepossible causesof thedisease(see Table1). TheMalicenzyme2 (ME2), locatedonchromosome18,codesforthemitochondrialenzyme thatconvertsmalatetopyruvateandisalsoinvolvedinneuronal synthesisoftheneurotransmitterGABA.Inapatientgroupof88 JMEand68JAEwithEGTCS,ME2wasfoundtobeassociatedwith allsubtypesinarecessivemodel.6735%ofcaseswerehomozygous

forthenineSNPsthatcovertheME2geneanditspromoter,while only8%ofcontrolswerehomozygous.

In a familywithhyperinsulinism/hyperammonemia (HI/HA), three children had both photosensitive myoclonic absence epilepsyandmutationsintheglutamatedehydrogenase(Glud1) gene(10q23.3).ThepatientsalsohadlowlevelsofGABAcompared tothecontrolgroup.68

In a mouse model of absence epilepsy, named ‘‘jerky’’, mutationswereidentifiedintheJRKgene.Thehomologof this gene(JRK/JH8)residesinhumanson8q24,whichisacandidate regionbasedon linkagestudies.69Further, araremutation was

identifiedinthecaseofaCAEpatientwhoevolvedtoJME.70The

proteinofthegenehassimilaritiestoseveralnuclearregulatory proteins, suggesting that it might function as a DNA-binding protein.71

Apolymorphismintheleucine-rich,gliomainactivated4(LGI4) genewasfoundtobeassociatedwithchildhoodabsenceepilepsy; however,thepathologicaleffectofthisvariantwasnotclear.72This

generesideson19q13.11andhasarecessivemodelofinheritance inabsenceseizures.

Inrecentyears,anovelgene,SLC2A1,hascometobeviewedas oneofthemostprevalentcausativegenesinearly-onsetabsence seizures(thoseoccurringbefore4yearsofage).Thediseaseisnot common and patients may have additional medical conditions suchasmovementdisordersandintellectualimpairment.73The

generesideson1p34.2,codingfortheGLUT-1glucosetransporter, which carriesglucose acrosstheblood-brainbarrier. Mutations havebeenidentifiedin10%ofexaminedpatientswithearlyonset absenceseizuresintheSulsetal.study,andin12%ofpatientsin theMullenetal.study.74,75Functionalstudiesonthesemutations pointedoutthereducedtransportcapacityofmutantproteins.

Anassociationstudywith205TurkishIAEpatientsrevealeda strongassociationofa commonSNP(rs7588807)intheinhibin alphaprecursorgene (INHA)in 2q36toJAE and/ortoIAEwith GTCS.76 The INHA gene has also been screened through DNA

analysis and three potentially damaging mutations have been identified. Inhibin protein, commonly known as a gonadal glycoprotein,inhibitsthesecretionoffollicle-stimulatinghormone which in turn induces the production of progesterone and estradiol.Thishasalsobeenshowntohaveexpressionindifferent partsofthebrainwithunknownfunction.Themutationsandthe associatedSNPininhibinproteinarepredictedtohaveeitheran indirecteffectonabsenceseizures,asprogesteronewasshownto have enhanced SWD through allopregnanolone, a positive modulator of GABAA receptors,77 or to have a direct effect by

increasingtheexcitabilityofthebrain. 3. Conclusion

Thesetypesofmutationsingenesthatcodeforthesubunitsof GABAandCa2+channels,identifiedinbothpatients andanimal

models,explainthecellularmechanismofabsenceseizuresand thegenerationofSWD.Lossoffunctionmutationsfoundinthe subunitsofGABAAandGABABreceptorsarethereasonfortheloss

of inhibition in the thalamacortical network, while thegain of function mutationsinthe subunitsof LVACa2+channels cause excitatoryactivity,leadingtoasusceptibilitytoseizures. Muta-tionsinCACNA1A,CACNAB4,andCACNAG2alsoreducethefunction oftheHVAchannels,butthisreductionresultsinanincreaseinthe LVAcurrentinthethalamocorticalregionofthebrain. Unfortu-nately,themutationsandsusceptibilityallelesinionchannelsare rareandrestrictedtoafewpatientsorpopulations(seeTable1). However,thisdoessupportthepossibilitythattheonsetofSWDs may vary among individuals with similar or different absence syndromes,showingthecomplexityofthisdisease.Thus,negative resultsinonegene,inonepopulation,shouldnotmarkthegeneas ‘‘notacandidate’’forabsenceseizures,ashasbeenthecasewith many of the causativemutationsidentified in CACNA1H in the Chinese population which appeared tocontradict the negative resultsofstudiesinvolvingCaucasianpatients.

A recent study examining the exonic variations of 237 ion channel subunitgenesinboth healthy individualsandpatients withidiopathicepilepsies(IE)confirmsthehighgenetic heteroge-neityandcomplexpathogeneityinIE.78Theresultsofthisstudy

suggestthata singlevariant,evenifitseffectwasshowntobe pathogenicbyfunctionalstudies,maynotberesponsibleforthe disease, becausemissense mutationsin ionchannelshavebeen identifiedinbothstudygroups.Instead,eachindividualmayhave

O¨.Yalc¸ın/Seizure21(2012)79–86 84

(7)

a unique channotype (ion channel sequence variation profile) variantpatternwhichdeterminesthenetwork’sexcitabilityand thepossibilityofpossessing theepilepticphenotype.Therefore, mutationanalysisincomplexdiseaseslikeepilepsyshouldnotbe restricted to single ion channel studies; instead, using next generation sequencing methods, such as exome sequencing, wouldbeamoreefficientwaytorevealanindividual’schannotype andthepossibilityofriskforthedisease.

Inlargefamiliesofepilepsywherethereisamajorgene,the genotype-phenotyperelationsareclearerasthemutationsinthe disease-related gene in other independent large families of epilepsyconfirmtheinvolvementofthegeneinthepathogenesis ofthedisease.However,inthecomplexsubtypesofepilepsy,like absence epilepsies, it is difficult to establish the link between genotype and phenotype, because the susceptibility variant identified by genetic studies may have little effect in the pathogenesisofthedisorder.Thus,functionalstudiesareessential tovalidatethemutationsinthestudyofcomplexdisorders.79For example,intheDNAanalysisofCACNA1GintheSinghetal.study,a possible pathological mutation (A570V) was identified. The locationofthemutationin thechanneland theabsenceof the mutationin360controlsamplesstronglysupporttheargumentfor thepathologicalroleofthegene.However,functionalanalysisof themutated proteinrevealed an insignificant difference in the channelfunctionwhencomparedtothewild-typeprotein.

Besides the known function of the ion channel genes in membrane excitability, in recent years novel non-ion channel mutationshavebeguntoemergeinabsenceepilepsies.Somecould beexplained through themechanism of SWD by low levelsof GABAinpatients;however,someofthemarestillinneedoffurther functionalstudiesinordertoverifytheirrolesinabsenceseizures. InothersubtypesofIGEs,novelapproachessuchasdeletion/ duplication analysis and next generation sequencing methods havealreadyrevealednovelcausativevariations.80Inthefollowing

years,inordertoclarifythecomplexpathogenesisoftheabsence seizures,thesearchforthemutationsandsusceptibilityalleleswill bereinforcedbystudiesinCNV,CGHanalysis,exomesequencing, andepigeneticmodificationstudies.

References

1.MoulardB,PicardF,leHellardS,AgulhonC,WeilandS,FavreI,etal.Ionchannel variationcausesepilepsy.BrainResRev2001;36:275–84.

2.AvoliM,RogawskiMA,AvanziniG.Generalizedepilepticdisorders:anupdate. Epilepsia2001;42:445–57.

3.BurgessDL,NoebelsJL.Singlegenedefectsinmice:theroleof voltage-depen-dentcalciumchannelsinabsencemodels.EpilepsyRes1999;36:111–22. 4.Castro-AlamancosMA.Neocorticalsynchronizedoscillationsinducedby

tha-lamicdisinhibition.JNeurosci1999;19:27.

5.AvoliM,Gloor P. Interaction ofcortex and thalamusin spikeand wave dischargesoffelinegeneralizedpenicillinepilepsy.ExpNeurol1982;77:386– 402.

6.BlumenfeldH.Cellularandnetworkmechanismofspike-wave discharges. Epilepsia2005;46:21–33.

7.McCormickDA,ContrerasD.Onthecellularandnetworkbasisofepileptic seizures.AnnuRevPhysiol2001;63:815–46.

8.FritschyJM,Bru¨nigI.FormationandplasticityofGABAergicsynapses: physio-logical mechanisms and pathophysiological implications. Pharmacol Ther 2003;98:299–323.

9.FrugierG,CoussenF,GiraudMF,OdessaMF,EmeritMB,Boue´-GrabotE,etal.A gamma2(R43Q)mutation,linkedtoepilepsyinhumans,altersGABAAreceptor

assemblyandmodifiessubunitcompositiononthecellsurface.JBiolChem 2007;282:3819–28.

10.ChebibM,JohnstonGAR.TheABCofGABAreceptors:abriefreview.ClinExp PharmacolPhysiol1999;26:937–40.

11.WallaceRH,MariniC,PetrouS,HarkinLA,BowserDN,PanchalRG,etal.Mutant GABA(A)receptorgamma2-subunitinchildhoodabsenceepilepsyandfebrile seizures.NatGenet2001;28:49–52.

12.KangJQ,MacdonalRL.TheGABAareceptorgamma2subunitR43Qmutation linkedchildhoodabsenceepilepsyandseizurescausesretentionof alpha1be-ta2gamma2Sreceptorsinendoplasmicreticulum.JNeurosci2004;24:8672–7. 13.TanHO,ReidCA,SingleFN,DaviesPJ,ChiuC,MurphyS,etal.Reducedcortical inhibitioninamousemodeloffamilialchildhoodabsenceepilepsy.ProcNatl AcadSciUSA2007;104:17536–41.

14.KananuraC,HaugK,SanderT,RungeU,GuW,HallmannK,etal.Asplice-site mutationinGABRG2associatedwithchildhoodabsenceepilepsyandfebrile convulsions.ArchNeurol2002;59:1137–41.

15.ItoM,OhmoriI,NakahoriT,OuchidaM,OhtsukaY.MutationscreenofGABRA1, GABRB2andGABRG2genesinJapanesepatientswithabsenceseizures. Neu-rosciLett2005;383:220–4.

16.LuJ,ChenY,ZhangY,PanH,WuH,XuK,etal.MutationscreenofGABA(A) receptorgamma2subunitgeneinChinesepatientswithchildhoodabsence epilepsy.NeurosciLett2002;332:75–8.

17.SanderT,HildmannT,JanzD,WienkerTF,BianchiA,BauerG,etal.Exclusionof linkagebetweentheidiopathicgeneralizedepilepsiesandGABAAreceptora1

g2subunitclusteronchromosome5.EpilepsyRes1996;23:235–44. 18.CosetteP,LiuL,BriseboisK,DongH,LortieA,VanasseM,etal.Mutationof

Gabra1inanautosomaldominantformofjuvenilemyoclonicepilepsy.Nat Genet2002;31:184–9.

19.MaljevicS,KrampflK,CobilanschiJ,TilgenN,BeyerS,WeberYG,etal.A mutationintheGABA(A)receptoralpha(1)-subunitisassociatedwithabsence epilepsy.AnnNeurol2006;59:983–7.

20.GlattK,GlattH,LalandeM.StructureandorganizationofGABRB3andGABRA5. Genomics1997;41:63–9.

21.UrakL,FeuchtM,FathiN,HornikK,FuchsK.AGABRB3promoterhaplotype associatedwithchildhoodabsenceepilepsyimpairstranscriptionalactivity. HumMolGenet2006;15:2533–41.

22.LuJJ,ZhangYH,PanH,ChenYC,LiuXY,JiangYW,etal.Case-controland transmission/disequilibriumtestsofthegenesencodingGABRA5andGABRB3 inaChinesepopulationaffectedbychildhoodabsenceepilepsy.ChinMedJ 2004;117:1497–506.

23.FeuchtM,FuchsK,PichlbauerE,HornikK,ScharfetterJ,GoesslerR,etal. Possibleassociationbetweenchildhoodabsenceepilepsyandthegene encod-ingGABRB3.BiolPsychiatry1999;46:997–1002.

24.HempelmannA,CobilanschiJ,HeilsA,MuhleH,StephaniU,WeberY,etal.Lackof evidenceofanallelicassociationofafunctionalGABRB3exon1apromoter polymorphismwithidiopathicgeneralizedepilepsy.EpilepsyRes2007;74:28–32. 25.TanakaM,OlsenRW,MedinaMT,SchwartzE,AlonsoME,DuronRM,etal. Currents ofmutated GABRB3 polypeptideinremitting childhoodabsence epilepsy.AmJHumGenet2008;82:1249–61.

26.DeLoreyTM, HandforthA, AnagnostarasSG, HomanicsGE,MinassianBA, AsatourianA,etal.Micelackingtheb3subunitoftheGABAAreceptorhave

theepilepsyphenotypeandmanyofthebehavioralcharacteristicsofAngelman syndrome.JNeurosci1998;18:8505–14.

27.Liu L, ZhengT, Morris MJ,Wallengren C, ClarkeAL, ReidCA, et al.The mechanismofcarbamazepineaggravationofabsenceseizures.JPharmacol ExpTher2008;319:790–8.

28.CrunelliV,LerecheN.Childhoodabsenceepilepsies:genes,channels,neurons andnetworks.NatRev2002;3:371–82.

29.GasssmanM,ShabanH,VigotR,SansigG,HallerC,BarbieriS,etal. Redistri-butionofGABAB1proteinandatypicalGABABresponsesinGABA(B2)-deficient

mice.JNeurosci2004;24:6086–97.

30.SchulerV,Lu¨scherC,BlanchetC,KlixN,SansigG,KlebsK,etal.Epilepsy, hyperalgesia,impairedmemoryandlossofpre-andpostsynapticGABA-B responsesinmicelackingGABA-B1.Neuron2001;31:47–58.

31.MerloD,MollinariC,InabaY,CardinaleA,RinaldiAM,D’AntuonoM,etal. ReducedGABABreceptorsubunitexpressionandpaired-pulsedepressionina geneticmodelofabsenceseizures.NeurobiolDis2007;25:631–41.

32.LuJ,ChenY,PanH,ZhangY,WuH,XuK,etal.ThegeneencodingGABBR1isnot associatedwithchildhoodabsenceepilepsyintheChineseHanpopulation. NeurosciLett2003;343:151–4.

33.CelesiaGG.Disordersofmembranechannelsorchannelopathies.Clin Neuro-physiol2001;112:2–18.

34.Perez-Reyes E.MolecularcharacterizationofT-typecalciumchannels.Cell Calcium2006;46:89–96.

35.CatteralWA.Structureandregulationofvoltage-gatedCa2+channel.AnnuRev

CellDevBiol2000;16:521–55.

36.KostyukPG,MolokanovaEA,PronchukNF,SavchenkoAN,VerkhratskyAN. Differentactionofethosuximideonlow-andhigh-thresholdcalciumcurrents inratsensoryneurons.Neuroscience1992;51:755–8.

37.Perez-ReyesE.Molecularphysiologyoflow-voltage-activatedT-typecalcium channels.PhysiolRev2003;83:117–61.

38.RegehrWG,MintzIM.Participationofmultiplecalcium channeltypesin transmission at single climbing fiber to purkinje cell synapses. Neuron 1994;12:605–13.

39.JouvenceauA,EunsonLH,SpauschusA,RameshV,ZuberiSM,KullmannDM, et al.Humanepilepsyassociated withdysfunction ofthebrainP/Q type calciumchannel.Lancet2001;358:801–7.

40.ImbriciP,JaffeSL,EunsonLH,DaviesNP,HerdC,RobertsonR,etal.Dysfunction ofthebraincalciumchannelCav2.1inabsenceepilepsyandepisodictype.Brain 2004;127:2682–92.

41.FletcherCF,LutzCM,O’SullivanTN,ShaughnessyJD,HawkesR,FrankelWN, etal.Absenceepilepsyintotteringmutantmiceisassociatedwithcalcium channeldefects.Cell1996;87:607–17.

42.WakamoriM,YamazakiK,MatsunodairaH,TeramotoT,TanakaI,NiidomeT, etal.Singletotteringmutationsresponsiblefortheneuropathicphenotypeof theP-typecalciumchannel.JBiolChem1998;273:34857–67.

43.DoyleJ,RenX,LennonG,StubbsL.MutationsintheCacnl1a4calciumchannel gene are associated with seizures,cerebellar degeneration, andataxia in totteringandleanermutantmice.MammGenome1997;8:113–20.

(8)

44.ZhangY,MoriM,BurgessDL,NoebelsJL.Mutationsinhigh-voltage-activated calcium channelgenes stimulate low-voltage-activatedcurrentsin mouse thalamicrelayneurons.JNeurosci2002;22:6362–71.

45.SongI,KimD,ChoiS,SunM,KimY,ShinHS.Roleofa1GT-typecalciumchannel inspontaneousabsenceseizuresinmutantmice.JNeurosci2004;24:5249–57. 46.SinghB,MonteilA,BidaudI,SugimotoY,SuzukiT,HamanoS,etal.Mutational analysis of CACNA1G in idiopathic generalized epilepsy. Hum Mutat 2007;28:524–5.

47.CheminJ,MonteilA,BourinetE,NargeotJ,LoryP.Alternativelysplicedalpha (1G)intracellularloopspromotespecificT-typeCa(2+)channelgating proper-ties.BiophysJ2001;80:1238–50.

48.ChenY,LuJ,ZhangY,PanH,WuH,XuK,etal.T-typecalciumchannelgene alpha(1G)isnotassociatedwithchildhoodabsenceepilepsyintheChineseHan population.NeurosciLett2003;341:29–32.

49.Shin HS. T-type Ca2+ channels and absence epilepsy. Cell Calcium

2006;40:191–6.

50.ErnstWL.Geneticenhancementofthalamocorticalnetworkactivityby elevat-inga1G-mediatedlow-voltage-activatedcalciumcurrentinducespureabsence epilepsy.JNeurosci2009;29:1615–25.

51.ZhongX,LiuJR,KyleJW,HanckDA,AgnewWS.AprofileofalternativeRNA splicingandtranscriptvariationofCACNA1H,ahumanT-channelgene candi-dateforidiopathicgeneralizedepilepsies.HumMolGenet2006;15:1497–512. 52.ChenY,LuJ,PanH,ZhangY,WuH,XuK,etal.Associationbetweengenetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003;54:239–43.

53.VitkoI,BidaudI,AriasJM,MezghraniA,LoryP,Perez-ReyesE.TheI-IIloop controlsplasmamembraneexpressionandgatingofCa(v)3.2T-typeCa2+ channels:aparadigmforchildhoodabsenceepilepsymutations.JNeurosci 2007;10:322–30.

54.VitkoI,ChenY,AriasJM,ShenY,WuXR,Perez-ReyesE.Functional characteri-zationandneuronalmodelingoftheeffectsofchildhoodabsenceepilepsy variantsofCACNA1H,aT-Typecalciumchannel.JNeurosci2005;25:4844–55. 55.KhosravaniH,AltierC,SimmsB,HammingKS,SnutchTP,MezeyovaJ,etal. GatingeffectsofmutationsintheCav3.2t-typecalciumchannelassociated

withchildhoodabsenceepilepsy.JBiolChem2004;279:9681–4.

56.LiangJ,ZhangY,WangJ,PanH,WuH,XuK,etal.NewvariantsintheCACNA1H geneidentifiedinchildhoodabsenceepilepsy.NeurosciLett2006;406:27–32. 57.LiangJ,ZhangY,ChenY,WangJ,PanH,WuH,etal.Commonpolymorhismsin theCACNA1HgeneassociatedwithchildhoodabsenceepilepsyintheChinese Hanpopulation.AnnHumGenet2006;71:325–35.

58.HeronSE,PhillipsHA,MulleyJC,MazaribA,NeufeldMY,BerkovicSF,etal. GeneticvariationofCACNA1Hinidiopathicgeneralizedepilepsies.AnnNeurol 2004;55:595–9.

59.KhosravaniH,BladenC,ParkerDB,SnutchTP,McRoryJE,ZamponiGW.Effects ofCav3.2channelmutationslinkedtoidiopathicgeneralizedepilepsy.Ann Neurol2005;57:745–9.

60.ChiozaB,EverettK,AschauerH,BrouwerO,CallenbachP,CovanisA,etal. EvaluationofCACANA1HinEuropeanpatientswithchildhoodabsence epilep-sy.EpilepsyRes2006;69:177–81.

61.PowellKL,CainSM,NgC,SirdesaiS,DavidLS,KyiM,etal.ACav3.2T-type calciumchannelpointmutationhassplice-variant-specificeffectsonfunction andsegregateswith seizureexpressioninpolygenicratmodelofabsence epilepsy.JNeurosci2009;29:371–80.

62.WangY.CACNA1Iisnotassociatedwithchildhoodabsenceepilepsyinthe Chinesepopulation.PediatrNeurol2009;35:187–90.

63.QianJ,NoebelsJL.PresynapticCainfluxatamousecentralsynapsewithCa channelsubunitmutations.JNeurosci2000;201:163–70.

64.LettsVA,FelixR,BiddlecomeGH,ArikkathJ,MahaffeyCL,ValenzuelaA,etal. ThemousestargazergeneencodesaneuronalCa-channelgammasubunit.Nat Genet1998;19:340–7.

65.BlackJL.Thevoltage-gatedcalciumchannelgammasubunits:areviewofthe literature.JBioenergBiomembr2003;35:649–60.

66.EverettK,ChiozaB,AicardiJ,AschauerH,BrouwerO,CallenbachP,etal. LinkageandassociationanalysisofCACANG3inchildhoodabsenceepilepsy. EurJHumGenet2007;15:463–72.

67.GreenbergDA,CayanisE,StrugL,MaratheS,DurnerM,PalDK,etal.Malic enyzme2mayunderliesusceptibilitytoadolescent-onsetidiopathic general-izedepilepsies.AmJHumGenet2005;76:139–46.

68.Bahi-BuissonN,ElSabbaghS,SouffletC,EscandeF,BoddaertN, Valayanno-poulosV,etal.Myoclonicabsenceepilepsywithphotosensitivtyandagainof functionmutationinglutamatedehyrogenase.Seizure2008;17:658–64. 69.MoritaR,MiyazakiE,FongCY,ChenXN,KorenbergJR,Delgado-EscuetaAV,

etal.JH8,agenehighlyhomologoustothemousejerkygene,mapstothe regionforchildhoodabsenceepilepsyon8q24.BiochemBiophysResCommun 1998;248:307–14.

70.MooreT,HecquetS,McLellannA,VilleD,GridD,PicardF,etal.Polymorphism analysisofJRK/JH8,thehumanhomologueofmousejerky,anddescriptionofa raremutationinacaseofCAEevolvingtoJME.EpilepsyRes2001;46:157–67. 71.LiuW,SetoJ,SibilleE,TothM.TheRNAbindingdomainofJerkyconsistsof tandemlyarrangedhelix-turn-helix/homeodomain-likemotifsandbinds spe-cificsetsofmRNAs.MolCellBiol2003;23:4083–93.

72.GuW,SanderT,BeckerT,SteinleinOK.GenotypicassociationofexonicLGI4 polymorphismsandchildhoodabsenceepilepsy.Neurogenetics2004;45:41–4. 73.GuerriniR,Sanchez-CarpinteroR,DeonnaT,SantucciM,BhatiaKP,MorenoT, et al.Early-onset absence epilepsy and paroxysmal dyskinesia. Epilepsia 2002;43:1224–9.

74.SulsA,MullenSA,WeberYG,VerhaertK,CeulemansB,GuerriniR,etal. Early-onsetabsenceepilepsycausedbymutationsintheglucosetransporterGLUT1. AnnNeurol2009;66:415–9.

75.MullenSA,SulsA,DeJongheP,BerkovicSF,SchefferIE.Absenceepilepsieswith widelyvariableonsetareakeyfeatureoffamilialGLUT1deficiency.Neurology 2010;75:432–40.

76.Yalc¸inO,BaykanB,Ag˘anK,YapiciZ,Yalc¸inD,DizdarerG,etal.Anassociation analysisat2q36 reveals anewcandidate susceptibilitygene forjuvenile absenceepilepsyand/orabsenceseizuresassociatedwithgeneralized tonic-clonicseizures.Epilepsia2011;52:975–83.

77.VanLuijtelaarG,BudziszewskaB,Jaworska-FeilL,EllisJ,CoenenA,Lason´ W. Theovarian hormonesandabsenceepilepsy:a long-termEEG studyand pharmacologicaleffectsin agenetic absenceepilepsymodel. EpilepsyRes 2001;46:225–39.

78.KlassenT,DavisC,GoldmanA,BurgessD,ChenT,WheelerD,etal.Exome sequencingofionchannelgenesrevealscomplexprofilesconfoundingpersonal riskassessmentinepilepsy.Cell2011;145:1036–48.

79.ReidCA,BerkovicSF,PetrouS.Mechanismsofhumaninheritedepilepsies.Prog Neurobiol2009;87:41–57.

80.DibbensLM,MullenS,HelbigI,MeffordHC,BaylyMA,BellowsS,etal.Familial and sporadic15q13.3 microdeletionsinidiopathic generalizedepilepsy: precedent for disorders with complex inheritance. Hum Mol Genet 2009;18:3626–31.

O¨.Yalc¸ın/Seizure21(2012)79–86 86

Referanslar

Benzer Belgeler

Once the competencies of nation-states delegated to a new supranational jurisdiction, then central institutions would represent the common interests of the member states, propose

Partial pericardial defect associated with ruptured aortic dissection of the ascending aorta: a rare feature presenting se- vere left hemothorax without cardiac

septal defect (ASD) (Figure 1a), drainage of the persistent left superior vena cava (PLSVC) into the left atrium (Figure 1b), and an absence of both the coronary sinus (Figure

Equation (7) reduces to the Rytov variance under weak turbulence conditions, and to the Andrews asymptotic model under strong turbulence conditions. For a spherical wave,

This study aims to measure and assess similarity perceptions, attitudes, thoughts and impressions, all of which are suggested to compose the image of Turkey in

all the subjects, units, and sensors) belonging to one activity and time-domain signals (of the corresponding subjects, units, and sensors) belonging to another activity

Proteins encoded by proto-oncogenes are shown in red ; tumor suppressor gene products are shown in blue.. Morphogenesis and cancer:

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels participate in pacemaker currents, [1] mediating the funny current (I[f]) in cardiac cells and