• Sonuç bulunamadı

films composite Fluorescence quenching method for monitoring oxygen diffusion intoPS/CNT Progress in Organic Coatings

N/A
N/A
Protected

Academic year: 2021

Share "films composite Fluorescence quenching method for monitoring oxygen diffusion intoPS/CNT Progress in Organic Coatings"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Progress

in

Organic

Coatings

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / p o r g c o a t

Fluorescence

quenching

method

for

monitoring

oxygen

diffusion

into

PS/CNT

composite

films

Ö.

Yargı

a,∗

,

.

U˘gur

b

,

Ö.

Pekcan

c

aDepartmentofPhysicsYildizTechnicalUniversity,Esenler34210,Istanbul,Turkey bDepartmentofPhysicsIstanbulTechnicalUniversity,Maslak34469,Istanbul,Turkey cKadirHasUniversity,Cibali34320,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Available online 31 July 2013 Keywords: PS MWNT Fluorescence Oxygen Quenching

a

b

s

t

r

a

c

t

Oxygenpermeabilitiesofnanocompositefilmsconsistingofmultiwallcarbonnanotubes(MWNT)and

polystyrene(PS)weredeterminedtoinvestigatetheoxygendiffusiondependingonMWNTand

tem-perature.Amethodwhichisbasedonquenchingofanexcitedphosphorescentbyoxygenwasapplied

forthemeasurements.Thecompositefilmswerepreparedfrommixturesof(MWNT)and

surfactant-freepyrene(P)-labeled(PS)latexesofvariouscompositionsatroomtemperature.Thesefilmswerethen

annealedat170◦Cwhichiswellabovetheglasstransition(Tg)temperatureofpolystyrene,for10min.

DiffusionexperimentswereperformedforeightfilmswithdifferentMWNTcontent(0,1.5,3,5,10,15,

25and40wt%)toevaluatetheeffectofMWNTcontentonoxygendiffusion.Diffusioncoefficientswere

foundtoincreasefrom1.1×10−12to41×10−12cm2s−1withincreasingMWNTcontent.Ontheother

hand,toexaminetheeffectoftemperatureonoxygendiffusion,diffusionmeasurementswereperformed

overatemperaturerangeof24–70◦CforthreedifferentMWNTcontents(3,15,and40wt%)withinthe

films.TheresultsindicatedthatthevaluesofthediffusioncoefficientDarestronglydependentonboth

temperatureandMWNTcontentinthefilm.Itwasalsoobservedthatthediffusioncoefficientsobey

Arrheniusbehavior,fromwhichdiffusionenergiesweredetermined,whichincreasedwithincreaseof

MWNTcontentandtemperature.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, the most desirable property of poly-merfilmsistheirresistancetothegasdiffusion.Becausesingle componentpolymerfilmshavepoormechanicalandgasbarrier properties, there has been growing interest in producing new materialsby filling polymerswith inorganic natural (minerals) and/orsynthetic(carbonblackandsilica)compounds[1–5].They giveimprovedmechanicalproperties,gasbarrierproperties,and decreasedflammabilityrelativetothepurepolymers[6].In2000, thepotentialforCNTsasgassensorswasfirstreportedbasedonan increaseintheconductivitybyseveralordersofmagnitudeupon exposureof CNTstooxygen[7].Oxygenistheoneof themost importantreactantstobeconsideredinthediffusionphenomenon. Severalspectroscopictechniquesthatutilizeoxygenquenchingto determinetherateofoxygendiffusionthroughpolymerfilmshave beenreported.Cox [8]and Dunn[9], andMacCallum and Rud-kin[10] measuredoxygendiffusioncoefficientsbyfluorescence quenchinginplanarsheetsofpoly(dimethylsiloxane)[8],filled

∗ Correspondingauthor.

E-mailaddress:oyargi@yildiz.edu.tr(Ö.Yargı).

poly(dimethylsiloxane)samples[9],and polystyrene[10].They monitoredoxygenquenchingofafluorophoreasafunctionoftime byassumingthatfluorophoresdispersedhomogeneouslywithin thefilm.ThemathematicaldeterminationofDvaried,butasingle underlyingassumptioninallcaseswasthatthetime-dependent emissionintensitywasmeasuredduringtheexperiment.Insome cases,theintensityversustimecurvewasconvertedtoa concentra-tionversustimecurveusingtheStern–Volmerrelationship[8,9]. Luetal.[11–13]haveusedtime-scanexperimentstomeasurethe decayofluminescenceintensityasoxygendiffusesintopolymer filmsunderconstantilluminationandthegrowthofintensityas oxygendiffusesoutofthefilm.Theyinterpretedtheirdatawiththe aidoftheoreticalexpressionsbasedonStern–Volmerquenching kineticswithFick’slawsofdiffusion

Inthepresentworkweusedamethodfordeterminingdiffusion coefficients ofoxygenin CNT/PScompositesbasedon lumines-cencequenching.Theluminescenceofsomefluorophoresquench inthepresenceofoxygen.Initially,pyrene(P)-labeledpolystyrene and multi-wall carbon nanotube composite film is equilibrated ataparticularoxygenconcentrationandthenafterdisplacement of nitrogen atmosphere over the sample by oxygen, the film beginstoexposetoloweroxygenconcentration.Forpyrene,the intensity of quenching is proportional to the concentration of

0300-9440/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

oxygen.Theaverageoxygenconcentrationchangeinthesample wasmonitoredbystudyingtheaverageintensitychangeofthe pyreneusingaspectrofluorometer.Weassumethequenchingis accuratelydescribedbyalinearStern–Volmerequation[14]and thattheopticaldensityislowenoughthatthesampleisuniformly excited.Byfittingtheresultantintensityversustimeprofiletoan appropriatediffusionmodelforthefilmconfiguration,ameasure ofthediffusioncoefficientsforthecompositefilmwereobtained.

2. Experımental

2.1. PSLatex

PyrenelabeledPSparticleswasproducedvia surfactantfree emulsion polymerizationprocess. The polymerizationwas per-formedbatch-wiselyusingathermostatedreactorequippedwith acondenser,thermocouple,mechanicalstirringpaddleand nitro-geninlet.Theagitationratewas400rpmandthepolymerization temperaturewascontrolledat70◦C.Water(100ml)andstyrene (5g)werefirstmixedinpolymerizationreactorwherethe tem-peraturewaskeptconstant(at70◦C).Potassiumperoxodisulfate (KPS)initiator(0.1g) dissolvedin smallamountofwater(2ml) wasthenintroducedinorder toinducestyrenepolymerization. Thepolymerizationwasconductedduring18h.Thepolymerhasa highglasstransitiontemperature(Tg=105◦C).Thelatexdispersion

hasanaverageparticlesizeof400nm.Fig.1showsSEMimageof PSlatexproducedforthisstudy.

2.2. MWNTcarbonnanotube

Commerciallyavailable MWNTs(CheapTubesInc.,VT, USA,) wereusedassuppliedinblackpowderformwithoutfurther purifi-cation. TheMWNT are10–30␮m long, averageinner diameter 5–10nm,outerdiameter20–30nm,thedensityisapproximately 2.1g/cm3andpurityhigherthan95wt%.AstocksolutionofMWNTs

waspreparedfollowingthemanifacturersregulations:nanotubes weredispersedindeionized(DI)waterwiththeaidofPolyvinyl Pyrolidone(PVP)intheproportionsof10partsMWNTs;1–2parts PVP;2.000partsDIwaterbybathsonicationfor3h.PVPisagood stabilizing agent for dispersions of carbon nanotubes, enabling preparationofpolystyrenecompositesfromdispersionsofMWNT inpolystyrenesolution.Fig.2showstheTEMimageofMWNTsused inthisstudy(www.cheaptubesinc.com).

2.3. PreparationofPS/MWNTcompositefilms

Eightdifferentmixtureswere preparedwith0,1.5, 3,5, 10, 15,25,and40wt%MWNT.Eachmixturewasstirredfor1h fol-lowedbysonicationfor30minatroomtemperature.Byplacingthe

Fig.1.SEMpictureofpurePSlatex.

Fig.2. TEMpictureofMWNT.

samenumberofdropsonaglassplateswithsimilarsurfaceareas (0.8cm×2.5cm)andallowingthewatertoevaporateat60◦Cin theoven,dryfilmswereobtained.Afterdrying,sampleswere sep-aratelyannealedaboveTgofPSfor10minattemperature170◦C.

Afterannealingstep,filmswereremovedfromtheovenandcooled downtoroomtemperature.Thethicknessofthefilmswas deter-minedfromtheweightandthedensityofsamplesandrangesfrom 2to5␮m.Scanningelectronmicroscope(SEM)imagesweretaken byusingLEOSupraVP35FESEM

2.4. Theroticalconsiderations

2.4.1. Fluorescencequenchingbyoxygen

Data generated from oxygen quenching studies on small moleculesinhomogeneoussolutionareusuallyanalyzedusingthe Stern–Volmerrelation(Eq.(1)),providedthattheoxygen concen-tration[O2]isnottoohigh[14].

I0

I =1+kq0[O2] (1)

Inthis equation,Iand I0 arethefluorescenceintensitiesinthe

presenceandabsenceofoxygen,respectively,kqisthe

bimolec-ularquenchingrateconstantand0isthefluorescencelifetimein

theabsenceofO2.

Diffusioncoefficientsrelatedtothequenchingeventscanbe cal-culatedfromthetime-independentSmoluchowski–Einstein[14] equation,

kq=pko= 4NA(DP+Dq)pR

1000 (2)

whereDPandDqarediffusioncoefficientsoftheexcitedprobeand

quencher,respectively,pisthequenchingprobabilitypercollision, Risthesumofthecollisionradii(RP+Rq),andNAisAvagadro’s

num-ber.Eqs.(1)and(2)canalsobeappliedtothecaseofquenchingof polymer-boundexcitedstatesinglassaslongasthefluorescence decayisexponentialandkqissingle-value.Simplifyingfor

interpre-tationofkqistheassumptionthatDPDqwhenthefluorescence

probeiscovalentlyattachedtoapolymer.

2.4.2. Diffusioninplanesheet

Fick’s second law of diffusion was used to model diffusion phenomena in planesheet. The following equation is obtained by assuming a constant diffusion coefficient, for concentration changesintime[15] C C0 = x d+ 2 



∞ n=1 cos n n sin nx d exp



−Dn22t d2



(3)

wheredisthethicknessoftheslab,Disthediffusioncoefficientof thediffusant,andC0andCaretheconcentrationofthediffusantat

(3)

DiffusionTime,t(s) 0 6000 12000 18000 24000 30000 Normalized Intensity 0,50 0,60 0,70 0,80 0,90 1,00 0 1.5 5 15 40

(a)

R (wt/wt) 0 10 20 30 40 50 Diffusion Coefficients, Dx10 -12 (cm 2.s -1) 0 10 20 30 40 50 60

(b)

Fig.3. (a)Thetimebehaviorofpyrene,P,fluorescenceintensity,I,duringoxygendiffusionintothecompositefilmswithdifferentMWNTcontent.Numbersoneachcurve indicatestheMWNTcontent(%)inthefilm.(b)Plotofthediffusioncoefficients,DversusWMWNT(wt%).

timezeroandt,respectively.xcorrespondstothepositionatwhich Cismeasured.Wecanreplacetheconcentrationtermsdirectlywith theamountofdiffusant,Mbyusingthefollowingrelation:

M=



v

CdV (4)

whenEq.(4)isconsideredforavolumeelementintheplanesheet andsubstitutedinEq.(3),thefollowingsolutionisobtained[15]:

Mt M∞ =1− 8 2



∞ n=0 1 (2n+1)2exp



−D(2n+1) 2 2t d2



(5)

whereMt andM∞ represent theamounts ofdiffusant(oxygen)

enteringtheplanesheetattimetandinfinity,respectively.

3. Resultsanddiscussion

InFig.3(a),normalizedpyreneintensity,Ipcurvesarepresented

againstdiffusiontime forfilmshavingdifferentMWNTcontent exposed to oxygen. It is seen that as oxygen diffused through theplanarfilm,theemission intensityofthepyrene decreased accordingtoEq.(1)foreachMWNTcontentfilmand was satu-ratedonceoxygenequilibratedinthefilm.Here,ithastobenoted thatinFig.3(a)thequenchingrateforlowMWNTcontentfilmis lowerthanforhighMWNTcontentfilmpredictingthemorerapid quenchingofexcitedpyrenesbyO2 moleculesdiffused intothe

highMWNTcontentcompositefilms.

Allcurvesbehavealmostinthesamefashion,asoxygendiffused throughandequilibratedinthefilm.Itisalsoseenthatthediffusion curvesreachtheirequilibrium valueatshorter timesforhigher MWNTcontentfilms.

Inordertointerprettheabovefindings,Eq.(1)canbeusedby expandinginaseriesforlowquenchingefficiency,i.e.kq0[O2]1

whichthenproducesthefollowingusefulresult:

I≈I0(1−kq0[O2]) (6)

During O2 diffusion into the latex films, P molecules are

quenchedin thevolume whichis occupiedbyO2 moleculesat

time,t.ThenPintensityattimetcanberepresentedbythevolume integrationofEq.(6)as It=



Id

v



d

v

=I0− kq0I0 V



d

v

[O2] (7)

wheredvandVarethedifferentialandtotalvolumeofcomposite film.Performingtheintegrationthefollowingrelationisobtained It=I0



1−kq0 VO2(t)



(8) whereO2(t)=



d

v

[O2] istheamountofoxygenmoleculesdiffuse

intothefilmattimet.IfitisassumedthatO2(t)correspondsto

MtthenEq.(5)canbecombinedforoxygenwithEq.(8)andthe

followingusefulrelationisobtainedwhichcanbeusedtointerpret thediffusioncurvesinFig.3(a)

Ip I0 =A+ 8C 2exp



−D2t d2



(9)

wheredisnowpresentasthefilmthickness,Distheoxygen dif-fusioncoefficient,C=kqoO2(∞)/VandA=1−C.HereO2(∞)isthe

amountofoxygenmoleculesdiffusedintothefilmattimeinfinity. Asaresult,wecombinedthelinearStern–Volmerequationwith thediffusionmodeltoextractthediffusioncoefficientsfromthe experimentaldata.ThelogarithmicformofEq.(9)canbewritten asfollows: Ln



Ip I0 −A



=Ln



8C 2



−D2 d2 t (10)

Thismodelisfittedwiththeexperimentaldatausingalinear least-squaresfittingmethodtoextractbothkqanddiffusion

coef-ficient(D)values.

InFig.3(b)theincreaseinDvalueswithincreasingcarbon nano-tubecontentmaybeattributedtothepresenceofalargefraction ofmicrovoidsinsidethehigherMWNTcontentfilms.Oxygencan diffuseveryrapidlytotheinsideofthecompositefilmsthrough thesevoids.

Normalizedpyreneintensity,Ip,curvesarepresentedinFig.4

asafunctionoftimeforthe40wt%MWNTcontentfilmexposed

Diffusiontime,t(s)

0 500 1000 1500 2000 2500 3000

I

p

/I

0 0,0 0,2 0,4 0,6 0,8 1,0

24

0

C

50

0

C

60

0

C

(a)

Fig.4.Thetimebehaviorofthepyrene,P,fluorescenceintensity,I,duringoxygen diffusionintothe40wt%MWNTcontentfilmatvarioustemperatures.Numberson eachcurveindicatethetemperature.

(4)

T-1*103(0K-1) 2,8 2,9 3,0 3,1 3,2 3,3 3,4 LnD -25 -24 -23 -22 -21 T(0C) 20 30 40 50 60 70 80 D( cm 2.s n -1 ) 0e+0 1e-10 2e-10 3e-10 40 15 3 40 15 3 (a) (b)

(a)

(b)

Fig.5.(a)Plotofthediffusioncoefficients,Dversustemperatures,Tforthe3,15 and40wt%MWNTcontentfilms.(b)Ln(D)versus1000/TforthedifferentMWNT fractioncontentfilms,respectively.(ED)valuesareobtainedfromtheslopesof

thestraightlinesforeachMWNTcontentfilm.

tooxygenatthreedifferenttemperatures.Itisseenthatas oxy-gendiffusedthroughtheplanarfilm,theemissionintensityofthe pyrenedecreasedaccordingtoEq.(1)foreachtemperature.The rateofdecreaseinintensityishigherathighertemperatures pre-dictingthemorerapidquenchingofexcitedpyrenemoleculesby O2moleculesdiffusedintothefilms.Itisworthytonotethatin

Fig.5(a)asexpectedtheDincreaseswithincreaseintemperature forallcompositefilms.Increaseintemperaturenaturallyincreases theBrownianmotionofoxygenmoleculesgiventhemmorechance tomeetthePmoleculesinthecompositefilm.

In Fig. 6 also confirm these results. Before annealing, no deformation in PS particles is observed and PS particles keep theiroriginalsphericalshapesforbothsamples.Afterannealing treatmentat 170◦C, SEM images showthat completesparticle coalescencehasbeenachieved.Itcanbeclearlyseenthatthe

com-positefilmconsistsofanetworkofbundlesofCNT,especiallyin the40wt%MWNTcontentfilm,andindicatessignificantporosity. AsshowninFig.6,carbonnanotubesarenotwelldistributedin thepolymermatrixandvoidsbetweenthecarbonnano-particles andpolymermatrixappearedallowingoxygenmoleculestomove rapidly.Therefore, O2 molecules can easilypass through these

voids.Thus,thepermeabilityofO2gasisincreased,yieldinghigh

diffusioncoefficients.Asaresult,morerapiddiffusionofoxygen [14]intothehigherMWNTcontentfilmsoccursduetothepresence ofalargenumberofmicrovoidsinthesefilms.

These results are consistent with previous studies [16–19]. Generally,enhancementinthegaspermeabilityofpolymersby puttinginorganicfillersintotheorganicpolymerresultedfromthe disturbedpolymerchainpackingbythenanofillers[16]. There-fore,thewelldispersedstateofcarbonnanotubesandtheirgood adherenceeffectivelyincreasesgaspermeabilityastheresultof effectiveinsertionsbetweenthepolymerchainsofthematrix.It wasreportedthatadditionof2wt%ofmodifiedcarbonnanotubes loadingtothepolyethersulfoneresultedinabout19.97%increases inthepermeabilityofCO2,whilethepermeabilityofCH4increased

upto33.79%.However,forsmallgasmolecules,suchasCO2,the

permeabilityincreasedslightlywiththeadditionofcarbon nano-tubesinthepolyethersulfone(PES)hostmatrix.Themainpathways ofgastransportthroughthemixedmatrixmembranesarethrough thedenselayerofthePESmatrix,highlyselectivecarbonnanotubes andnon-selectivegapsorvoidsbetweenthematrixandsieve par-ticles.Itwasobservedthatthemainfactoraffectingtheincrease ofCH4 permeabilitywiththeadditionofcarbonnanotubesinto

thepolymerhostresultedfromtheextremelyrapiddiffusionof gasmoleculesadsorbedinside thecarbon nanotubes.SEMdata alsoshowedthatthecarbonnanotubesarewelldispersedinthe polymermatrixandserveaschannelstotransportgasmolecules [17–19].Itisknownthattheadditionoffillerintopolymerfilms aboveacriticalpercentage createsvoids [17,18]inthepolymer matrix.Ponomarev andGouterman [17]have reportedthatthe additionofhighamountsoftitaniumoxide(TiO2)inpressure

sen-sitive(PSP)paintscausethepresenceofalargefractionofmicro voidsinsidethefilms.Asaresult,aircandiffuseveryrapidlytothe insideofthecoatingthroughthesevoids.

Whenthepyrenediffusioninthelatexfilmisomittedandp=1 istakenthenEq.(2)becomesas

kq= 4NADmR

1000 (11)

Asimplifyingfactor intheinterpretationofkq isthegeneral

assumptionthatDPDqwhentheprobeiscovalentlyattachedtoa

polymer.Forquenchersassmallasmolecularoxygen,this assump-tionisreasonable.HereDmiscalledasmutualdiffusioncoefficient

whichcannowbeassumedtobetheself-diffusioncoefficientof O2inthecompositefilm.SincekqisknownandifRistakenasthe

radiusofpyrene[19]thentheaveragedDmvaluesarefoundand

(5)

Table1

Experimentallyobtainedmutualdiffusion(Dm)coefficientsatvarioustemperatures.

Dm×10−5(cm2s−1) T(0C) 3 15 40 24 1.4±0.05 1.1±0.01 1.7±0.10 40 2.2±0.007 0.3±0.008 3.8±0.19 50 0.7±0.02 0.4±0.008 2.5±0.02 60 0.2±0.01 0.3±0.005 2.2±0.01 70 2.9±0.007 0.5±0.014 0.5±0.02 Table2

ActivationenergiesofO2diffusiondependingonMWNTcontent(seeEq.(12)).

MWNT(wt%) 3 15 40

ED(kJmol−1) 68 76 100

listedinTable1forthecompositefilmshavingdifferentMWNT

content.

ItisseeninTable1thatDmisindependentofMWNTcontent

in compositefilmsi.e. onceO2 penetratesinto thefilmthen it

movesinshortrangeindependentofthematerialstructure.Dm

valueobtainedinthepresentstudy(10−5cm2s−1)is oneorder

largerthanthatpreviouslyobtained(10−6cm2s−1)byusingthe

sametechnique[19–21].Thisshowsthatthevoidsincomposite filmshelpstherapidquenchingofexcitedpyrenemoleculesand reducetheirresponsetime.

4. Diffusionenergies

Thediffusionof smallmoleculesthroughmembranescanbe describedasathermallyactivatedprocessthatobeysArrhenius behavior.Thetemperaturedependenceofthediffusioncoefficient, D,canbewrittenasfollows:

D=D0exp



−E D kBT



(12)

herekBistheBoltzmannconstant,D0ispre-exponantialfactor,ED

istheactivationenergyasassociatedwiththeoxygendiffusion.The activationenergywasdeterminedfromthelogarithmicplotsofthe Dcoefficientagainstthereciprocaloftheabsolutetemperature.

InFig.5(b),Ln(D)wasplottedversus1000/Tforthedifferent MWNTfraction, respectively.Thevalueof theactivationenergy associatedwithoxygendiffusion(ED)fordifferentMWNT

frac-tionswascalculatedfromtheslopeoftheseplotsbyfittingthedata inFig.3(b)totheEq.(12)byaleastsquarefit.Theresultsaregiven inTable2,whereED increaseswithincreasingMWNTcontent.

TheenergyneedforoxygendiffusioninthehighMWNTmediumis muchhigherthaninalowMWNTenvironment.Mostprobably,the motionofO2moleculesisscreenedbythelargenumberofMWNT

barriersduringtheirjourneyinthehighMWNTcontentmedium, inwhereO2needshigherenergytoovercomethisdifficulty.

5. Conclusions

Wehavepresentasimple,fast,andpracticalroutetomeasure thediffusionofoxygenintoPS/MWNTcompositefilmsatelevated temperaturesfordifferentMWNTcontentsusingacombinationof fluorescencequenchingmethodandFickiantransport[22–24].The oxygendiffusioncoefficients(D)and relatedactivationenergies

(ED)inthesecompositefilmsweredeterminedandcompared.

Theresultsshowedthatdiffusionofoxygenwasacceleratedby bothincreaseinMWNTfractionandtemperature.Thehigh diffu-sionrateofoxygeninthecompositeisattributedtotheformation ofvoids(pores)inthefilmwhichfacilitatesoxygendiffusion.The increaseintheenergyassociatedwiththeoxygendiffusionprocess (ED)isobservedwithincreaseinMWNTfraction.Inconclusion,

this workhasshownthat simpleseadystatefluorescence(SSF) techniquecanbeusedtomeasurethediffusioncoefficientof oxy-genmoleculesintocompositefilmsquiteaccurately.

References

[1]R.A.Vaia,K.D.Jandt,E.J.Kramer,F.P.Giannelis,Microstructuralevolutionof meltintercalatedpolymer-organicallymodifiedlayeredsilicates nanocompos-ites,Chem.Mater.8(1996)2628.

[2]M.W.Noh,D.C.Lee,SynthesisandcharacterizationofPS-claynanocomposite byemulsionpolymerization,Polym.Bull.42(1999)619.

[3]H.Z.Friedlander,C.R.Grink,OrganizedpolymerizationIII.Monomers interca-latedinmontmorillonite,J.Polym.Sci.Polym.Lett.2(1964)475–479.

[4]C.Kato,K.Kuroda,H.Takahara,Preparationandelectrical-propertiesandof quaternaryammoniummontromorillonite-polystrenecomplexes,ClayClay Miner.29(1981)294.

[5]J.G.Doh,I.Cho,Synthesisandpropertiesofpolystyreneorganoammonium montmorillonitehybrid,Polym.Bull.41(1998)511.

[6]Y.Li,B.Zhao,S.B.Xie,S.Zhang,Synthesisandpropertiesofpoly(methyl methacrylate)/montmorillonite(PMMA/MMT)nanocomposites,Polym.Int.52 (2003)892.

[7]A.Goldoni,R.Larciprete,L.Petaccia,S.Lizzit,Single-wallcarbonnanotube inter-actionwithgases:samplecontaminantsandenvironmentalmonitoring,J.Am. Chem.Soc.125(2003)11329–11333.

[8]M.E.Cox,Oxygendiffusioninpoly(dimethylsiloxane)usingfluorescence quenching1.Measurementtechniqueandanalysis,J.Polym.Sci.24(1986) 621.

[9]M.E.Cox,B.Dunn,Oxygendiffusioninpoly(dimethylsiloxane)using fluores-cencequenching2.Filledsamples,J.Polym.Sci.24(1986)2395.

[10]J.R.MacCallum,A.L.Ruddin,AnoveltechniqueformeasuringTHdiffusion constantofoxygeninpolymerfilms,Eur.Polym.J.14(1978)655.

[11]X.Lu,I.Manners,M.A.Winnik,in:B.Vakuer,J.C.Brochan(Eds.),Fluorescence Spectroscopy;NewTrendsinFluorescenceSpectroscopy,SpringerVerlag,New York,2001,p.229(Chapter12).

[12]C.N.Jayarajah,A.Yekta,I.Manners,M.A.Winnik,Oxygendiffusionand perme-abilityinalkylaminothionylphosphazenefilmsintendedforphosphorescence barometryapplications,Macromolecules33(15)(2000)5693.

[13]R.Ruffolo,C.Evans,X.H.Liu,Y.Ni,Z.Pang,P.Park,A.MacWilliams,X.Gu, X.Lu,A.Yekta,M.A.Winnik,I.Manners,Phosphorescentoxygensensors utilizingsulfur-nitrogen-phosphoruspolymermatrixes:synthesis, character-ization,andevaluationofpoly(thionylphosphazene)bpoly(tetrahydrofuran) blockcopolymers,Anal.Chem.72(2000)1894.

[14]S.A.Rice,in:C.H.Bamford,C.F.H.Tipper,R.G.Compton(Eds.),Diffusion-Limited ReactionsinComprehensiveChemicalKinetics,Elsevier,Amsterdam,1985.

[15]J.Crank,TheMathematicsofDiffusion,OxfordUniversityPress,London,1970.

[16]D.M.Delozier,K.A.Watson,J.G.Smith,JrT.C.Clancy,J.W.Connel,Investigationof aromatic/aliphaticpolyimidesasdispersantsforsinglewallcarbonnanotubes, Macromolecules39(2006)1731.

[17]S.Ponomarev,M.Gouterman,6thannualpressuresensitivepaintworkshop, Seattle,WA,Act.6–8,1998.

[18]A.K.Kneas,J.N.Demas,B.Nguyen,A.Lockhart,W.Xu,B.A.DeGraff,Method formeasuringoxygendiffusioncoefficientsofpolymerfilmsbyluminescence quenching,Anal.Chem.74(2002)1111.

[19]S.Ugur,O.Yargi,O.Pekcan,Oxygendiffusionintopolystyrene-bentonitefilms, Appl.ClaySci.43(2009)447–452.

[20]O. Pekcan, S. Ugur, Oxygendiffusion into latex films annealed at vari-oustemperatures:a fluorescencestudy, J.Coll. InterfaceSci.217 (1999) 154–159.

[21]O.Pekcan,S.Ugur,Packingeffectonoxygendiffusioninlatexfilms;aphoton transmissionandfluorescencestudy,Polymer41(2000)7531–7538.

[22]J.B.Birks,OrganicMolecularPhotophysics,Wiley-Interscience,NewYork,1975.

[23]S.Ugur,O.Yargi,O.Pekcan,Temperaturedependenceofoxygendiffusioninto clay-dopedPSfilms,Polym.Compos.31(2010)77–82.

[24]O. Yargi,S. Ugur,O. Pekcan,Diffusion energiesofoxygen diffusing into polystyrene(PS)/poly(N-isopropylacrylamide)composites,PolymAdv. Tech-nol.23(2012)776–782.

Şekil

Fig. 1. SEM picture of pure PS latex.
Fig. 4. The time behavior of the pyrene, P, fluorescence intensity, I, during oxygen diffusion into the 40 wt% MWNT content film at various temperatures
Fig. 5. (a) Plot of the diffusion coefficients, D versus temperatures, T for the 3, 15 and 40 wt% MWNT content films

Referanslar

Benzer Belgeler

The produced glass transition point t g , maximum rate of poly- merization Rp max and final conversion C s values were found to be strongly correlated with the temperature in which

The diffusion coefficients (D) of oxygen were determined using the Stern–Volmer fluorescence quenching method combined with Fickian transport and were computed as a function

In this work, the drying process of PAAm-MWNT composite gels, prepared with different MWNT con- tents, was studied by using the SSF technique at various temperatures.. Py was used

As their total surface energy is much less than that of SmPS particles, LgPS particle requires higher energy to complete viscous flow

Monomer conversion percentages versus time curves of EA/TPGDA monomer, photoinitiated with TX-SH, which contains various amounts of PSt-

The diffusion of oxygen into pyrene labelled polystyrene (PS) latex/poly( N-isopropylacrylamide) (PNIPAM) composite films (PS/PNIPAM) was studied based on PS content with the use

Observations around the critical point show that the gel fraction exponent, , and the weight average degree of polymerization exponent, , agreed with the percolation result

The quenching rate at high bentonite content film was higher than that for low contents indicating rapid diffusion of oxygen molecules into the films with high bentonite content..