• Sonuç bulunamadı

Magnetic dipole moment of Z(b)(10610) in light-cone QCD

N/A
N/A
Protected

Academic year: 2021

Share "Magnetic dipole moment of Z(b)(10610) in light-cone QCD"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Magnetic dipole moment of

Z

b

ð10610Þ in light-cone QCD

U. Özdem1,* and K. Azizi1,2,†

1

Department of Physics, Dogus University, Acibadem-Kadikoy, 34722 Istanbul, Turkey

2School of Physics, Institute for Research in Fundamental Sciences (IPM),

P. O. Box 19395-5531 Tehran, Iran

(Received 1 November 2017; published 22 January 2018)

The magnetic dipole moment of the exotic Zbð10610Þ state is calculated within the light cone QCD sum

rule method using the diquark-antidiquark and molecule interpolating currents. The magnetic dipole moment is obtained asμZb ¼ 1.73  0.63 μNin diquark-antidiquark picture andμZb¼ 1.59  0.58 μNin the molecular case. The obtained results in both pictures together with the results of other theoretical studies on the spectroscopic parameters of the Zbð10610Þ state may be useful in determination of the nature and

quark organization of this state.

DOI:10.1103/PhysRevD.97.014010

I. INTRODUCTION

According to QCD and the conventional quark model, not only the standard hadrons, but also exotic states such as meson-baryon molecules, tetraquarks, pentaquarks, glue-ball, and hybrids can exist. The first theoretical prediction on the existence of the multiquark structures was made by Jaffe in 1976[1]. Although it was predicted in the 1970s, there was not significant experimental evidence of their existence until 2003. The first observation on the exotic states was discovery of Xð3872Þ made by Belle Collaboration[2]in the decay Bþ → KþXð3872ÞJ=ψπþπ−. Subsequently, it was confirmed by BABAR[3], CDF II[4], D0[5], LHCb[6], and CMS[7]Collaborations. The discovery of the Xð3872Þ state turned out to be the forerunner of a new direction in hadron physics. So far, more than twenty exotic states have been observed experimentally [for details, see[8–15]]. The fail-ure of these states to fit the standard particles’ structures and violation of some conservation laws such as isospin sym-metry, make these states suitable tools for studying the nonperturbative nature of QCD.

In 2011, Belle Collaboration discovered two charged bottomonium-like states Zbð10610Þ and Zbð10650Þ (here-after we will denote these states as Zband Z0b, respectively) in the processesϒð5SÞ→ππϒðnSÞ, and ϒð5SÞ → ππhbðkPÞ [16]. Here, n¼ 1, 2, 3 and k ¼ 1, 2. The masses and widths of the two states have been measured as

MZb ¼ 10607.2  2 MeV; ΓZb ¼ 18.4  2.4 MeV; MZ0b ¼ 10652.2  1.5 MeV; ΓZ0b ¼ 11.5  2.2 MeV:

The analysis of the angular distribution shows that the quantum numbers of both states are IGðJPÞ ¼ 1þð1þÞ. Both Zb and Z0b belong to the family of charged hidden-bottom states. Since they are the first observed charged bottomoniumlike states and also very close to the thresh-olds of B ¯Bð10604.6 MeVÞ and B¯Bð10650.2 MeVÞ, Zb and Z0b states have attracted attention of many theoretical groups. The spectroscopic parameters and decays of Zband Z0b states have been studied with different models and approaches. Most of these investigations are based on diquark-antidiquark[17–20]and molecular interpretations

[17,21–41], using the analogy to the charm sector.

Although the spectroscopic features of these states have been studied sufficiently, the inner structure of these states have not exactly enlightened. Different kinds of analyses, such as interaction with the photon can shed light on the internal structure of these multiquark states.

A comprehensive analysis of the electromagnetic pro-perties of hadrons ensures crucial information on the nonperturbative nature of QCD and their geometric shapes. The electromagnetic multipole moments contain the spatial distributions of the charge and magnetization in the particle and therefore, these observables are directly related to the spatial distributions of quarks and gluons in hadrons. In this study, the magnetic dipole moment of the exotic state Zbis extracted by using the diquark-antidiquark and molecule interpolating currents in the framework of the light cone QCD sum rule (LCSR). This method has already been successfully applied to study the dynamical and statical properties of hadrons for decades such as, form factors, coupling constants and multipole moments. In the LCSR,

*uozdem@dogus.edu.trkazizi@dogus.edu.tr

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

(2)

the properties of the particles are characterized in terms of the light-cone distribution amplitudes (DAs) and the vacuum condensates [for details, see for instance[42–44]]. The rest of the paper is organized as follows: In Sec.II, the light-cone QCD sum rule for the electromagnetic form factors of Zbis applied and its magnetic dipole moment is derived. Section III encompasses our numerical analysis and discussion. The explicit expressions of the photon DAs are moved to the Appendix A.

II. FORMALISM

To obtain the magnetic dipole moment of the Zbstate by using the LCSR approach, we begin with the subsequent correlation function, Πμναðp; qÞ ¼ i2 Z d4x Z d4yeip·xþiq·y ×h0jT fJZb μ ðxÞJαðyÞJZνb†ð0Þgj0i: ð1Þ Here, JμðνÞis the interpolating current of the Zbstate and the electromagnetic current Jα is given as,

Jα¼ X q¼u;d;b

eq¯qγαq; ð2Þ

where eqis the electric charge of the corresponding quark. From technical point of view, it is more convenient to rewrite the correlation function by using the external background electromagnetic (BGEM) field,

Πμνðp; qÞ ¼ i Z

d4xeip·xh0jT fJZb

μ ðxÞJZb†

ν ð0Þgj0iF; ð3Þ where F is the external BGEM field and Fαβ ¼ iðεαqβ− εβqαÞ with qα and εβ being the four-momentum and polarization of the BGEM field. Since the external BGEM field can be made arbitrarily small, the correlation function in Eq.(3)can be acquired by expanding in powers of the BGEM field,

Πμνðp; qÞ ¼ Πð0Þμνðp; qÞ þ Πð1Þμνðp; qÞ þ    :; ð4Þ and keeping only termsΠð1Þμνðp; qÞ, which corresponds to the single photon emission [45,46] (the technical details about the external BGEM field method can be found in [47]). The main advantage of using the BGEM field approach relies on the fact that it separates the soft and hard photon emissions in an explicitly gauge invariant way [46]. The Πð0Þμνðp; qÞ is the correlation function in the absence of the BGEM field, and gives rise to the mass sum rules of the hadrons, which is not relevant for our case. After these general remarks, we can now proceed deriving the LCSR for the magnetic dipole moment of the Zb state. The correlation function given in Eq.(3)can

be obtained in terms of hadronic parameters, known as hadronic representation. Additionally it can be calculated in terms of the quark and gluon parameters in the deep Euclidean region, known as QCD representation.

We can insert a complete set of intermediate hadronic states with the same quantum numbers as the interpolating current of the Zb into the correlation func-tion to obtain the hadronic representafunc-tion. Then, by isolating the ground state contributions, we obtain the following expression: ΠHad μν ðp; qÞ ¼h0jJ Zb μ jZbðpÞi p2− m2Z b hZbðpÞjZbðp þ qÞiF ×hZbðp þ qÞjJ †Zb ν j0i ðp þ qÞ2− m2 Zb þ    ; ð5Þ

where dots denote the contributions coming from the higher states and continuum.

The matrix element appearing in Eq.(5)can be written in terms of three invariant form factors as follows[48]:

hZbðp;εθÞjZbðpþq;εδÞi F ¼−ετðεθÞαðεδÞβ  G1ðQ2Þð2pþqÞτgαβ þG2ðQ2Þðg τβqα−gταqβÞ−2m12 Zb G3ðQ2Þð2pþqÞτqαqβ  ; ð6Þ whereετ is the polarization vector of the BGEM field; and εθ andεδare the polarization vectors of the initial and final Zb states.

The remaining matrix element, that of the interpolating current between the vacuum and particle state,h0jJZb

μ jZbi, is parametrized as h0jJZb μ jZbi ¼ λZbε θ μ; ð7Þ

whereλZb is residue of the Zb state.

The form factors G1ðQ2Þ, G2ðQ2Þ and G3ðQ2Þ can be defined in terms of the charge FCðQ2Þ, magnetic FMðQ2Þ and quadrupole FDðQ2Þ form factors as follows

FCðQ2Þ ¼ G1ðQ2Þ þ 2 3ðQ2=4m2ZbÞFDðQ 2Þ; FMðQ2Þ ¼ G2ðQ2Þ; FDðQ2Þ ¼ G1ðQ2Þ − G2ðQ2Þ þ ð1 þ Q2=4m2Z bÞG3ðQ 2Þ; ð8Þ At Q2¼ 0, the form factors FCðQ2¼ 0Þ, FMðQ2¼ 0Þ, and FDðQ2¼ 0Þ are related to the electric charge, magnetic momentμ, and the quadrupole moment D as

(3)

eFCð0Þ ¼ e;

eFMð0Þ ¼ 2mZbμ;

eFDð0Þ ¼ m2Z

bD: ð9Þ

Inserting the matrix elements in Eqs.(6)and(7)into the correlation function in Eq.(5)and imposing the condition q ·ε ¼ 0, we obtain the correlation function in terms of the hadronic parameters as ΠHad μν ðp;qÞ ¼ λ2Zb ετ ½m2 Zb−ðpþqÞ 2½m2 Zb−p 2 ×  2pτFCð0Þ  gμν−pμqν−pνqμ m2Z b  þFMð0Þqμgντ−qνgμτþ 1 m2Zbpτðpμqν−pνqμÞ  −ðFCð0ÞþFDð0ÞÞ pτ m2Zbqμqν  : ð10Þ

To obtain the expression of the correlation function in terms of the quark and gluon parameters, the explicit form for the interpolating current of the Zb state needs to be

chosen. In this study, we consider the Zb state with the quantum numbers JPC¼ 1þ−. Then in the diquark-antidiquark model the interpolating current JZb

μ is defined by the following expression in terms of quark fields:

JZbðDiÞ μ ðxÞ ¼ iϵ~ϵffiffiffi 2 p f½uTaðxÞCγ 5bbðxÞ½¯ddðxÞγμC ¯bTeðxÞ − ½uT aðxÞCγμbbðxÞ½¯ddðxÞγ5C ¯bTeðxÞg; ð11Þ

where C is the charge conjugation matrix, ϵ ¼ ϵabc, ~ϵ ¼ ϵdec; and a; b;… are color indices.

One can also construct the interpolating current by considering the Zb as a molecular form of B ¯B and B¯B state,

JZbðMolÞμ ðxÞ ¼ 1ffiffiffi

2

p f½¯daðxÞiγ5baðxÞ½¯bbðxÞγμubðxÞ

þ ½¯daðxÞγμbaðxÞ½¯bbðxÞiγ5ubðxÞg: ð12Þ After contracting pairs of the light and heavy quark operators, the correlation function becomes:

ΠQCD μν ðp; qÞ ¼ −iϵ~ϵϵ 00 2 Z d4xeipxh0jfTr½γ5~Saau 0ðxÞγ5Sbb 0 c ðxÞTr½γμ~Se 0e c ð−xÞγνSd 0d d ð−xÞ − Tr½γμ~Se0e c ð−xÞγ5Sd 0d d ð−xÞTr½γν~S aa0 u ðxÞγ5Sbb 0 c ðxÞ − Tr½γ5~Sa 0a u ðxÞγμSb 0b c ðxÞTr½γ5~Se 0e c ð−xÞγνSd 0d d ð−xÞ þ Tr½γν~Saa 0 u ðxÞγμSbb 0 c ðxÞTr½γ5~S e0e c ð−xÞγ5Sd 0d d ð−xÞgj0iF; ð13Þ

in the diquark-antidiquark picture, and

ΠQCD μν ðp; qÞ ¼ −2i Z d4xeipxh0jfTr½γ5Saab 0ðxÞγ5Sda0að−xÞTr½γμSbbu 0ðxÞγνSb 0b b ð−xÞ þ Tr½γ5Saa 0 b ðxÞγνSa 0a d ð−xÞTr½γμSbb 0 u ðxÞγ5Sb 0b b ð−xÞ þ Tr½γμSaa 0 b ðxÞγ5Sa 0a d ð−xÞTr½γ5Sbb 0 u ðxÞγνSb 0b b ð−xÞ þ Tr½γμSaa 0 b ðxÞγνSa 0a d ð−xÞTr½γ5Sbb 0 u ðxÞγ5Sb 0b b ð−xÞgj0iF; ð14Þ

in the molecular picture, where

~SbðqÞðxÞ ¼ CSTbðqÞðxÞC;

with SqðxÞ and SbðxÞ being the light and heavy quark propagators, respectively. To calculate the correlation functions in QCD representations, the light and heavy quark propagators are required. Their explicit expressions in the x-space are given as SqðxÞ ¼ i =x 2π2x4− h¯qqi 12  1 þm20x2 16  − igs 32π2x2GμνðxÞ½=xσμνþ σμν=x; ð15Þ and

(4)

SbðxÞ ¼m 2 b 4π2  K1ðmbpffiffiffiffiffiffiffiffi−x2Þ ffiffiffiffiffiffiffiffi −x2 p þ i=xK2ðmb ffiffiffiffiffiffiffiffi −x2 p Þ ðpffiffiffiffiffiffiffiffi−x2Þ2  −gsmb 16π2 Z 1 0 dvG μνðvxÞ  ðσμν=xþ =xσμνÞK1ðmb ffiffiffiffiffiffiffiffi −x2 p Þ ffiffiffiffiffiffiffiffi −x2 p þ 2σμνK0ðmb ffiffiffiffiffiffiffiffi −x2 p Þ  ; ð16Þ where Ki are the second kind Bessel functions, v is line variable, and Gμν is the gluon field strength tensor.

The correlation function includes different types of contributions. In first case, one of the free quark propagators in Eqs. (13)–(14)is replaced by

Sfree Z

d4ySfreeðx − yÞ==AðyÞSfreeðyÞ; ð17Þ

where Sfreeis the first term of the light or heavy quark propagators and the remaining three propagators are replaced with the full quark propagators. The LCSR calculations are most conveniently done in the fixed-point gauge. For electromagnetic field, it is defined by xμAμ¼ 0. In this gauge, the electromagnetic potential is given by

Aα¼ −1

2Fαβyβ¼ − 1

2ðεαqβ− εβqαÞyβ: ð18Þ

The Eq. (18)is plugged into Eq.(17), as a result of which we obtain Sfree→ −1

2ðεαqβ−εβqαÞ Z

d4yyβSfreeðx − yÞγαSfreeðyÞ;

ð19Þ After some calculations for Sfree

q and Sfreeb we get

Sfree q ¼ eq 32π2x2ðεαqβ− εβqαÞð=xσαβþ σαβ=xÞ; Sfree b ¼ −i ebmb 32π2ðεαqβ− εβqαÞ  2σαβK0ðmb ffiffiffiffiffiffiffiffi −x2 p Þ þK1ðmb ffiffiffiffiffiffiffiffi −x2 p Þ ffiffiffiffiffiffiffiffi −x2 p ð=xσαβþ σαβ=xÞ  : ð20Þ

In second case one of the light quark propagators in Eqs.(13)–(14)are replaced by Sab

αβ → −14ð¯qaΓiqbÞðΓiÞαβ; ð21Þ

and the remaining propagators are full quark propagators including the perturbative as well as the nonperturbative contributions. Here as an example, we give a short detail of the calculations of the QCD representations. In second case for simplicity, we only consider the first term in Eq. (13),

ΠQCD μν ðp; qÞ ¼ −iϵ~ϵϵ 00 2 Z d4xeipxh0jTr½γ5~Saa0 u ðxÞγ5Sbb 0 b ðxÞTr½γμ~S e0e b ð−xÞγνSd 0d d ð−xÞj0iFþ    ð22Þ

By replacing one of light propagators with the expressions in Eq. (21)and making use of ¯qaðxÞΓiqa0ð0Þ →1

3δaa 0

¯qðxÞΓiqð0Þ; ð23Þ

the Eq.(22) takes the form ΠQCD μν ðp; qÞ ¼ −iϵ~ϵϵ 00 2 Z d4xeipx Tr½γ5Γiγ5Sbb0 b ðxÞTr½γμ~S e0e b ð−xÞγνSd 0d d ð−xÞ 1 12δaa 0 þ Tr½γ5~Saa 0 u ðxÞγ5Sbb 0 b ðxÞTr½γμ~S e0e b ð−xÞγνΓi 112δdd 0 hγðqÞj¯qðxÞΓiqð0Þj0i þ    ; ð24Þ

(5)

whereΓi¼ I; γ5;γμ; iγ5γμ;σμν=2. Similarly, when a light propagator interacts with the photon, a gluon may be released from one of the remaining three propagators. The expression obtained in this case is as follows:

ΠQCD μν ðp; qÞ ¼ −iϵ~ϵϵ 00 2 Z d4xeipx Tr½γ5Γiγ5Sbb0 b ðxÞTr½γμ~S e0e b ð−xÞγνSd 0d d ð−xÞ  δabδa0b01 3δaa 0 δbb0  þ  δaeδa0e0 1 3δaa 0 δee0  þ  δadδa0d0 1 3δaa 0 δdd0  þ Tr½γ5~Saa 0 u ðxÞγ5Sbb 0 b ðxÞTr½γμ~S e0e b ð−xÞγνΓi  δdbδd0b01 3δdd 0 δbb0  þ  δdeδd0e01 3δdd 0 δee0  þ  δadδa0d01 3δaa 0 δdd0  1 32hγðqÞj¯qðxÞΓiGμνðvxÞqð0Þj0i þ    ; ð25Þ where we inserted ¯qaðxÞΓiGbb0 μνðvxÞqa0ð0Þ →18  δabδa0b01 3δaa 0 δbb0  ¯qðxÞΓiGμνðvxÞqð0Þ: ð26Þ As is seen, there appear matrix elements such as hγðqÞj¯qðxÞΓiqð0Þj0i and hγðqÞj¯qðxÞΓiGμνðvxÞqð0Þj0i, rep-resenting the nonperturbative contributions. These matrix elements can be expressed in terms of photon DAs and wave functions with definite twists, whose expressions are given in Appendix A. The QCD representation of the correlation function is obtained by using Eqs. (13)–(26). Then, the Fourier transformation is applied to transfer expressions in x-space to the momentum space.

The sum rule for the magnetic dipole moment are obtained by matching the expressions of the correlation function in terms of QCD parameters and its expression in

terms of the hadronic parameters, using their spectral representation. To eliminate the contributions of the excited and continuum states in the spectral representation of the correlation function, a double Borel transformation with respect to the variables p2andðp þ qÞ2is applied. After the transformation, these contributions are exponentially sup-pressed. Eventually, we choose the structureðε:pÞðpμqν− qμpνÞ for the magnetic dipole moment and obtain

μDi¼e m2 Zb=M2 λ2 Zbm 2 Zb ½Π1þ Π2; ð27Þ μMol¼e m2Zb=M2 λ2 Zbm 2 Zb ½Π3þ Π4: ð28Þ The explicit forms of the functions that appear in the above sum rules are given as follows:

Π1¼ 3m 4 b 256π6ðeu− edÞf32N½3; 3; 0 − 2M2N½3; 3; 1 − 16mbN½3; 4; 1 þ mbM2N½3; 4; 2g −m2bhg2sG2i 9216π6 ðeu− edÞð−M2N½1; 1; 0 þ 2mbN½1; 2; 0Þ −m2bhg2sG2i 147456π6ð2mbM2N½1; 2; 1 þ π2h¯qqið16N½1; 2; 1 þ 5N½1; 2; 2ÞÞ þm4bhg2sG2i 294912π6ðeu− edÞð16N½1; 3; 1 − M2N½1; 3; 2Þ −m2bhg2sG2i 294912π6ðeu− edÞð128N½2; 2; 0 − 8ð2m2bþ M2ÞN½2; 2; 1 þ m2bM2N½2; 2; 2Þ − m3b

98304π6ðeu− edÞð16ðhg2sG2i − 192π2mbh¯qqiÞN½2; 3; 1 þ M2ð13hg2sG2i − 960π2mbh¯qqiÞN½2; 3; 2 −m3bm20h¯qqi

384M8π4 ðeuþ edÞð64m6bFlP½−3; 4; 0 − 48m4bFlP½−2; 4; 0 þ 12m2bFlP½−1; 4; 0 − FlP½0; 4; 0Þ

−mbm20hg2sG2ih¯qqi

(6)

Π2¼ −mbhg2sG2ih¯qqi2

2592M10π2 ðeu− edÞðm20− M2ÞI3½hγð4m2bFlNP½0; 1; 0 − FlNP½−1; 1; 0Þ þmbm20hg2sG2ih¯qqi2

10368M10π2 ðeu− edÞI3½hγð4m2bFlNP½2; 1; 1 − FlNP½3; 1; 1Þ −f3γm20hg2sG2ih¯qqi

110592M10π2 ½−ð4eu− 3edÞψaðu0Þ þ 2edI3½ψνð16m4bFlNP½1; 2; 1 − 8m2bFlNP½2; 2; 1 þ FlNP½3; 2; 1Þ −mbm20hg2sG2ih¯qqi

995328M12π2 ð8eu− 5edÞðAðu0Þ þ 8I3½hγÞð16m4bFlNP½2; 3; 2 − 8m2bFlNP½3; 3; 2 þ FlNP½4; 3; 2Þ þ mbh¯qqi2

497664M12π2ð8eu− 5edÞ½−hg2sG2ið−ð5m20− 2M2ÞAðu0Þ − 2m20χM2φγðu0ÞÞ − 8f−5m20hg2sG2i þ 2ðM2hg2sG2i þ 432m2

bm20M2ÞI3½hγgð16m4bFlNP½0; 3; 1 − 8m2bFlNP½1; 3; 1 þ FlNP½2; 3; 1Þ

þ mb

165888M10π4½ðeu− edÞf3γð7M2hg2sG2i − 576π2mbh¯qqiðm20− M2ÞÞψaðu0Þ þ 72π2h¯qqi2ðm2

0− M2Þð−2euI1½~S þ edð3I2½T1 − 3I2½T2 − 5I2½~SÞÞ

×ð−64m6bFlNP½3; 4; 0 þ 48m4bFlNP½2; 4; 0 − 12m2bFlNP½1; 4; 0 þ FlNP½0; 4; 0Þ − mbm20h¯qqi

9216M10π4½−8ðeu− edÞmbf3γψaðu0Þ − h¯qqið−2euI1½~S þ edð3I2½T1 − 3I2½T2 − 5I2½~SÞÞ ×ð64m6bFlNP½−1; 4; 1 − 48m4bFlNP½0; 4; 1 þ 12m2bFlNP½1; 4; 1 − FlNP½2; 4; 1Þ þ h¯qqi 1990656M12π4½hg2sG2if2euð−3M4ð16m4bFlNP½1; 3; 0 − 8m2bFlNP½0; 3; 0 þ FlNP½−1; 3; 0Þ − 32π2m bh¯qqið5m20− 4M2Þð16m4bFlNP½2; 3; 0 − 8m2bFlNP½1; 3; 0 þ FlNP½0; 3; 0ÞÞ þ edð40π2m bh¯qqið5m20− 4M2Þð16m4bFlNP½2; 3; 0 − 8m2bFlNP½1; 3; 0 þ FlNP½0; 3; 0Þ þ 3M4ð−48m6 bFlNP½2; 3; 0 þ 56m4bFlNP½1; 3; 0 − 19m2bFlNP½0; 3; 0 þ 2FlNP½−1; 3; 0ÞÞgAðu0Þ þ 8mbf−4ð8eu− 5edÞπ2M2χhg2

sG2ih¯qqiðm20− M2Þφγðu0Þ − 3ð40eu− 43edÞmbM4hg2sG2i þ 8ð8eu− 5edÞπ2hg2

sG2ih¯qqið5m20− M2Þ − 432ðeu− edÞπ2mb2M2h¯qqiðm20− 4M2ÞgI3½hγ

×ð16m4bFlNP½2; 3; 0 − 8m2bFlNP½1; 3; 0 þ FlNP½0; 3; 0Þ; ð30Þ Π3¼ 9m 4 b 1024π6ðeu− edÞf32N½3; 3; 0 − 2M2N½3; 3; 1 − 16mbN½3; 4; 1 þ mbM2N½3; 4; 2g − m3b 32768π6ðeu− edÞðhg2sG2i þ 48π2mbh¯qqiÞð16N½2; 3; 1 þ 5M2N½2; 3; 2Þ −m3bm20h¯qqi 512M8π2 ðeu− edÞð64m6b4FlP½−3; 4; 0 − 48m4bFlP½−2; 4; 0 þ 12m2bFlP½−1; 4; 0 þ FlP½0; 4; 0Þ; ð31Þ and Π4¼m2bhg2sG2ih¯qqi

294912π4 ½euð−3I1½S − 2I1½~SÞ þ edð3I2½S þ 2I2½~SÞðM2N½1; 2; 2 − 8N½1; 2; 1Þ þ 3m2bh¯qqi

64π4 ðeu− edÞI3½hγðM2N½2; 3; 2 − 8N½2; 3; 1Þ þ3m4bf3γ

128π4 ðeuþ edÞψaðu0ÞðM2N½3; 3; 2 − 8N½3; 3; 1Þ −m3bm20h¯qqi2

96M10π2 ðeu− edÞI3½hγð64m6bFlNP½0; 3; 1 − 48m4bFlNP½1; 3; 1 þ FlNP½2; 3; 1Þ −m3bm20f3γh¯qqi2

(7)

− 48FlNP½0; 4; 1 þ 12m2

bFlNP½1; 4; 1 − FlNP½2; 4; 1Þ þ mbf3γ

18432M10π4ðeuþ edÞ½ð−M2hg2sG2i − 48π2mbh¯qqiðm20− M2ÞÞψaðu0Þ

×ð−64m6bFlNP½3; 4; 0 þ 48m4bFlNP½2; 4; 0 − 12m2bFlNP½1; 4; 0 þ FlNP½0; 4; 0Þ − mbh¯qqi

1152M10π4ðeu− edÞ½ð−M2hg2sG2i − 48π2mbh¯qqiðm20− M2ÞÞI3½hγ

×ð−16m4bFlNP½2; 3; 0 − 8m2bFlNP½1; 3; 0 þ FlNP½0; 3; 0Þ; ð32Þ

where, mb is the mass of the b quark, eq is the corresponding electric charge, χ is the magnetic suscep-tibility of the quark condensate, m20¼ h¯qgσαβGαβqi= h¯qqi, h¯qqi and hg2

sG2i are quark and gluon condensates, respectively.

The functions N½n; m; k, FlP½n; m; k, FlNP½n; m; k, I1½A, I2½A, and I3½A are defined as:

N½n; m; k ¼ Z 0 dt Z 0 dt 0 e−mb=2ðtþt 0Þ tnðmb t þ mb t0Þ kt0m; FlP½n; m; k ¼ Z s 0 4m2 b ds Z s 4m2 b dle −l2 lnðl − sÞm ð4m2 b− lÞ2ϕk ; FlNP½n; m; k ¼ Z s 0 4m2 b ds Z s 4m2 b dle −l2 lnðl − sÞm ðl − 2m2 bÞβk ; I1½A ¼ Z Dαi Z 1 0 dvAðα¯q;αq;αgÞ ×δðαqþ¯vαg− u0Þ; I2½A ¼ Z Dαi Z 1 0 dvAðα¯q;αq;αgÞ ×δðα¯qþ vαg− u0Þ; I3½A ¼ Z 1 0 duAðuÞ; ð33Þ where β ¼ 4lM2− 16m2 bM2; ϕ ¼ 8lM2− 32m2 bM2:

The functionsΠ1andΠ3indicate the case that one of the quark propagators enters the perturbative interaction with the photon and the remaining three propagators are taken as full propagators. The functions Π2 and Π4 show the contributions that one of the light quark propagators enters the nonperturbative interaction with the photon and the remaining three propagators are taken as full propagators. The reader can find some details about the calculations such as Fourier and Borel transformations as well as continuum subtraction in Appendix C of Ref.[49].

As we already mentioned, the calculations have been done in the fixed-point gauge, xμAμ¼ 0, for simplicity. In order to show whether our results are gauge invariant or not we examine the Lorentz gauge,∂μAμ¼ 0. In this gauge, the electromagnetic vector potential is written as

AμðxÞ ¼ εμe−iq:x; ð34Þ with εμqμ¼ 0. In this gauge, the corresponding gauge invariant electromagnetic field strength tensor is written as Fμν¼ iðεμqν− qμενÞe−iq:x: ð35Þ We repeat all the calculations in this gauge and find the same results for the magnetic dipole moment of the state under consideration. Therefore the results obtained in the present study are gauge invariant.

III. NUMERICAL ANALYSIS AND CONCLUSION

In this section, we numerically analyze the results of calculations for magnetic dipole moment of the Zb state. We use mZb¼10607.22MeV, ¯mbðmbÞ¼ð4.18þ0.04−0.03ÞGeV [50], f ¼ −0.0039 GeV2[46],h¯qqið1 GeVÞ ¼ ð−0.24  0.01Þ3GeV3 [51], m2

0¼ 0.8  0.1 GeV2, hg2sG2i ¼ 0.88 GeV4 [8], and χð1 GeVÞ ¼ −2.85  0.5 GeV−2 [52]. To evaluate a numerical prediction for the magnetic moment, we need also specify the values of the residue of the Zbstate. The residue is obtained from the mass sum rule as λZb ¼ mZbfZbwith fZb ¼ ð2.79

þ0.55

−0.65Þ × 10−2 GeV4[19]for

diquark-antidiquark picture and λZb ¼ 0.27  0.07 GeV5 [23]for molecular picture. The parameters used in the photon DAs are given in Appendix A, as well.

The estimations for the magnetic dipole moment of the Zb state depend on two auxiliary parameters; the continuum threshold s0 and Borel mass parameter M2. The continuum threshold is not completely an arbitrary parameter, and there are some physical restrictions for it. The s0 signals the scale at which, the excited states and continuum start to contribute to the correlation function. The working interval for this parameter is chosen such that the maximum pole contribution is acquired and the results relatively weakly depend on

(8)

its choices. Our numerical calculations lead to the interval ½119–128 GeV2 for this parameter. The Borel parameter can vary in the interval that the results weakly depend on it according to the standard prescriptions. The upper bound of it is found demanding the maximum pole contributions and its lower bound is found the conver-gence of the operator product expansion and exceeding of the perturbative part over nonperturbative contribu-tions. Under these constraints, the working region of the Borel parameter is determined as 15 GeV2≤ M2≤ 17 GeV2.

In Fig. 1, we plot the dependency of the magnetic dipole moment of the Zb state on M2 at different fixed values of the continuum threshold. From the figure we observe that the results considerably depend on the variations of the Borel parameter. The magnetic dipole moment is stable under variation of s0 in its working region. In Fig. 2, we show the contributions of Π1, Π2, Π3, and Π4 functions to the results obtained at average value of s0 with respect to the Borel mass parameter. It is clear that Π1is dominant in the results obtained when

using diquark-antidiquark current but Π3 is dominant while using the molecular current. The contribution of the Π2 and Π4 functions seems to be almost zero. When the results are analyzed in detail, almost (95–97)% of the total contribution comes from the perturbative part and the remaining (3–5)% belongs to the nonperturbative contributions.

Our predictions on the numerical value of the magnetic dipole moment in both pictures are presented in Table I. The errors in the results come from the variations in the calculations of the working regions of M2 and from the uncertainties in the values of the input parameters as well as the photon DAs. We shall remark that the main source of

15 15.5 16 16.5 17 M2[GeV2] -0.5 0 0.5 1 1.5 2 2.5 3 3.5 |μZb | [ μΝ ]-Diquark-antidiquark s 0 = 119 GeV 2 s0 = 124 GeV2 s 0 = 128 GeV 2 (a) 15 15.5 16 16.5 17 M2[GeV2] -0.5 0 0.5 1 1.5 2 2.5 3 3.5 |μZb | [ μΝ ]-Molecule s0 = 119 GeV2 s 0 = 124 GeV 2 s0 = 128 GeV2 (b)

FIG. 1. The dependence of the magnetic moment for Zb state;

on the Borel parameter squared M2at different fixed values of the continuum threshold. 15 15.5 16 16.5 17 M2[GeV2] -0.5 0 0.5 1 1.5 2 2.5 3 3.5 μ Zb [μ N ]-Diquark-antidiquark Π1 Π2 Π1 + Π2 (a) 15 15.5 16 16.5 17 M2[GeV2] -0.5 0 0.5 1 1.5 2 2.5 3 3.5 μ Zb [μ N ]-Molecule Π3 Π4 Π3 + Π4 (b)

FIG. 2. Comparison of the contributions to the magnetic moment with respect to M2at average value of s0.

TABLE I. Results of the magnetic moment (in units ofμN) for

Zb state.

Picture jμZbj

Diquark-antidiquark 1.73  0.63

(9)

uncertainties is the variations with respect to variations of M2.

In conclusion, we have computed the magnetic dipole moment of the Zbð10610Þ by modeling it as the diquark-antidiquark and molecule states. In our calculations we have employed the light-cone QCD sum rule in electro-magnetic background field. Although the central values of the magnetic dipole moment obtained via two pictures differ slightly from each other but they are consistent within the errors. In Ref. [19], both the spectroscopic parameters and some of the strong decays of the Zb state have been studied using diquark-anti-diquark interpolating current. Although the obtained mass in [19] is in agreement with the experimental data, the result obtained for the width of Zb in the diquark-antidiquark picture in [19] differ considerably from the experimental data. They suggested, as a result, that the Zb state may not have a pure diquark-anti-diquark structure. When we combine the obtained results in the present study with those of the predictions on the mass obtained via both pictures in the literature and those result obtained for the width of Zb in Ref. [19]we conclude that both pictures can be considered for the internal structure of Zb. May be a mixed current will be a better choice for interpolating this particle. More theoretical and experimental studies are still needed to be performed in this respect.

Finally, the magnetic dipole moment encodes impor-tant information about the inner structure of particles

and their geometric shape. The results obtained for the magnetic dipole moment of Zb state in both the diquark-antidiquark and molecule pictures, within a factor 2, are of the same order of magnitude as the proton’s magnetic moment and not such small that it appears hopeless to try to measure the value of the magnetic dipole moment of this state. By the recent progresses in the exper-imental side, we hope that we can measure the multipole moments of the newly founded exotic states, especially the Zb particle in future. Comparison of any exper-imental data on the magnetic dipole moment of Zb will be useful to gain exact knowledge on its quark organ-izations and will help us in the course of undestanding the structures of the newly observed exotic states and their quantum chromodynamics.

ACKNOWLEDGMENTS

This work has been supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under the Grant No. 115F183.

APPENDIX: PHOTON DAS AND WAVE FUNCTIONS

In this appendix, we present the definitions of the matrix elements of the forms hγðqÞj¯qðxÞΓiqð0Þj0i and hγðqÞj¯qðxÞΓiGμνqð0Þj0i in terms of the photon DAs and wave functions[46],

hγðqÞj¯qðxÞγμqð0Þj0i ¼ eqf  εμ−qμεx qx Z 1 0 due i¯uqxψvðuÞ hγðqÞj¯qðxÞγμγ5qð0Þj0i ¼ −1 4eqf3γϵμναβενqαxβ Z 1 0 due i¯uqxψaðuÞ

hγðqÞj¯qðxÞσμνqð0Þj0i ¼ −ieqh¯qqiðεμqν−ενqμÞ Z 1 0 due i¯uqx  χφγðuÞþx 2 16AðuÞ  −2ðqxÞi eq¯qq  xν  εμ−qμεx qx  −xμ  εν−qνεx qx Z 1 0 due i¯uqxh γðuÞ

hγðqÞj¯qðxÞgsGμνðvxÞqð0Þj0i ¼ −ieqh¯qqiðεμqν−ενqμÞ Z

Dαieiðα¯qþvαgÞqxSðαiÞ hγðqÞj¯qðxÞgs~GμνðvxÞiγ5qð0Þj0i ¼ −ieqh¯qqiðεμqν−ενqμÞ

Z

Dαieiðα¯qþvαgÞqx~SðαiÞ hγðqÞj¯qðxÞgs~GμνðvxÞγαγ5qð0Þj0i ¼ eqfqαðεμqν−ενqμÞ

Z

Dαieiðα¯qþvαgÞqxAðαiÞ hγðqÞj¯qðxÞgsGμνðvxÞiγαqð0Þj0i ¼ eqfqαðεμqν−ενqμÞ

Z

Dαieiðα¯qþvαgÞqxVðαiÞ hγðqÞj¯qðxÞσαβgsGμνðvxÞqð0Þj0i ¼ eqh¯qqi  εμ−qμqxεx  gαν− 1 qxðqαxνþqνxαÞ  qβ −  εμ−qμqxεx  gβν− 1 qxðqβxνþqνxβÞ  qα−  εν−qνqxεx  gαμ− 1 qxðqαxμþqμxαÞ  qβ

(10)

þ  εν−qνq:xεx  gβμ− 1 qxðqβxμþqμxβÞ  qα Z Dαieiðα¯qþvαgÞqxT 1ðαiÞ þ  εα−qαqxεx  gμβ−1 qxðqμxβþqβxμÞ  qν−  εα−qαqxεx  gνβ− 1 qxðqνxβþqβxνÞ  qμ −  εβ−qβεx qx  gμα−1 qxðqμxαþqαxμÞ  qν þ  εβ−qβεxqx  gνα−1 qxðqνxαþqαxνÞ  qμ Z Dαieiðα¯qþvαgÞqxT 2ðαiÞ þ 1 qxðqμxν−qνxμÞðεαqβ−εβqαÞ Z

Dαieiðα¯qþvαgÞqxT3ðαiÞ

þ 1 qxðqαxβ−qβxαÞðεμqν−ενqμÞ Z Dαieiðα¯qþvαgÞqxT 4ðαiÞ ;

whereφγðuÞ is the leading twist-2, ψvðuÞ, ψaðuÞ, AðαiÞ, and VðαiÞ, are the twist-3, and h

γðuÞ, AðuÞ, SðαiÞ, ~SðαiÞ, T1ðαiÞ, T2ðαiÞ, T3ðαiÞ, and T4ðαiÞ are the twist-4 photon DAs. The measure Dαiis defined as

Z Dαi¼ Z 1 0 dα¯q Z 1 0 dαq Z 1 0 dαgδð1 − α¯q− αq− αgÞ: The expressions of the DAs entering into the above matrix elements are defined as: φγðuÞ ¼ 6u¯uð1 þ φ2ðμÞC 3 2 2ðu − ¯uÞÞ; ψvðuÞ ¼ 3ð3ð2u − 1Þ2− 1Þ þ 3 64ð15wVγ − 5wAγÞð3 − 30ð2u − 1Þ2þ 35ð2u − 1Þ4Þ; ψaðuÞ ¼ ð1 − ð2u − 1Þ2Þð5ð2u − 1Þ2− 1Þ5

2  1 þ 9 16wVγ − 3 16wAγ  ; hγðuÞ ¼ −10ð1 þ 2κþÞC12 2ðu − ¯uÞ; AðuÞ ¼ 40u2¯u2ð3κ − κþþ 1Þ þ 8ðζþ

2 − 3ζ2Þ½u¯uð2 þ 13u¯uÞ þ 2u3ð10 − 15u þ 6u2Þ lnðuÞ þ 2¯u3ð10 − 15¯u þ 6¯u2Þ lnð¯uÞ; AðαiÞ ¼ 360αqα¯qα2 g  1 þ wA γ 12ð7αg− 3Þ  ; VðαiÞ ¼ 540wV γðαq− α¯qÞαqα¯qα2g; T1ðαiÞ ¼ −120ð3ζ2þ ζþ2Þðα¯q− αqÞα¯qαqαg; T2ðαiÞ ¼ 30α2gðα¯q− αqÞððκ − κþÞ þ ðζ1− ζþ 1Þð1 − 2αgÞ þ ζ2ð3 − 4αgÞÞ; T3ðαiÞ ¼ −120ð3ζ2− ζþ2Þðα¯q− αqÞα¯qαqαg; T4ðαiÞ ¼ 30α2gðα¯q− αqÞððκ þ κþÞ þ ðζ1þ ζþ1Þð1 − 2αgÞ þ ζ2ð3 − 4αgÞÞ; SðαiÞ ¼ 30α2gfðκ þ κþÞð1 − αgÞ þ ðζ1þ ζþ 1Þð1 − αgÞð1 − 2αgÞ þ ζ2½3ðα¯q− αqÞ2− αgð1 − αgÞg; ~SðαiÞ ¼ −30α2gfðκ − κþÞð1 − αgÞ þ ðζ 1− ζþ1Þð1 − αgÞð1 − 2αgÞ þ ζ2½3ðα¯q− αqÞ2− αgð1 − αgÞg: Numerical values of parameters used in DAs areφ2ð1 GeVÞ ¼ 0, wV

γ ¼ 3.8  1.8, wAγ ¼ −2.1  1.0, κ ¼ 0.2, κþ ¼ 0, ζ1¼ 0.4, ζ2¼ 0.3.

(11)

[1] R. L. Jaffe, Multi-quark hadrons. 2. Methods,Phys. Rev. D 15, 281 (1977).

[2] S. K. Choi et al. (Belle Collaboration), Observation of a Narrow Charmoniumlike State in Exclusive B→ Kπþπ−J=ψ Decays,Phys. Rev. Lett. 91, 262001 (2003). [3] B. Aubert et al. (BABAR Collaboration), Study of the B→ J=ψK−πþπ− decay and measurement of the B→ Xð3872ÞK− branching fraction, Phys. Rev. D 71, 071103 (2005).

[4] D. Acosta et al. (CDF Collaboration), Observation of the Narrow State Xffiffiffi ð3872Þ → J=ψπþπ− in ¯pp Collisions at

s p

¼ 1.96 TeV,Phys. Rev. Lett. 93, 072001 (2004). [5] V. M. Abazov et al. (D0 Collaboration), Observation and

Properties of the Zbð10610Þ Decaying to J=ψπþπ− in p¯p

Collisions atpffiffiffis¼ 1.96 TeV,Phys. Rev. Lett. 93, 162002 (2004).

[6] R. Aaij et al. (LHCb Collaboration), Observation of Xð3872Þ production in pp collisions at pffiffiffis¼ 7 TeV,

Eur. Phys. J. C 72, 1972 (2012).

[7] S. Chatrchyan et al. (CMS Collaboration), Measurement of the X(3872) production cross section via decays to J/psi pi pi in pp collisions at sqrtðsÞ ¼ 7 TeV,J. High Energy Phys. 04 (2013) 154.

[8] M. Nielsen, F. S. Navarra, and S. H. Lee, New charmonium states in QCD sum rules: A concise review,Phys. Rep. 497, 41 (2010).

[9] E. S. Swanson, The new heavy mesons: A status report,

Phys. Rep. 429, 243 (2006).

[10] M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008).

[11] E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks. Experimental facts versus QCD inspired concepts, Phys. Rep. 454, 1 (2007).

[12] S. Godfrey and S. L. Olsen, The exotic XYZ charmonium-like mesons,Annu. Rev. Nucl. Part. Sci. 58, 51 (2008). [13] R. Faccini, A. Pilloni, and A. D. Polosa, Exotic heavy

quarkonium spectroscopy: A mini-review,Mod. Phys. Lett. A 27, 1230025 (2012).

[14] A. Esposito, A. L. Guerrieri, F. Piccinini, A. Pilloni, and A. D. Polosa, Four-quark hadrons: An updated review,Int. J. Mod. Phys. A 30, 1530002 (2015).

[15] A. Ali, J. S. Lange, and S. Stone, Exotics: Heavy penta-quarks and tetrapenta-quarks, Prog. Part. Nucl. Phys. 97, 123 (2017).

[16] A. Bondar et al. (Belle Collaboration), Observation of Two Charged Bottomonium-like Resonances in Y(5S) Decays,

Phys. Rev. Lett. 108, 122001 (2012).

[17] C. Y. Cui, Y. L. Liu, and M. Q. Huang, Investigating differ-ent structures of the Zbð10610Þ and Zbð10650Þ,Phys. Rev.

D 85, 074014 (2012).

[18] A. Ali, C. Hambrock, and W. Wang, Tetraquark interpre-tation of the charged bottomonium-like states Zþ−b ð10610Þ and Zþ−b ð10650Þ and implications,Phys. Rev. D 85, 054011 (2012).

[19] S. S. Agaev, K. Azizi, and H. Sundu, Spectroscopic param-eters and decays of the resonance Zbð10610Þ,Eur. Phys. J. C

77, 836 (2017).

[20] Z. G. Wang and T. Huang, The Zbð10610Þ and Zbð10650Þ

as axial-vector tetraquark states in the QCD sum rules,Nucl. Phys. A930, 63 (2014).

[21] A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and M. B. Voloshin, Heavy quark spin structure in Zb

reso-nances,Phys. Rev. D 84, 054010 (2011).

[22] M. B. Voloshin, Radiative transitions from Upsilon(5S) to molecular bottomonium, Phys. Rev. D 84, 031502 (2011).

[23] J. R. Zhang, M. Zhong, and M. Q. Huang, Could Zbð10610Þ

be a B¯B molecular state?,Phys. Lett. B 704, 312 (2011). [24] Y. Yang, J. Ping, C. Deng, and H. S. Zong, Possible interpretation of the Zbð10610Þ and Zbð10650Þ in a chiral

quark model,J. Phys. G 39, 105001 (2012).

[25] Z. F. Sun, J. He, X. Liu, Z. G. Luo, and S. L. Zhu, Zbð10610Þand Zbð10650Þas the B¯B and B¯B

molecu-lar states, Phys. Rev. D 84, 054002 (2011).

[26] D. Y. Chen, X. Liu, and S. L. Zhu, Charged bottomonium-like states Zbð10610Þ and Zbð10650Þ and the ϒð5SÞ →

ϒð2SÞπþπdecay,Phys. Rev. D 84, 074016 (2011).

[27] D. Y. Chen and X. Liu, Zbð10610Þ and Zbð10650Þ

struc-tures produced by the initial single pion emission in the ϒð5SÞ decays,Phys. Rev. D 84, 094003 (2011).

[28] M. T. Li, W. L. Wang, Y. B. Dong, and Z. Y. Zhang, Zbð10650Þ and Zbð10610Þ states in a chiral quark model,

J. Phys. G 40, 015003 (2013).

[29] G. Li, F. l. Shao, C. W. Zhao, and Q. Zhao, Zb=Z0b→ ϒπ

and hbπ decays in intermediate meson loops model,Phys.

Rev. D 87, 034020 (2013).

[30] M. Cleven, F. K. Guo, C. Hanhart, and U. G. Meissner, Bound state nature of the exotic Zb states,Eur. Phys. J. A

47, 120 (2011).

[31] M. Cleven, Q. Wang, F. K. Guo, C. Hanhart, U. G. Meissner, and Q. Zhao, Confirming the molecular nature of the Zbð10610Þ and the Zbð10650Þ, Phys. Rev. D 87, 074006

(2013).

[32] T. Mehen and J. W. Powell, Line shapes in γð5SÞ → BðÞ¯BðÞπ with Z(10610) and Z(10650) using effective field theory,Phys. Rev. D 88, 034017 (2013).

[33] Z. G. Wang and T. Huang, Possible assignments of the Xð3872Þ, Zcð3900Þ and Zbð10610Þ as axial-vector

molecu-lar states, Eur. Phys. J. C 74, 2891 (2014).

[34] Z. G. Wang, Reanalysis of the Yð3940Þ, Yð4140Þ, Zcð4020Þ,

Zcð4025Þ and Zbð10650Þ as molecular states with QCD sum

rules,Eur. Phys. J. C 74, 2963 (2014).

[35] Y. Dong, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, Decays of ZbðþÞ and Zb0ðþÞ as hadronic molecules, J.

Phys. G 40, 015002 (2013).

[36] W. Chen, T. G. Steele, H. X. Chen, and S. L. Zhu, Mass spectra of Zc and Zb exotic states as hadron molecules,

Phys. Rev. D 92, 054002 (2015).

[37] X. W. Kang, Z. H. Guo, and J. A. Oller, General consid-erations on the nature of Zbð10610Þ and Zbð10650Þ from

their pole positions,Phys. Rev. D 94, 014012 (2016). [38] J. M. Dias, F. Aceti, and E. Oset, Study of B ¯Band B¯B

interactions in I¼ 1 and relationship to the Zbð10610Þ,

Zbð10650Þ states, Phys. Rev. D 91, 076001 (2015).

[39] F. Goerke, T. Gutsche, M. A. Ivanov, J. G. Krner, and V. E. Lyubovitskij, Zbð10610Þ and Z0bð10650Þ decays in a

covar-iant quark model,Phys. Rev. D 96, 054028 (2017). [40] C. J. Xiao and D. Y. Chen, Analysis of the hidden bottom

decays of Zb(10610) and Zb(10650) via final state inter-action,Phys. Rev. D 96, 014035 (2017).

(12)

[41] W. S. Huo and G. Y. Chen, The nature of Zb states from a

combined analysis ofϒð5SÞ→hbðmPÞπþπ−and ϒð5SÞ→

BðÞ¯BðÞπ,Eur. Phys. J. C 76, 172 (2016).

[42] V. L. Chernyak and I. R. Zhitnitsky, B meson exclusive decays into baryons,Nucl. Phys. B345, 137 (1990). [43] V. M. Braun and I. E. Filyanov, QCD sum rules in exclusive

kinematics and pion wave function, Z. Phys. C 44, 157 (1989)[Yad. Fiz. 50, 818 (1989)] [Sov. J. Nucl. Phys. 50, 511 (1989)].

[44] I. I. Balitsky, V. M. Braun, and A. V. Kolesnichenko, Radi-ative decayσþ→ pγ in quantum chromodynamics,Nucl. Phys. B312, 509 (1989).

[45] B. L. Ioffe and A. V. Smilga, Nucleon magnetic moments and magnetic properties of vacuum in QCD,Nucl. Phys. B232, 109 (1984).

[46] P. Ball, V. M. Braun, and N. Kivel, Photon distribution amplitudes in QCD,Nucl. Phys. B649, 263 (2003).

[47] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Calculations in external fields in quantum chromodynamics. Technical review, Fortschr. Phys. 32, 585 (1984).

[48] S. J. Brodsky and J. R. Hiller, Universal properties of the electromagnetic interactions of spin one systems,Phys. Rev. D 46, 2141 (1992).

[49] U. Ozdem and K. Azizi, Magnetic and quadrupole moments of the Zcð3900Þ,Phys. Rev. D 96, 074030 (2017).

[50] C. Patrignani et al. (Particle Data Group), Review of particle physics,Chin. Phys. C 40, 100001 (2016).

[51] B. L. Ioffe, QCD at low energies,Prog. Part. Nucl. Phys. 56, 232 (2006).

[52] J. Rohrwild, Determination of the magnetic susceptibility of the quark condensate using radiative heavy meson decays,J. High Energy Phys. 09 (2007) 073.

Şekil

FIG. 2. Comparison of the contributions to the magnetic moment with respect to M 2 at average value of s 0 .

Referanslar

Benzer Belgeler

Dünya çapında mersin balığı stoklarının en büyük kısmının bulunduğu Hazar Denizi ve Azak Denizi’nde 1950-1960 yılları arasında mersin balıklarının üreme

Abstract: In this study, plant parasitic nematodes species of Tylenchida in walnuts (Juglans regia L.) and chestnuts (Castanea sativa Miller) orchards in some provinces of

Bu çal ış man ı n ana materyalini laboratuar konukçusu olarak Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) ile yumurta parazitoidleri Trichogramma turkeiensis..

Abstract : In this study, drip and furrow irrigation systems were compared based on irrigation water requirements, systems discharges and different costs for different land sizes

Varyans analizi sonuçlar ı na göre yumruda toplam kül üzerine tuzluluk, Ca/Mg oran ı ve konu etkile ş imlerinin tümü de %I düzeyinde önemli olurken, gövdede tuzluluk ve

In this study, the VSM08 survey which was developed to measure cultural dimensions of societies by Hofstede (2008), has been practiced to Çukurova University Architectural

Türkistan’da Hellenistik Dönem adlı bu tez çalışmasında Türkistan’da Büyük İskender’in gerçekleştirdiği askeri seferlerle başlayan; Seleukos Krallığı,

765 sayılı Türk Ceza Kanunu döneminde daha önce ayrıntılı olarak bahsettiğimiz Yargıtay İçtihadı Birleştirme Kararı gereğince hırsızlık suçu olarak