• Sonuç bulunamadı

Başlık: Stancu type (p; q)-Szász-Mirakyan-Baskakov operatorsYazar(lar):ACAR, Tuncer; MURSALEEN, Mohammad; MOHIUDDINE, S. A.Cilt: 67 Sayı: 1 Sayfa: 116-128 DOI: 10.1501/Commua1_0000000835 Yayın Tarihi: 2018 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Stancu type (p; q)-Szász-Mirakyan-Baskakov operatorsYazar(lar):ACAR, Tuncer; MURSALEEN, Mohammad; MOHIUDDINE, S. A.Cilt: 67 Sayı: 1 Sayfa: 116-128 DOI: 10.1501/Commua1_0000000835 Yayın Tarihi: 2018 PDF"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C om mun.Fac.Sci.U niv.A nk.Series A 1 Volum e 67, N umb er 1, Pages 116–128 (2018) D O I: 10.1501/C om mua1_ 0000000835 ISSN 1303–5991

http://com munications.science.ankara.edu.tr/index.php?series= A 1

STANCU TYPE (p; q)-SZÁSZ-MIRAKYAN-BASKAKOV

OPERATORS

TUNCER ACAR, MOHAMMAD MURSALEEN, AND S. A. MOHIUDDINE

Abstract. In the present paper, we introduce Stancu type generalization of (p; q)-Szasz-Mirakyan-Baskakov operators and investigate their approximation properties such as weighted approximation, rate of convergence and pointwise convergence.

1. Introduction

In the last two decades, there has been intensive research on the approximation of functions by positive linear operators introduced by making use of q-calculus. Many q-generalizations of approximation operators and their approximation behaviors were intensively studied. Nowadays, approximation by linear positive operators in post-quantum calculus, namely the (p; q)-calculus is very active area. Mursaleen et al. introduced the (p; q)-analogues of some well-known operators such as Bernstein operators [15], Bernstein-Stancu operators [16], Bleimann-Butzer-Hahn operators [17], Bernstein-Schurer operators [18]. They investigated the approximation prop-erties of above mentioned operators using the techniques of (p; q)-calculus. Also we can refer the readers to some recent papers: (p; q)-Baskakov-Kantorovich operators [3], bivariate (p; q)-Bernstein Kantorovich operators [4], bivariate (p; q)-Baskakov-Kantorovich operators [12].

Let us recall certain notations and de…nitions of (p; q)-calculus. Let 0 < q < p 1: For each nonnegative integer k; n, n k 0, the (p; q)-numbers [k]p;q, (p; q)-factorial [k]p;q! and (p; q)-binomial are de…ned by

[k]p;q := p

k qk

p q ;

[k]p;q! := [k]p;q[k 1]p;q:::1 ; k 1;

1; k = 0

Received by the editors: December 26, 2016, Accepted: April 03, 2017. 2010 Mathematics Subject Classi…cation. 41A25, 41A35, 41A36.

Key words and phrases. (p; q)-integers, (p; q)-Szász-Mirakyan operators, weighted approximation.

c 2 0 1 8 A n ka ra U n ive rsity C o m m u n ic a tio n s d e la Fa c u lté d e s S c ie n c e s d e l’U n ive rs ité d ’A n ka ra . S é rie s A 1 . M a th e m a t ic s a n d S t a tis t ic s .

(2)

and

n k p;q :=

[n]p;q! [n k]p;q! [k]p;q!:

In the case of p = 1, the above notations reduce to q-analogues and one can easily see that [n]p;q= pn 1[n]

q=p:

Further, the (p; q)-power basis is de…ned by

(x a)np;q= (x + a)(px + qa)(p2x + q2a) (pn 1x + qn 1a); and

(x a)np;q= (x a)(px qa)(p2x q2a) (pn 1x qn 1a): Also the (p; q)-derivative of a function f , denoted by Dp;qf; is de…ned by

(Dp;qf ) (x) :=

f (px) f (qx)

(p q) x ; x 6= 0; (Dp;qf ) (0) := f

0(0)

provided that f is di¤erentiable at 0: The formula for the (p; q)-derivative of a product is

Dp;q(u (x) v (x)) := Dp;q(u (x)) v (qx) + Dp;q(v (x)) u (px) :

For more details on (p; q)-calculus, we refer the readers to [9, 10, 20] and the ref-erences therein. There are two (p; q)-analogues of the exponential function, see [10], ep;q(x) = 1 X n=0 pn(n21)xn [n]p;q! ; and Ep;q(x) = 1 X n=0 qn(n21)xn [n]p;q! ; (1.1)

which satisfy the equality ep;q(x) Ep;q( x) = 1: For p = 1, ep;q(x) and Ep;q(x)

reduce to q-exponential functions. Here we note that the interval of convergence of ep;q(x) is jxj < 1= (p q), jpj < 1 and jqj < 1 and the series (1.1) is convergent for

all x 2 R, jpj < 1 and jqj < 1:

In the recent paper [1], Acar introduced (p; q)-Szász-Mirakyan operators as Sn;p;q(f ; x) := 1 E [n]p;qx 1 X k=0 f [k]p;q qk 2[n] p;q ! qk(k21) [n]kp;qxk [k]p;q! : (1.2) The operators (1.2) are linear and positive and for p = 1; the operators (1.2) turn out to be q-Szász-Mirakyan operators de…ned in [14]. King type modi…cation of (p; q)-Szász-Mirakyan operators was introduced in [2].

Further, Aral et al. proposed (p; q)-Beta function of second kind for m; n 2 N as Bp;q(m; n) =

Z 1

0

xm 1

(3)

and considering the (p; q)-Beta function, Gupta [7] introduced (p; q)-Szász-Mirakyan-Baskakov operators as Dnp;q(f ; x) = [n 1]p;q 1 X k=0 sp;qn;k(x) q[k(k+1) 2]=2p(k+1)(k+2)=2 1 Z 0 bp;qn;k(t) f pkt dp;qt; (1.3) where sp;qn;k(x) = 1 Ep;q [n]p;qx qk(k21) [n]kp;qxk [k]p;q! ; b p;q n;k(t) n + k 1 k p;q tk (1 pt)n+kp;q : Similar consideration of the operators given by (1.3) in classical calculus, we refer the readers to [5].

In the present paper, we extend the operators (1.3) for 0 ; and every n 2 N, q 2 (0; 1) ; p 2 (q; 1] ; Stancu type modi…cation of the operators (1.3) can be de…ned by Dn; ;p;q (f ; x) = [n 1]p;q 1 X k=0 sp;qn;k(x) q[k(k+1) 2]=2p(k+1)(k+2)=2 1 Z 0 bp;qn;k(t) f p k[n] p;qt + [n]p;q+ ! dp;qt; (1.4) for x 2 [0; 1) and for every real valued continuous function f on [0; 1). In case

= = 0; the operators (1.4) reduce to (1.3).

We shall …rst give some lemmas which will be necessary to prove our main results. We obtain local approximation behaviors of the operators (1.3) in terms of second order modulus of smoothness and classical modulus of continuity. We also present uniform convergence theorems via weighted Korovkin theorem for the functions belong to weighted spaces. In the last section, we prove the pointwise estimates for the functions satisfying the Lipschitz conditions.

2. Auxiliary Results Lemma 1. ([7]) For x 2 [0; 1) ; 0 < q < p 1; we have

(i) Dp;qn (1; x) = 1 (ii) Dp;q n (t; x) = qp2[n 2]1 p;q + [n]p;qx pq2[n 2] p;q (iii) Dp;q n t2; x = [2]p;q p5q3[n 2] p;q[n 3]p;q+ [q([2]p;q+p)+p2][n]p;q p4q5[n 2] p;q[n 3]p;q x+ [n]2 p;q pq6[n 2] p;q[n 3]p;qx 2:

Lemma 2. For x 2 [0; 1) ; 0 < q < p 1; we have

(4)

Dn; ;p;q (t; x) = [n] 2 p;qx [n]p;q+ pq2[n 2] p;q + [n]p;q+ qp 2[n 2] p;q [n]p;q+ qp2[n 2] p;q ; (2.2) Dn; ;p;q t2; x = [n] 4 p;q pq6[n 2] p;q[n 3]p;q [n]p;q+ 2x 2 + 0 B @ q [2]p;q+ p + p2 [n]3 p;q+ 2 [n] 2 p;qp3q3[n 3]p;q p4q5[n 2] p;q[n 3]p;q [n]p;q+ 2 1 C A x + [2]p;q[n] 2 p;q p5q3[n 2] p;q[n 3]p;q [n]p;q+ 2 + 2 [n]p;q [n]p;q+ 2qp2[n 2] p;q + 2 [n]p;q+ 2 :

Proof. Using Lemma 1, we have Dp;qn; ; (1; x) = 1: Also we get

Dn; ;p;q (t; x) = [n 1]p;q 1 X k=0 sp;qn;k(x) q[k(k+1) 2]=2p(k+1)(k+2)=2 1 Z 0 bp;qn;k(t) p k[n] p;qt + [n]p;q+ ! dp;qt = [n]p;q [n]p;q+ D p;q n (t; x) + [n]p;q+ D p;q n (1; x) = [n]p;q [n]p;q+ 1 qp2[n 2] p;q + [n]p;qx pq2[n 2] p;q ! + [n]p;q+ = [n] 2 p;qx [n]p;q+ pq2[n 2] p;q + [n]p;q+ qp 2[n 2] p;q [n]p;q+ qp2[n 2] p;q and Dn; ;p;q t2; x = [n 1]p;q 1 X k=0 sp;qn;k(x) q[k(k+1) 2]=2p(k+1)(k+2)=2 1 Z 0 bp;qn;k(t) p k [n]p;qt + [n]p;q+ !2 dp;qt (2.3) = [n]p;q [n]p;q+ !2 Dp;qn t 2 ; x + 2 [n]p;q [n]p;q+ 2 Dp;qn (t; x) + 2 [n]p;q+ 2 Dp;qn (1; x) = [n]p;q [n]p;q+ !20 @q 3 [2]p;q+ pq q [2]p;q+ p + p2 [n]p;qx + p4[n]2p;qx2 p5q6[n 2] p;q[n 3]p;q 1 A

(5)

+ 2 [n]p;q [n]p;q+ 2 q + p [n]p;qx q2p2[n 2] p;q ! + 2 [n]p;q+ 2 = [n] 4 p;q pq6[n 2] p;q[n 3]p;q [n]p;q+ 2x 2 + 0 B @ q [2]p;q+ p + p2 [n]3 p;q+ 2 [n] 2 p;qp 3q3[n 3] p;q p4q5[n 2] p;q[n 3]p;q [n]p;q+ 2 1 C A x + [2]p;q[n] 2 p;q p5q3[n 2] p;q[n 3]p;q [n]p;q+ 2 + 2 [n]p;q [n]p;q+ 2qp2[n 2] p;q + 2 [n]p;q+ 2:

Corollary 1. Using Lemma 2 we set

Dn; ;p;q (t x)2; x = x2 0 B @ [n] 4 p;q pq6[n 2] p;q[n 3]p;q [n]p;q+ 2 2 [n]2p;qx [n]p;q+ pq2[n 2] p;q + 1 1 C A +x 0 B @ h q [2]p;q+ p + p2i[n]3 p;q p4q5[n 2] p;q[n 3]p;q [n]p;q+ 2 + 2 [n] 2 p;q [n]p;q+ 2 pq2[n 2] p;q 2 [n]p;q+ 2 qp2[n 2] p;q [n]p;q+ qp2[n 2] p;q 1 C A + [2]p;q[n] 2 p;q p5q3[n 2] p;q[n 3]p;q [n]p;q+ 2 + 2 [n]p;q [n]p;q+ 2 qp2[n 2] p;q + 2 [n]p;q+ 2 = : n(p; q; x) and n(p; q; x) := 0 @ [n] 2 p;q [n]p;q+ pq2[n 2] p;q 1 1 A x + [n]p;q+ qp 2 [n 2]p;q [n]p;q+ qp2[n 2] p;q :

(6)

By CB[0; 1) ; we denote the space of real-valued uniformly continuous and

bounded functions f de…ned on the interval [0; 1) : The norm k k on the space CB[0; 1) is given by

kfk = sup

0 x<1jf (x)j :

Further let us consider the following K-functional: K2(f; ) = inf

g2W2fkf gk + kg 00kg ;

where > 0 and W2 = fg 2 C

B[0; 1) : g0; g002 CB[0; 1)g : By [6, p. 177,

Theo-rem 2.4] there exists an absolute constant C > 0 such that K2(f; ) C!2 f; p ; (2.4) where !2(f; ) = sup 0<h p sup x2[0;1)jf (x + 2h) 2f (x + h) + f (x)j

is the second order modulus of smoothness of f 2 CB[0; 1) : The usual modulus

of continuity of f 2 CB[0; 1) is de…ned by

! (f; ) = sup

0<h

sup

x2[0;1)jf (x + h) f (x)j :

Let Bm[0; 1) be the set of all functions satisfying the condition jf (x)j Mf(1 + xm) ;

x 2 [0; 1); m > 0 with some constant depending on f: Cm[0; 1) = Bm[0; 1) \

C[0; 1) endowed with the norm

kfkm= sup x 0 jf (x)j 1 + xm and Cm[0; 1) = f 2 Cm[0; 1) : lim x!1 jf (x)j 1 + xm < 1 :

Lemma 3. Let f 2 CB[0; 1) : Then for all g 2 CB2 [0; 1) ; we have

^

Dp;qn; ; (g; x) g (x) kg00k n(p; q; x) + 2n(p; q; x) ; (2.5)

where

^

Dn; ;p;q (g; x) = Dp;qn; ; (g; x) + g (x) g Dn; ;p;q (t; x) : (2.6) Proof. By the de…nition of ^Dp;qn; ; and Lemma 2, it is obvious that

^

Dp;qn; ; (t x; x) = 0: (2.7)

Since g 2 CB2[0; 1) ; using the Taylor’s expansion for x 2 [0; 1) we have

g (t) = g (x) + g (x) (t x) +

t

Z

x

(7)

Applying the operators ^Dp;qn; ; to both sides of above equality and considering the fact (2.7) we obtain ^ Dn; ;p;q (g; x) g (x) = ^Dn; ;p;q 0 @ t Z x (t u) g00(u) du; x 1 A = Dp;q n; ; 0 @ t Z x (t u) g00(u) du; x 1 A (2.8) Dn; ;p;qZ (t;x) x 0 @ [n] 2 p;qx [n]p;q+ pq2[n 2] p;q + [n]p;q+ qp 2[n 2] p;q [n]p;q+ qp2[n 2] p;q u 1 A g00(u) du: Also we get t Z x (t u) g00(u) du t Z x jt uj jg00(u)j du kg00k t Z x jt uj du kg00k (t x)2 (2.9) and Dp;qn; ;Z (t;x) x 0 @ [n] 2 p;qx [n]p;q+ pq2[n 2] p;q + [n]p;q+ qp 2[n 2] p;q [n]p;q+ qp2[n 2] p;q u 1 A g00(u) du 0 @ [n] 2 p;qx [n]p;q+ pq2[n 2] p;q + [n]p;q+ qp 2[n 2] p;q [n]p;q+ qp2[n 2] p;q x 1 A 2 kg00k := 2n(p; q; x) kg00k : (2.10) Using the inequalities (2.9) and (2.10) in (2.8) we immediately have

^

Dp;qn; ; (g; x) g (x) kg00k n(p; q; x) + 2n(p; q; x) :

Lemma 4. For f 2 CB[0; 1), one has

Dn; ;p;q f kfk :

Proof. In view of (1.4) and Lemma 2, the proof easily follows. 3. Local Approximation

Theorem 1. Let f 2 CB[0; 1) : Then for every x 2 [0; 1) ; there exists a constant

L > 0 such that

Dp;qn; ; (f ; x) f (x) L!2 f ;

q

(8)

Proof. By (2.6), for every g 2 C2

B[0; 1) one can obtain

Dn; ;p;q (f ; x) f (x) D^p;qn; ; (f ; x) f (x) + f (x) f 0 @ [n] 2 p;qx [n]p;q+ pq2[n 2] p;q + [n]p;q+ qp 2[n 2] p;q [n]p;q+ qp2[n 2] p;q 1 A ^ Dn; ;p;q (f g; x) (f g) (x) + f (x) f 0 @ [n] 2 p;qx [n]p;q+ pq2[n 2] p;q + [n]p;q+ qp 2[n 2] p;q [n]p;q+ qp2[n 2] p;q 1 A + ^Dp;qn; ; (g; x) g (x) :

Taking into account Lemma 4 and Lemma 3 we get Dn; ;p;q (f ; x) f (x) 4 kf gk + f (x) f 0 @ [n] 2 p;qx [n]p;q+ pq2[n 2] p;q + [n]p;q+ qp 2[n 2] p;q [n]p;q+ qp2[n 2] p;q 1 A + kg00k n(p; q; x) + 2n(p; q; x)

and taking in…mum on the right-hand side over all g 2 C2

B[0; 1) and using (2.4), we deduce Dn; ;p;q (f ; x) f (x) 4K2 f ; n(p; q; x) + 2n(p; q; x) + ! (f ; n(p; q; x)) 4!2 f ; q n(p; q; x) + 2n(p; q; x) + ! (f ; n(p; q; x)) = L!2 f ; q n(p; q; x) + 2n(p; q; x) + ! (f ; n(p; q; x)) ; where L = 4M > 0:

Theorem 2. Let f 2 C2[0; 1) ; pn; qn 2 (0; 1) such that 0 < qn < pn 1 and

!a+1(f; ) be its modulus of continuity on the …nite interval [0; a + 1] [0; 1) ;

where a > 0: Then, for every n > 2;

Dp;qn; ; (f ; x) f (x) 4Mf 1 + a2 n(pn; qn; x) + 2!a+1 f;

p

n(pn; qn; x) :

Proof. By [11], !a+1( ; ) has the property

(9)

Applying Cauchy-Schwarz inequality and choosing =p n(pn; qn; x), we have Dn; ;p;q (f ; x) f (x) 4Mf 1 + a2 Dn; ;p;q (t x) 2 ; x +!a+1(f; ) 1 + 1 Dn; ;p;q (t x)2; x 1=2 = 4Mf 1 + a2 n(pn; qn; x) + 2!a+1 f; p n(pn; qn; x) ;

which completes the proof.

4. Weighted Approximation

First, let us recall the de…nitions of weighted spaces and corresponding modulus of continuity. Let C [0; 1) be the set of all continuous functions f de…ned on [0; 1) and B2[0; 1) the set of all functions f de…ned on [0; 1) satisfying the

condition jf (x)j M 1 + x2 with some positive constant M which may depend

only on f: C2[0; 1) denotes the subspace of all continuous functions in B2[0; 1) :

By C2[0; 1), we denote the subspace of all functions f 2 C2[0; 1) for which

limx!11+xf (x)2 is …nite: B2[0; 1) is a linear normed space with the norm kfk2 =

supx 0jf (x)j1+x2:

Theorem 3. Let q = qn 2 (0; 1), p = pn 2 (q; 1] such that qn ! 1; pn ! 1 as

n ! 1: Then for each function f 2 C2[0; 1) we get

lim

n!1 D pn;qn n; ; f f

2= 0:

Proof. According to weighted Korovkin theorem proved in [8], it is su¢ cient to verify the following three conditions

lim

n!1 D pn;qn n; ; ei ei

2= 0; i = 0; 1; 2: (4.1)

By (2.1), (4.1) holds for i = 0: By (2.2) and (2.3) we have Dpn;qn n; ; e1 e1 2 = supx 0 n(pn; qn; x) 1 + x2 0 @ [n] 2 pn;qn [n]pn;qn+ pnq2n[n 2]pn;qn 1 1 A sup x 0 x 1 + x2 +[n]pn;qn+ qnp 2 n[n 2]pn;qn [n]p;q+ qp2[n 2] p;q 0 @ [n] 2 pn;qn [n]pn;qn+ pnq2n[n 2]pn;qn 1 1 A

(10)

+ [n]pn;qn+ qnp 2

n[n 2]pn;qn [n]pn;qn+ qnp2n[n 2]pn;qn and by similar consideration we have

Dpn;qn n; ; e2 e2 2 [n]4p n;qn pnq6n[n 2]pn;qn[n 3]pn;qn [n]pn;qn+ 2 1 + h qn [2]pn;qn+ pn + p 2 n i [n]3pn;qn p4 nqn5[n 2]pn;qn[n 3]pn;qn [n]pn;qn+ 2 + 2 [n] 2 p;q [n]pn;qn+ 2pnq2n[n 2]pn;qn + [2]pn;qn[n] 2 pn;qn p5 nqn3[n 2]pn;qn[n 3]pn;qn [n]pn;qn+ 2 + 2 [n]p;q [n]pn;qn+ 2qnp2n[n 2]pn;qn + 2 [n]p n;qn+ 2:

Last two inequality mean that (4.1) holds for i = 1; 2: Hence, the proof is completed. Theorem 4. Let p = pnand q = qn satis…es 0 < qn< pn 1 and for n su¢ ciently

large pn! 1, qn! 1 and qnn ! 1 and pnn ! 1: For each f 2 Cx2[0; 1) ; we have

lim

n!1x2[0; 1)sup

Dpn;qn

n; ; (f; x) f (x)

(1 + x2)1+ = 0:

Proof. For any …xed x0> 0;

sup x2[0; 1) Dpn;qn n; ; (f; x) f (x) (1 + x2)1+ sup x x0 Dpn;qn n; ; (f; x) f (x) (1 + x2)1+ + supx x 0 Dpn;qn n; ; (f; x) f (x) (1 + x2)1+ Dpn;qn n; ; (f ) f C[0; x0]+ kfkx 2 sup x x0 Dpn;qn n; ; 1 + t2; x (1 + x2)1+

(11)

+ sup

x x0

jf (x)j (1 + x2)1+ :

Since jf (x)j M 1 + x2 ; we have sup x x0 jf (x)j (1+x2)1+ kf k2 (1+x2 0) 1+ Let " > 0 be arbitrary. We can choose x0 to be so large that

kfk2 (1 + x2 0) 1+ < " 3 (4.2)

On the other hand, in view of Lemma 2 we get kfk2nlim !1 Dpn;qn n; ; 1 + t2; x (1 + x2)1+ = 1 + x2 (1 + x2)1+ kfk2 kfk2 (1 + x2) kfk2 (1 + x2 0) < " 3: (4.3) Also, the …rst term of the above inequality tends to zero by well known Korovkin’s theorem, that is,

Dpn;qn n; ; (f ) f

C[0; x0] <"

3: (4.4)

Therefore, combining (4.2)-(4.4) we get the desired result. 5. Pointwise Estimates

Theorem 5. Let 0 < 1 and E be any subset of the interval [0; 1) : Then, if f 2 CB[0; 1) is locally Lip ( ) ; i.e., the condition

jf (y) f (x)j L jy xj ; y 2 E and x 2 [0; 1) (5.1) holds, then, for each x 2 [0; 1) ; we have

Dn; ;p;q (f ; x) f (x) Ln 2

n (x) + 2 (d (x; E))

o ;

where L is a constant depending on and f ; and d (x; E) is the distance between x and E de…ned by

d (x; E) = inf fjt xj : t 2 Eg :

Proof. Let E denote the closure of E in [0; 1) : Then, there exists a point x02 E

such that jx x0j = d (x; E). Using the triangle inequality

jf (t) f (x)j jf (t) f (x0)j + jf (x) f (x0)j

we immediately have by (5.1) that

Dn; ;p;q (f ; x) f (x) Dp;qn; ; (jf (t) f (x0)j ; x) + Dp;qn; ; (jf (x) f (x0)j ; x) LnDn; ;p;q (jt x0j ; x) + jx x0j o LnDn; ;p;q (jt xj + jx x0j ; x) + jx x0j o = LnDn; ;p;q (jt xj ; x) + 2 jx x0j o :

(12)

Using Hölder inequality with p = 2= ; q = 2= (2 ) ; we obtain Sn;p;q(f ; x) f (x) L h Dp;qn; ; (jt xj p; x) i1 p + 2 (d (x; E)) = L h Dp;qn; ; jt xj2; x i2 + 2 (d (x; E)) L n 2 n (x) + 2 (d (x; E)) o

Next we obtain the local direct estimate of the operators Dp;qn; ; , using the Lipc-shitz type maximal function of order introduced by Lenze [13] as

~

!a(f; x) = sup t6=x;t2[0;1)

jf (t) f (x)j

jt xj ; x 2 [0; 1) and 2 (0; 1] : (5.2) Theorem 6. Let f 2 CB[0; 1) and 0 < 1: Then, for all x 2 [0; 1) we have

Dp;qn; ; (f ; x) f (x) !~a(f; x) n2 (x) :

Proof. From the Eq. (5.2), we have

Dn; ;p;q (f ; x) f (x) !~a(f; x) Dn; ;p;q (jt xj ; x) :

Applying the Hölder inequality with p = 2= ; q = 2= (2 ) ; we get Dp;qn; ; (f ; x) f (x) !~a(f; x) h Dn; ;p;q jt xj2; x i2 ~ !a(f; x) n2 (x) :

Acknowledgement 1. The …rst author is partially supported by Research Project of Kirikkale University, BAP, 2017/014 (Turkey).

References

[1] Acar, T., (p; q)-generalization of Szász-Mirakyan operators, Math. Method. Appl. Sci., 39 (10), 2016, 2685-2695.

[2] Acar, T., Agrawal, P. N. , Kumar, S., On a modi…cation of (p; q)-Szász-Mirakyan operators, Comp. Anal. Oper. Theo., 2016, DOI: 10.1007/s11785-016-0613-9.

[3] Acar, T., Aral, A., Mohiuddine, S. A., On Kantorovich modi…cations of (p; q)-Baskakov operators, J. Inequal. Appl., 2016, 2016:98.

[4] Acar, T., Aral, A., Mohiuddine, Approximation by bivariate (p; q)-Bernstein-Kantorovich operators, Iran. J. Sci. Technol. Trans. A Sci., 2016, DOI: 10.1007/s40995-016-0045-4. [5] Acar, T. Gupta, V., Aral, A., Rate of Convergence for Generalized Szász Operators, Bull.

Math. Sci., 1 (1), 2011, 99-113.

[6] Devore, R. A. , Lorentz, G. G., Constructive Approximation, Springer, Berlin, 1993. [7] Gupta, V., (p; q)-Szász-Mirakyan-Baskakov operators, Complex Anal. Oper. Theory, 2016,

(13)

[8] Gadzhiev, A. D., Theorems of the type of P. P. Korovkin type theorems, Math. Zametki, 20 (5), 1976 781-786; English Translation, Math Notes 20 (5-6) 1976 996-998.

[9] Hounkonnou, M. N., Désiré, J., Kyemba, B., R(p; q)-calculus: di¤erentiation and integration, SUT Journal of Mathematics, 49 (2), 2013, 145-167.

[10] Jagannathan, R., Rao, K. S., Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, Proceedings of the International Conference on Number Theory and Mathematical Physics, 20-21 December 2005.

[11] Ibikli, E., Gadjieva, E. A., The order of approximation of some unbounded function by the sequences of positive linear operators, Turk. J. Math., 19 (3), 1995, 331-337.

[12] Ince Ilarslan, H. G., Acar, T., Approximation by bivariate (p; q)-Baskakov-Kantorovich op-erators, Georgian Math. J., 2016, DOI: 10.1515/gmj-2016-0057.

[13] Lenze, B., On Lipschitz type maximal functions and their smoothness spaces, Nederl. Akad. Indag. Math., 50, 1988 53–63.

[14] Mahmodov, N. I., On q-parametric Szász-Mirakjan operators, Mediterr. J. Math., 7, 2010, 297–311.

[15] Mursaleen, M., Ansari, K. J., Khan, A., On (p; q)-analogue of Bernstein Operators, Appl. Math. Comput., 266, 2015, 874-882.

[16] Mursaleen, M., Ansari, K. J., Khan, A., Some Approximation Results by (p; q)-analogue of Bernstein-Stancu operators, Appl. Math. Comput., 264, 2015, 392-402 [Corrigendum: Appl. Math. Comput, 269 (2015) 744–746].

[17] Mursaleen, M., Nasiruzzaman, Md., Khan, A. and Ansari, K. J., Some approximation results on Bleimann-Butzer-Hahn operators de…ned by (p; q)-integers, Filomat, 30(3), (2016), 639– 648.

[18] Mursaleen, M., Nasiruzzaman, Md., Nurgali, A., Some approximation results on Bernstein-Schurer operators de…ned by (p; q)-integers, J. Ineq. Appl., 2015 (2015): 249.

[19] Mursaleen, M., Alotaibi, A., Ansari„K.J., On a Kantorovich variant of (p; q)- Szász-Mirakjan operators, J. Func. Spaces, Volume 2016, Article ID 1035253, 9 pages.

[20] Sahai, V., Yadav, S., Representations of two parameter quantum algebras and p; q-special functions, J. Math. Anal. Appl. 335 (2007), 268-279.

Current address : Tuncer Acar: Kirikkale University, Faculty of Science and Arts, Department of Mathematics, Yahsihan, 71450, Kirikkale, Turkey

E-mail address : tunceracar@ymail.com

Current address : Mohammad Mursaleen: Department of Mathematics, Aligarh Muslim Uni-versity, Aligarh–202002, India

E-mail address : mursaleenm@gmail.com

Current address : S. A. Mohiuddine: OperatorTheory and Applications Research Group, De-partment of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Referanslar

Benzer Belgeler

[17] determined fatigue properties of ductile iron which were applied on four different grades austem- pered heat treatment under bending fatigue test.. They observed that the

We …rst establish approximation properties and rate of convergence results for these operators.. Our main purpose is to give a theorem on the rate of convergence of the r th

Bu hipotezleri test etmek için öğrencilerin Aile Değerlendirme Ölçeğinin; problem çözme, iletişim, roller, duygusal tepki verebilme, gereken ilgiyi gösterebilme,

exact order of approximation, quantitative Voronovskaja-type theorems, simultaneous approximation properties for complex q-Bernstein - Kantorovich polynomials ,

Many properties and results of these polynomials, such as Korovkin type ap- proximation and the rate of convergence of these operators in terms of Lipschitz class functional are

3 Korovkin-type approximation theorem In this section, we study Korovkin-type approximation theorems of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators.. Let Cρ denote

In addition, we calculate the degree of convergence of the approximation process in terms of the first modulus of continuity of the derivative of the function... 3

1921’de Mülkıye’den mezuni­ yetiyle başlayan düşünsel çalış­ malarıyla Ülken, felsefe, mantık ve çeşitli toplum bilimlerini kap­ sayan çok geniş bir alanda