• Sonuç bulunamadı

View of Cartesian Product Of Interval Neutrosophic Automata

N/A
N/A
Protected

Academic year: 2021

Share "View of Cartesian Product Of Interval Neutrosophic Automata"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Research Article

3708

Cartesian Product Of Interval Neutrosophic Automata

V. Karthikeyan 𝟏 R. Karuppaiya 𝟐

1Department of Mathematics, Government College of Engineering,Dharmapuri, Tamil Nadu, India. 2Department of Mathematics, Annamalai University,Chidambaram, Tamil Nadu, India.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 23 May 2021 Abstract

We introduce Cartesian product of interval neutrosophic automata and prove that Cartesian product of cyclic interval neutrosophic automata is cyclic

Key words: Cyclic, Cartesian product.

AMS Mathematics subject classification: 03D05, 20M35, 18 B20, 68Q45, 68Q70, 94 A45

1 Introduction

The neutrosophic set was introduced by Florentin Smarandache in 1999 [6]. The neutrosophic set is the generalization of classical sets, fuzzy set [11] and so on. The fuzzy set was introduced by Zadeh in 1965[11]. Bipolar fuzzy set, YinYang bipolar fuzzy set, NPN fuzzy set were introduced by W. R. Zhang in [8, 9, 10].

A neutrosophic set N is classified by a Truth membership TN, Indeterminacy membership IN, and Falsity

membership FN, where TN, IN, and FN are real standard and non-standard subsets of] 0−, 1+[. Interval-valued

neutrosophic sets was introduced by Wang etal.,[7]. The concept of interval neutrosophic finite state machine was introduced by Tahir Mahmood [5]. Generalized products of directable fuzzy automata are discussed in [1]. Retrievability, subsystems, and strong subsystems of INA were introduced in the papers [2, 3, 4].

In this paper, we introduce Cartesian product of interval neutrosophic automata and prove that Cartesian product of cyclic interval neutrosophic automata is cyclic.

2 Preliminaries

2.1 Neutrosophic Set [6]

Let 𝑈 be the universal set.. A neutrosophic set (NS) 𝑁 in 𝑈 is classified by a truth membership TN, an

indeterminacy membership IN and a falsity membership FN, where TN, IN, and FN are real standard or

non-standard subsets of] 0−,1+[. That is

𝑁 = {〈 𝑥, 𝑇𝑁(𝑥), 𝐼𝑁(𝑥), 𝐹𝑁(𝑥) 〉, 𝑥 ∈ 𝑈, 𝑇𝑁, 𝐼𝑁, 𝐹𝑁∈ ] 0−, 1+[ } and 0− ≤ 𝑠𝑢𝑝 𝑇𝑁(𝑥) + 𝑠𝑢𝑝 𝐼𝑁(𝑥) + 𝑠𝑢𝑝 𝐹𝑁(𝑥) ≤ 3+. We need to take the interval [0,1] for instead of ] 0−, 1+[. .𝟐. 𝟐 Definition [𝟕]

An interval neutrosophic set (𝐼𝑁𝑆 for short) is 𝑁 = {〈𝛼𝑁(𝑥), 𝛽𝑁(𝑥), 𝛾𝑁(𝑥)〉 |𝑥 ∈ 𝑈}

= {〈𝑥, [𝑖𝑛𝑓 𝛼𝑁(𝑥), 𝑠𝑢𝑝 𝛼𝑁(𝑥)], [𝑖𝑛𝑓 𝛽𝑁(𝑥), 𝑠𝑢𝑝 𝛽𝑁(𝑥)], [𝑖𝑛𝑓 𝛾𝑁(𝑥), 𝑠𝑢𝑝 𝛾𝑁(𝑥)]〉}, 𝑥 ∈ 𝑈, where 𝛼𝑁(𝑥), 𝛽𝑁(𝑥), and 𝛾𝑁(𝑥) representing the truth-membership, indeterminacy-membership and falsity membership for each 𝑥 ∈ 𝑈. 𝛼𝑁(𝑥), 𝛽𝑁(𝑥), 𝛾𝑁(𝑥) ⊆ [0,1] and the condition that 0 ≤ 𝑠𝑢𝑝 𝛼𝑁(𝑥) + 𝑠𝑢𝑝 𝛽𝑁(𝑥) + 𝑠𝑢𝑝 𝛾𝑁(𝑥) ≤ 3.

𝟐. 𝟑 Definition [𝟕]

An 𝐼𝑁𝑆 𝑁 is empty if 𝑖𝑛𝑓 𝛼𝑁(𝑥) = 𝑠𝑢𝑝 𝛼𝑁(𝑥) = 0, 𝑖𝑛𝑓 𝛽𝑁(𝑥) = 𝑠𝑢𝑝 𝛽𝑁(𝑥) 1, 𝑖𝑛𝑓 𝛾𝑁(𝑥) = 𝑠𝑢𝑝 𝛾𝑁(𝑥) = 1 for all 𝑥 ∈ 𝑈.

3 Interval Neutrosophic Automata 3.1 Definition [5]

𝑀 = (𝑄, 𝛴, 𝑁) is called interval neutrosophic automaton (𝐼𝑁𝐴 for short), where 𝑄 and 𝛴 are non-empty finite sets called the set of states and input symbols respectively, and 𝑁 = {〈𝛼𝑁(𝑥), 𝛽𝑁(𝑥), 𝛾𝑁(𝑥)〉} is an 𝐼𝑁𝑆 in 𝑄 ×

(2)

Research Article

3709

𝛴 × 𝑄. The set of all words of finite length of 𝛴 is denoted by Σ∗. The empty word is denoted by 𝜖 and the length of each 𝑥 ∈ Σ∗ is denoted by |𝑥|. 3.2 Definition [5] 𝑀 = (𝑄, 𝛴, 𝑁) be an 𝐼𝑁𝐴. Define an 𝐼𝑁𝑆 𝑁∗ = {〈𝛼 𝑁∗(𝑥), 𝛽𝑁∗(𝑥), 𝛾𝑁∗(𝑥)〉} in 𝑄 × 𝛴∗× 𝑄 by 𝛼𝑁∗(𝑞𝑖, 𝜖, 𝑞𝑗) = { [1, 1] 𝑖𝑓 𝑞𝑖= 𝑞𝑗 [0, 0] 𝑖𝑓 𝑞𝑖 ≠ 𝑞𝑗 𝛽𝑁∗(𝑞𝑖, 𝜖, 𝑞𝑗) = { [0, 0] 𝑖𝑓 𝑞𝑖= 𝑞𝑗 [1, 1] 𝑖𝑓 𝑞𝑖 ≠ 𝑞𝑗 𝛾𝑁∗(𝑞𝑖, 𝜖, 𝑞𝑗) = { [0, 0] 𝑖𝑓 𝑞𝑖= 𝑞𝑗 [1, 1] 𝑖𝑓 𝑞𝑖 ≠ 𝑞𝑗 𝛼𝑁∗(𝑞𝑖, 𝑤, 𝑞𝑗) = 𝛼𝑁∗(𝑞𝑖, 𝑥𝑦, 𝑞𝑗) = ∨𝑞𝑟 ∈𝑄[ 𝛼𝑁∗(𝑞𝑖, 𝑥, 𝑞𝑟) ∧ 𝛼𝑁∗(𝑞𝑟, 𝑦, 𝑞𝑗)] 𝛽𝑁∗(𝑞𝑖, 𝑤, 𝑞𝑗) = 𝛽𝑁∗(𝑞𝑖, 𝑥𝑦, 𝑞𝑗) = ∧𝑞𝑟 ∈𝑄[ 𝛽𝑁∗(𝑞𝑖, 𝑥, 𝑞𝑟) ∨ 𝛽𝑁∗(𝑞𝑟, 𝑦, 𝑞𝑗)] 𝛾𝑁∗(𝑞𝑖, 𝑤, 𝑞𝑗) = 𝛾𝑁∗(𝑞𝑖, 𝑥𝑦, 𝑞𝑗) = ∧𝑞𝑟 ∈𝑄[ 𝛾𝑁∗(𝑞𝑖, 𝑥, 𝑞𝑟) ∨ 𝛾𝑁∗(𝑞𝑟, 𝑦, 𝑞𝑗)] ∀ 𝑞𝑖, 𝑞𝑗∈ 𝑄, 𝑤 = 𝑥𝑦 , 𝑥 ∈ Σ∗ and 𝑦 ∈ Σ.

4 Cartesian Composition of Interval Neutrosophic Automata 4.1 Definition

Let 𝑀𝑖= (𝑄𝑖, Σ𝑖, 𝑁𝑖), 𝑖 = 1, 2 be interval neutrosophic automata and let Σ1∩ Σ2= ∅. Let 𝑀1 × 𝑀2= (𝑄1 × 𝑄2, Σ1 ∪ Σ2, 𝑁1 × 𝑁2), where (α1× α2) ((𝑞𝑖, 𝑞𝑗), 𝑎, (𝑞𝑘, 𝑞𝑙)) = { 𝛼1(𝑞𝑖, 𝑎, 𝑞𝑘) > [0,0] 𝑖𝑓 𝑎 ∈ Σ1 𝑎𝑛𝑑 𝑞𝑗= 𝑞𝑙 𝛼2(𝑞𝑖, 𝑎, 𝑞𝑘) > [0,0] 𝑖𝑓 𝑎 ∈ Σ2 𝑎𝑛𝑑 𝑞𝑖= 𝑞𝑘 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝛽1× 𝛽2) ((𝑞𝑖, 𝑞𝑗), 𝑎, (𝑞𝑘, 𝑞𝑙)) = { 𝛽1(𝑞𝑖, 𝑎, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑎 ∈ Σ1 𝑎𝑛𝑑 𝑞𝑗= 𝑞𝑙 𝛽2(𝑞𝑖, 𝑎, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑎 ∈ Σ2 𝑎𝑛𝑑 𝑞𝑖= 𝑞𝑘 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ( 𝛾1× 𝛾2) ((𝑞𝑖, 𝑞𝑗), 𝑎, (𝑞𝑘, 𝑞𝑙)) = { 𝛾1(𝑞𝑖, 𝑎, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑎 ∈ Σ1 𝑎𝑛𝑑 𝑞𝑗= 𝑞𝑙 𝛾2(𝑞𝑖, 𝑎, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑎 ∈ Σ2 𝑎𝑛𝑑 𝑞𝑖= 𝑞𝑘 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∀(𝑞𝑖, 𝑞𝑗), (𝑞𝑘, 𝑞𝑙) ∈ 𝑄1× 𝑄2, 𝑎 ∈ Σ1 ∪ Σ2. Then 𝑀1 × 𝑀2 is called the Cartesian product of interval neutrosophic automata.

4.2 Definition

Let 𝑀 = (𝑄, 𝛴, 𝑁) be an INA. 𝑀 is cyclic if ∃ 𝑞𝑖 ∈ Q such that Q = S(𝑞𝑖).

4.3 Definition [2]

Let 𝑀 = (𝑄, 𝛴, 𝑁) be INA. M is connected if ∀ 𝑞𝑗, 𝑞𝑖 and ∃ a ∈ Σ such that either αN (𝑞𝑖, 𝑎, 𝑞𝑗) > [0,0], βN (𝑞𝑖, 𝑎, 𝑞𝑗) < [1, 1], 𝛾𝑁(𝑞𝑖, 𝑎, 𝑞𝑗) < [1,1] or

αN (𝑞𝑗, 𝑎, 𝑞𝑖) > [0,0], βN (𝑞𝑗, 𝑎, 𝑞𝑖) < [1, 1], 𝛾𝑁(𝑞𝑗, 𝑎, 𝑞𝑖) < [1,1].

(3)

Research Article

3710

Let 𝑀 = (𝑄, 𝛴, 𝑁) be INA. M is strongly connected if for every 𝑞𝑖, 𝑞𝑗 ∈ 𝑄, there exists u ∈ Σ∗ such that α𝑁∗(𝑞𝑖, 𝑢, 𝑞𝑗) > [0,0], β𝑁∗(𝑞𝑖, 𝑢, 𝑞𝑗) < [1, 1], γ𝑁∗(𝑞𝑖, 𝑢, 𝑞𝑗) < [1, 1].

Theorem 4.1 Let 𝑀𝑖= (𝑄𝑖, Σ𝑖, 𝑁𝑖), 𝑖 = 1, 2 be interval neutrosophic automata and let Σ1∩ Σ2= ∅. Let 𝑀1× 𝑀2= (𝑄1× 𝑄2 , Σ1∪ Σ2, 𝑁1× 𝑁2) be the Cartesian product of 𝑀1 and 𝑀2. Then ∀ 𝑥 ∈ Σ1∗ ∪ Σ2∗, 𝑥 ≠ 𝜖 (α1× α2)∗((𝑞𝑖, 𝑞𝑗), 𝑥, (𝑞𝑘, 𝑞𝑙)) = { 𝛼1(𝑞𝑖, 𝑥, 𝑞𝑘) > [0,0] 𝑖𝑓 𝑥 ∈ Σ1∗ 𝑎𝑛𝑑 𝑞𝑗 = 𝑞𝑙 𝛼2(𝑞𝑖, 𝑥, 𝑞𝑘) > [0,0] 𝑖𝑓 𝑥 ∈ Σ2∗𝑎𝑛𝑑 𝑞𝑖= 𝑞𝑘 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝛽1× 𝛽2)∗((𝑞𝑖, 𝑞𝑗), 𝑥, (𝑞𝑘, 𝑞𝑙)) = { 𝛽1(𝑞𝑖, 𝑥, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑥 ∈ Σ1∗ 𝑎𝑛𝑑 𝑞𝑗= 𝑞𝑙 𝛽2(𝑞𝑖, 𝑥, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑥 ∈ Σ2∗ 𝑎𝑛𝑑 𝑞𝑖= 𝑞𝑘 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝛾1× 𝛾2)∗((𝑞𝑖, 𝑞𝑗), 𝑥, (𝑞𝑘, 𝑞𝑙)) = { 𝛾1(𝑞𝑖, 𝑥, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑥 ∈ Σ1∗𝑎𝑛𝑑 𝑞𝑗= 𝑞𝑙 𝛾2(𝑞𝑖, 𝑥, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑥 ∈ Σ1∗𝑎𝑛𝑑 𝑞𝑖= 𝑞𝑘 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∀(𝑞𝑖, 𝑞𝑗), (𝑞𝑘, 𝑞𝑙) ∈ 𝑄1× 𝑄2.

Proof . Let 𝑥 ∈ Σ1∗ ∪ Σ2∗, 𝑥 ≠ 𝜖 and let |𝑥| = 𝑚. Let 𝑥 ∈ Σ1∗. The result is trivial if 𝑚 = 1. Let the result is true ∀ 𝑦 ∈ Σ1∗, |𝑦| = 𝑚 − 1, 𝑚 > 1. Let 𝑥 = 𝑎𝑦 where 𝑎 ∈ Σ1, 𝑦 ∈ Σ1∗. Now,

(α𝑁1× α𝑁2)∗((𝑞𝑖, 𝑞𝑗), 𝑥, (𝑞𝑘, 𝑞𝑙)) = (α𝑁1× α𝑁2)∗((𝑞𝑖, 𝑞𝑗), 𝑎𝑦, (𝑞𝑘, 𝑞𝑙)) = ∨(𝑞𝑟, 𝑞𝑠) ∈ 𝑄1× 𝑄2{(α𝑁1× α𝑁2) ((𝑞𝑖, 𝑞𝑗), 𝑎, (𝑞𝑟, 𝑞𝑠)) ∧ (α1× α2) ∗((𝑞 𝑟, 𝑞𝑠), 𝑦, (𝑞𝑘, 𝑞𝑙))} = ∨𝑞𝑟 ∈ 𝑄1{α𝑁1(𝑞𝑖, 𝑎, 𝑞𝑟) ∧ (α𝑁1× α𝑁2) ∗((𝑞 𝑟, 𝑞𝑠), 𝑦, (𝑞𝑘, 𝑞𝑙))} = {∨𝑞𝑟 ∈ 𝑄1{α𝑁1(𝑞𝑖, 𝑎, 𝑞𝑟) ∧ α𝑁1∗(𝑞𝑟, 𝑦, 𝑞𝑘)} > [0,0] 𝑖𝑓 𝑞𝑗= 𝑞𝑙 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 = {α𝑁1 ∗(𝑞 𝑖, 𝑎𝑦, 𝑞𝑘) > [0,0] 𝑖𝑓 𝑞𝑗= 𝑞𝑙 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (β𝑁1× β𝑁2) ∗((𝑞 𝑖, 𝑞𝑗), 𝑥, (𝑞𝑘, 𝑞𝑙)) = (β𝑁1× β𝑁2) ∗((𝑞 𝑖, 𝑞𝑗), 𝑎𝑦, (𝑞𝑘, 𝑞𝑙)) = ∧(𝑞𝑟, 𝑞𝑠) ∈ 𝑄1× 𝑄2{(β𝑁1× β𝑁2) ((𝑞𝑖, 𝑞𝑗), 𝑎, (𝑞𝑟, 𝑞𝑠)) ∨ (β𝑁1× β𝑁2) ∗((𝑞 𝑟, 𝑞𝑠), 𝑦, (𝑞𝑘, 𝑞𝑙))} = ∧𝑞𝑟 ∈ 𝑄1{β𝑁1(𝑞𝑖, 𝑎, 𝑞𝑟) ∨ (β𝑁1× β𝑁2)∗((𝑞𝑟, 𝑞𝑠), 𝑦, (𝑞𝑘, 𝑞𝑙))} = {∧𝑞𝑟 ∈ 𝑄1{β𝑁1(𝑞𝑖, 𝑎, 𝑞𝑟) ∨ β𝑁1∗(𝑞𝑟, 𝑦, 𝑞𝑘)} < [1,1] 𝑖𝑓 𝑞𝑗= 𝑞𝑙 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 = {β𝑁1 ∗(𝑞 𝑖, 𝑎𝑦, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑞𝑗= 𝑞𝑙 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (γ𝑁1× γ𝑁2) ∗((𝑞 𝑖, 𝑞𝑗), 𝑥, (𝑞𝑘, 𝑞𝑙)) = (γ𝑁1× γ𝑁2) ∗((𝑞 𝑖, 𝑞𝑗), 𝑎𝑦, (𝑞𝑘, 𝑞𝑙)) = ∧(𝑞𝑟, 𝑞𝑠) ∈ 𝑄1× 𝑄2{(γ𝑁1× γ𝑁2) ((𝑞𝑖, 𝑞𝑗), 𝑎, (𝑞𝑟, 𝑞𝑠)) ∨ (γ𝑁1× γ𝑁2)∗((𝑞𝑟, 𝑞𝑠), 𝑦, (𝑞𝑘, 𝑞𝑙))} = ∧𝑞𝑟 ∈ 𝑄1{γ𝑁1(𝑞𝑖, 𝑎, 𝑞𝑟) ∨ (γ𝑁1× γ𝑁2) ∗((𝑞 𝑟, 𝑞𝑠), 𝑦, (𝑞𝑘, 𝑞𝑙))} = {∧𝑞𝑟 ∈ 𝑄1{γ𝑁1(𝑞𝑖, 𝑎, 𝑞𝑟) ∨ γ𝑁1 ∗(𝑞 𝑟, 𝑦, 𝑞𝑘)} < [1,1] 𝑖𝑓 𝑞𝑗= 𝑞𝑙 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 = {γ𝑁1 ∗(𝑞 𝑖, 𝑎𝑦, 𝑞𝑘) < [1,1] 𝑖𝑓 𝑞𝑗= 𝑞𝑙 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The result is follows by induction. The Proof is similar if 𝑦 ∈ Σ2∗.

Theorem 4.2 Let 𝑀𝑖= (𝑄𝑖, Σ𝑖, 𝑁𝑖), 𝑖 = 1, 2 be INA and let Σ1∩ Σ2= ∅. Then ∀ 𝑥 ∈ Σ1∗, 𝑦 ∈ Σ2∗, (α𝑁1× α𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = α𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) ∧ α𝑁2 ∗(𝑝 𝑗, 𝑦, 𝑞𝑗) = (α𝑁1× α𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑦𝑥, (𝑞𝑖, 𝑞𝑗)) (β𝑁1× β𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = β𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) ∨ β𝑁2 ∗(𝑝 𝑗, 𝑦, 𝑞𝑗) = (β𝑁1× β𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑦𝑥, (𝑞𝑖, 𝑞𝑗)) (γ𝑁1× 𝛾𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = γ𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) ∨ γ𝑁2 ∗(𝑝 𝑗, 𝑦, 𝑞𝑗) = (γ𝑁1× γ𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑦𝑥, (𝑞𝑖, 𝑞𝑗)), (𝑝𝑖, 𝑝𝑗), (𝑞𝑖, 𝑞𝑗) ∈ 𝑄1× 𝑄2. Proof .

(4)

Research Article

3711

Let ∈ Σ1∗, 𝑦 ∈ Σ2∗, (𝑝𝑖, 𝑝𝑗), (𝑞𝑖, 𝑞𝑗) ∈ 𝑄1× 𝑄2. If 𝑥 = 𝜖 = 𝑦, then 𝑥𝑦 = 𝜖. Suppose (𝑝𝑖, 𝑝𝑗) = (𝑞𝑖, 𝑞𝑗). Then 𝑝𝑖= 𝑞𝑖 and 𝑝𝑗= 𝑞𝑗. Hence

(α𝑁1× α𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = [1,1] = [1,1] ∧ [1,1] = α𝑁1∗(𝑝𝑖, 𝑥, 𝑞𝑖) ∧ α𝑁2∗(𝑝𝑗, 𝑦, 𝑞𝑗) (β𝑁1× β𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = [0, 0] = [0, 0] ∨ [0, 0] = β𝑁1∗(𝑝𝑖, 𝑥, 𝑞𝑖) ∨ β𝑁1∗(𝑝𝑖, 𝑥, 𝑞𝑖) (γ𝑁1× 𝛾𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = [0,0] = [0,0] ∨ [0,0] = γ𝑁1∗(𝑝𝑖, 𝑥, 𝑞𝑖) ∨ γ𝑁2∗(𝑝𝑗, 𝑦, 𝑞𝑗) If (𝑝𝑖, 𝑝𝑗) ≠ (𝑞𝑖, 𝑞𝑗), then either 𝑝𝑖 ≠ 𝑞𝑖 or 𝑝𝑗≠ 𝑞𝑗. Thus, α𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) ∧ α𝑁2 ∗(𝑝 𝑗, 𝑦, 𝑞𝑗) = [0,0], β𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) ∨ β𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) = [1,1], γ𝑁1∗(𝑝𝑖, 𝑥, 𝑞𝑖) ∨ γ𝑁2∗(𝑝𝑗, 𝑦, 𝑞𝑗) = [1,1]. Hence (α𝑁1× α𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = [0,0] = α𝑁1∗(𝑝𝑖, 𝑥, 𝑞𝑖) ∧ α𝑁2∗(𝑝𝑗, 𝑦, 𝑞𝑗) (β𝑁1× β𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = [1,1] = β𝑁1∗(𝑝𝑖, 𝑥, 𝑞𝑖) ∨ β𝑁1∗(𝑝𝑖, 𝑥, 𝑞𝑖) (γ𝑁1× 𝛾𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = [1,1] = γ𝑁1∗(𝑝𝑖, 𝑥, 𝑞𝑖) ∨ γ𝑁2∗(𝑝𝑗, 𝑦, 𝑞𝑗)

If x = 𝜖 and y ≠ 𝜖 or x ≠ 𝜖 and y = 𝜖, then the result follows by Theorem 4.1. Suppose x ≠ 𝜖 and y ≠ 𝜖. Now, (α𝑁1× α𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = ∨(𝑟𝑖, 𝑟𝑗) ∈ 𝑄1× 𝑄2{(α𝑁1× α𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑥, (𝑟𝑖, 𝑟𝑗)) ∧ (α𝑁1× α𝑁2) ∗((𝑟 𝑖, 𝑟𝑗), 𝑦, (𝑞𝑖, 𝑞𝑗))} = ∨𝑟𝑖 ∈ 𝑄1{(α𝑁1× α𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑥, (𝑟𝑖, 𝑝𝑗)) ∧ (α𝑁1× α𝑁2) ∗((𝑟 𝑖, 𝑝𝑗), 𝑦, (𝑞𝑖, 𝑞𝑗))} = α𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) ∧ α𝑁2 ∗(𝑝 𝑗, 𝑦, 𝑞𝑗) (β𝑁1× β𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = ∧(𝑟𝑖, 𝑟𝑗) ∈ 𝑄1× 𝑄2{(β𝑁1× β𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑥, (𝑟𝑖, 𝑟𝑗)) ∨ (β𝑁1× β𝑁2) ∗((𝑟 𝑖, 𝑟𝑗), 𝑦, (𝑞𝑖, 𝑞𝑗))} = ∧𝑟𝑖 ∈ 𝑄1{(β𝑁1× β𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑥, (𝑟𝑖, 𝑝𝑗)) ∨ (β𝑁1× 𝛽𝑁2) ∗((𝑟 𝑖, 𝑝𝑗), 𝑦, (𝑞𝑖, 𝑞𝑗))} = 𝛽𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) ∨ 𝛽𝑁2 ∗ (𝑝𝑗, 𝑦, 𝑞𝑗) (γ𝑁1× 𝛾𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑖, 𝑞𝑗)) = ∧(𝑟𝑖, 𝑟𝑗) ∈ 𝑄1× 𝑄2{(γ𝑁1× γ𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑥, (𝑟𝑖, 𝑟𝑗)) ∨ (γ𝑁1× γ𝑁2)∗((𝑟𝑖, 𝑟𝑗), 𝑦, (𝑞𝑖, 𝑞𝑗))} = ∧𝑟𝑖 ∈ 𝑄1{(γ𝑁1× γ𝑁2)∗((𝑝𝑖, 𝑝𝑗), 𝑥, (𝑟𝑖, 𝑝𝑗)) ∨ (γ𝑁1× γ𝑁2)∗((𝑟𝑖, 𝑝𝑗), 𝑦, (𝑞𝑖, 𝑞𝑗))} = γ𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) ∨ γ𝑁2 ∗(𝑝 𝑗, 𝑦, 𝑞𝑗) Similarly (α𝑁1× α𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑦𝑥, (𝑞𝑖, 𝑞𝑗)) = α𝑁2 ∗(𝑝 𝑗, 𝑦, 𝑞𝑗) ∧ α𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) (β𝑁1× β𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑦𝑥, (𝑞𝑖, 𝑞𝑗)) = 𝛽𝑁2 ∗(𝑝 𝑗, 𝑦, 𝑞𝑗) ∨ 𝛽𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖) (γ𝑁1× 𝛾𝑁2) ∗((𝑝 𝑖, 𝑝𝑗), 𝑦𝑥, (𝑞𝑖, 𝑞𝑗)) = γ𝑁2 ∗(𝑝 𝑗, 𝑦, 𝑞𝑗) ∨ γ𝑁1 ∗(𝑝 𝑖, 𝑥, 𝑞𝑖).

Theorem 4.3 Let 𝑀𝑖= (𝑄𝑖, Σ𝑖, 𝑁𝑖), 𝑖 = 1, 2 be INA and let Σ1∩ Σ2= ∅. Cartesian product of 𝑀1 × 𝑀2 is cyclic iff 𝑀1 and 𝑀2 are cyclic.

Proof. Let 𝑀1 and 𝑀2 are cyclic. Then 𝑄1= 𝑆(𝑞𝑖) and 𝑄2= 𝑆(𝑝𝑗) for some 𝑞𝑖 ∈ 𝑄1, 𝑝𝑗 ∈ 𝑄2. Let (𝑞𝑘, 𝑝𝑙) ∈ 𝑄1 × 𝑄2. Then ∃ 𝑥 ∈ Σ1∗ and 𝑦 ∈ Σ2∗ such that

α𝑁1∗(𝑞𝑖, 𝑥, 𝑞𝑘) > [0,0], β𝑁1∗(𝑞𝑖, 𝑥, 𝑞𝑘) < [1,1], γ𝑁1∗(𝑞𝑖, 𝑥, 𝑞𝑘) < [1, 1] and α𝑁2∗(𝑝𝑗, 𝑦, 𝑝𝑙) > [0,0], β𝑁2∗(𝑝𝑗, 𝑦, 𝑝𝑙) < [1,1], γ𝑁2∗(𝑝𝑗, 𝑦, 𝑝𝑙) < [1, 1]. Thus

(α𝑁1× α𝑁2)∗((𝑞𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑘, 𝑝𝑙)) = α𝑁1∗(𝑞𝑖, 𝑥, 𝑞𝑘) ∧ α𝑁2∗(𝑝𝑗, 𝑦, 𝑝𝑙) > [0,0] (β𝑁1× β𝑁2)∗((𝑞𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑘, 𝑝𝑙)) = β𝑁1∗(𝑞𝑖, 𝑥, 𝑞𝑘) ∨ β𝑁2∗(𝑝𝑗, 𝑦, 𝑝𝑙) < [1,1] (γ𝑁1× 𝛾𝑁2)∗ ((𝑞𝑖, 𝑝𝑗), 𝑥𝑦, (𝑞𝑘, 𝑝𝑙)) = γ𝑁1∗(𝑞𝑖, 𝑥, 𝑞𝑘) ∨ γ𝑁2∗(𝑝𝑗, 𝑦, 𝑝𝑙) < [1, 1]. Hence (𝑞𝑘, 𝑝𝑙) ∈ 𝑆 ((𝑞𝑖, 𝑝𝑗)). 𝑄1 × 𝑄2= 𝑆 ((𝑞𝑖, 𝑝𝑗)). Hence 𝑀1 × 𝑀2 is cyclic.

Conversely, let 𝑀1 × 𝑀2 is cyclic. Then 𝑄1 × 𝑄2= 𝑆 ((𝑞𝑖, 𝑝𝑗)) for some (𝑞𝑖, 𝑝𝑗) ∈ 𝑄1 × 𝑄2. Let 𝑞𝑘 ∈ 𝑄1 and 𝑝𝑙 ∈ 𝑄2. Then ∃ 𝑤 ∈ (Σ1∪ Σ2)∗ such that

(α𝑁1× α𝑁2) ∗((𝑞 𝑖, 𝑝𝑗), 𝑤, (𝑞𝑘, 𝑝𝑙)) > [0,0], (β𝑁1× β𝑁2) ∗((𝑞 𝑖, 𝑝𝑗), 𝑤, (𝑞𝑘, 𝑝𝑙)) < [1,1] and (γ𝑁1× 𝛾𝑁2) ∗ ((𝑞

(5)

Research Article

3712

α𝑁1∗(𝑞𝑖, 𝑢, 𝑞𝑘) ∧ α𝑁2∗(𝑝𝑗, 𝑣, 𝑝𝑙) = (α𝑁1× α𝑁2)∗((𝑞𝑖, 𝑝𝑗), 𝑤, (𝑞𝑘, 𝑝𝑙)) > [0,0] β𝑁1 ∗(𝑞 𝑖, 𝑢, 𝑞𝑘) ∨ β𝑁2 ∗ (𝑝𝑗, 𝑣, 𝑝𝑙) = (β𝑁1× β𝑁2) ∗((𝑞 𝑖, 𝑝𝑗), 𝑤, (𝑞𝑘, 𝑝𝑙)) < [1,1] γ𝑁1 ∗(𝑞 𝑖, 𝑢, 𝑞𝑘) ∨ γ𝑁2 ∗(𝑝 𝑗, 𝑣, 𝑝𝑙) = (γ𝑁1× 𝛾𝑁2) ∗ ((𝑞 𝑖, 𝑝𝑗), 𝑤, (𝑞𝑘, 𝑝𝑙)) < [1, 1].

Hence ∃ 𝑢 ∈ Σ1∗ and 𝑣 ∈ Σ2∗ such that α𝑁1∗(𝑞𝑖, 𝑢, 𝑞𝑘) > [0,0], β𝑁1∗(𝑞𝑖, 𝑢, 𝑞𝑘) < [1,1], γ𝑁1∗(𝑞𝑖, 𝑢, 𝑞𝑘) < [1,1] and α𝑁2 ∗(𝑝 𝑗, 𝑣, 𝑝𝑙) > [0,0], β𝑁2 ∗ (𝑝𝑗, 𝑣, 𝑝𝑙) < [1,1], γ𝑁2 ∗(𝑝 𝑗, 𝑣, 𝑝𝑙) < [1,1]. Thus 𝑞𝑘 ∈ 𝑆(𝑞𝑖) and 𝑝𝑙 ∈ 𝑆(𝑝𝑗). Hence 𝑄1∈ 𝑆(𝑞𝑖) and 𝑄2 ∈ 𝑆(𝑝𝑗). Therefore 𝑀1 × 𝑀2 is cyclic.

5 Conclusion

The purpose of this paper is to study the Cartesian product of INA. We prove that Cartesian product of cyclic of interval neutrosophic automata is cyclic.

References

[1] V. Karthikeyan, N. Mohanarao, and S. Sivamani, Generalized products of directable fuzzy Automata, Material Today: Proceedings, 37(2), 2021, 35313533.

[2] V. Karthikeyan, and R. Karuppaiya, Retrievebility in Interval Neutrosophic Automata, Advance in Mathematics: Scientific Journal, 9(4), 2020, 1637-1644.

[3] V. Karthikeyan, and R. Karuppaiya, Subsystems of Interval Neutrosophic Automata, Advance in Mathematics: Scientific Journal, 9(4), 2020, 1653-1659.

[4] V. Karthikeyan, and R. Karuppaiya, Strong subsystems of Interval Neutrosophic Automata, Advance in Mathematics: Scientific Journal, 9(4), 2020, 1645-1651.

[5] T. Mahmood, and Q. Khan, Interval neutrosophic finite switchboard state machine, Afr. Mat. 20(2), 2016, 191-210.

[6] F. Smarandache, A Unifying Field in Logics, Neutrosophy: Neutrosophic Probability, set and Logic, Rehoboth: American Research Press, 1999.

[7] H. Wang, F. Smarandache, Y.Q. Zhang, and R. Sunderraman, Interval Neutrosophic Sets and Logic, Theory and Applications in Computing, 5, 2005, Hexis, Phoenix, AZ.

[8] W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis, Proc. 1st Int. Joint Conf. North American Fuzzy Information Processing Society Biannual Conf., San Antonio, TX, USA, 1994, 305–309.

[9] W. R. Zhang, YinYang bipolar fuzzy sets, Proc. IEEE World Congr. Computational Intelligence, Anchorage, Alaska, 1998, 835–840.

[10] W. R. Zhang, NPN Fuzzy Sets and NPN Qualitative-Algebra: A Computational Framework for Bipolar Cognitive Modeling and Multiagent Decision Analysis, IEEE Trans. on Sys., Man, and Cybern. 26(8), 1996, 561-575.

Referanslar

Benzer Belgeler

Türkiye Hazır Beton Birliği (THBB) hazır beton sektöründe doğa ve kentsel çevreye uyum için yapılan çevre uygulama- ları hakkında bilgi vermek ve bu konularda

Brucella serology was positive and the patient responded to treatment with doxycycline and rifampicin.. We conclude that in a patient from an endemic area, Brucella infection

Hastanemizin Pediatri kliniklerine Ocak 2004 ile Ocak 2005 tarihleri aras›nda zehirlenme tan›s›yla yat›r›lan 60 hasta, yafl, cinsiyet, zehirlenme nedeni, toksik maddeyi alma

Postoperatif a¤r› tedavisinde epidural yoldan uygulanan hasta kontrollü analjezi ile sürekli epidural infüzyon uygulamas›, lokal anestezik ve opioid kar›fl›mlar›n›n

Araştırma bu bağlamda, özellikle Türkmen boylarının ve Yörük geleneğinin yaşadığı Toroslar boyunca Alevi ve Bektaşi toplulukları için önemli bir inanç lideri

Şeyh el-Hâc Zülfikâr Efendi rahmetu’llâhi aleyhi ve ba’de zâlike en tevârese Şeyh Yusuf Efendi zehir-nûş rahmetu’llahu alleyhi rahmeten vâsi’aten nevvere’llâhu

Halde ve gelecekte alınması lâ zım gelen tedbirler ileri sürü­ lür, bir an gelir, edebiyatçı Pe- yami’nin öne geçtiğini görürsü nüz: o anda memleketin

The spirit has a big role in writing symbolist plays. It is individuality itself and old fairy tales and myths contribute to removing materialism from the self. The