• Sonuç bulunamadı

NOx storage and reduction pathways on zirconia and titania functionalized binary and ternary oxides as NOx storage and reduction (NSR) systems

N/A
N/A
Protected

Academic year: 2021

Share "NOx storage and reduction pathways on zirconia and titania functionalized binary and ternary oxides as NOx storage and reduction (NSR) systems"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Catalysis

Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

NO

x

storage

and

reduction

pathways

on

zirconia

and

titania

functionalized

binary

and

ternary

oxides

as

NO

x

storage

and

reduction

(NSR)

systems

Zafer

Say,

Merve

Tohumeken,

Emrah

Ozensoy

DepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22October2013

Receivedinrevisedform

17December2013

Accepted19December2013

Availableonline28January2014

Keywords: Zirconia Titania Pt NOx LNT NSR

a

b

s

t

r

a

c

t

Binaryand ternaryoxidematerials, ZrO2/TiO2 (ZT)andAl2O3/ZrO2/TiO2 (AZT),aswellastheir

Pt-functionalizedcounterpartsweresynthesizedandcharacterizedviaXRD,Ramanspectroscopy,BET, insituFTIRandTPDtechniques.IntheZTsystem,astronginteractionbetweenTiO2andZrO2domains

athightemperatures(>973K)resultedintheformationofalowspecificsurfacearea(i.e.26m2/gat

973K)ZTmaterialcontainingahighlyorderedcrystallineZrTiO4phase.IncorporationofAl2O3inthe

AZTstructurerendersthematerialhighlyresilienttowardcrystallizationandordering.Aluminaactsas adiffusionbarrierintheAZTstructure,preventingtheformationofZrTiO4andleadingtoahighspecific

surfacearea(i.e.264m2/gat973K).NO

xadsorptionontheAZTsystemwasfoundtobesignificantly

greaterthanthatofZT,duetoalmostten-foldgreaterSSAoftheformersurface.WhilePtincorporation didnotalterthetypeoftheadsorbednitratespecies,itsignificantlyboostedtheNOxadsorptiononboth

Pt/ZTandPt/AZTsystems.ThermalstabilityofnitrateswashigherontheAZTcomparedtoZT,mostlikely duetothedefectivestructureandthepresenceofcoordinativelyunsaturatedsitesontheformer sur-face.Ptsitesalsofacilitatethedecompositionofnitratesintheabsenceofanexternalreducingagentby shiftingthedecompositiontemperaturestolowervalues.PresenceofPtalsoenhancespartial/complete NOxreductionintheabsenceofanexternalreducingagentandtheformationofN2andN2O.Inthe

presenceofH2(g),reductionofsurfacenitrateswascompletedat623KonZT,whilethiswasachieved

at723KforAZT.NitratereductionoverPt/ZTandPt/AZTviaH2(g)undermildconditionsinitiallyleads

toconversionofbridgingnitratesintomonodentatenitrates/nitritesandtheformationofsurface OH and NHxfunctionalities.N2O(g)wasalsocontinuouslygeneratedduringthereductionprocessasan

intermediate/byproduct.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Automobileindustryhasbeenforcedbynew,morestringent regulationstoinventnoveltechnologiesfortheeliminationofthe environmentalimpactofexhaustemissions.Sincethree-way cat-alystsare not efficient under lean conditions, NOx storage and

reduction(NSR)catalystshavebeendevelopedbyToyotaMotor Companyasapromisingafter-treatmentprocess[1,2].The oper-ationalprincipleofNSRcatalystsreliesonthefactthatNO(g)is initiallyoxidizedtoNO2(g)onthepreciousmetalsiteunderlean

conditionsfollowedbystorageintheformofnitritesandnitrates onaNOxstoragedomainsuchasBaOorK2O[3–8].Finally,stored

NOxspeciesarereducedtoN2(g)intherichoperationalcycle[3].

ForadetaileddiscussiontheNOxstorageandreductiontechnology,

∗ Correspondingauthor.Tel.:+903122902121.

E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

readerisreferredtotwocomprehensivereviewsbyRoyetal.[3] andEplingetal.[4].

However,NSR materialshavetwo majordrawbacksnamely, sulfurpoisoning[9,10]andthermalaging[5,11,12].Senturketal. investigatedtheeffectofTiO2promotionontheBaO/Al2O3binary

oxideanddemonstratedthatthesulfuruptakeandrelease proper-tiesoftheTiO2-promotedBaO/Al2O3materialsweresignificantly

enhanced[13].Matsumotoetal.[14]alsoreportedthatTiO2could

beusedasapromoteragainstsulfurpoisoningduetoitshigh acid-ity.However,ithasbeenalsoreportedthattitaniacanreadilylose itsfunctionalityduetothermaldeteriorationathightemperatures andvarioussolid-phasereactionsbetweenNOxstoragedomains,

promotersandthesupportmaterial[11,12,15].Therefore,ZrO2is

typicallyusedtogetherwithTiO2inanattempttostabilizethe

tita-niacomponent[16,17].Anothercriticalfactorthatfavorstheusage ofZrO2/TiO2asamixedmetaloxidecomponentisitshighersurface

acidityascomparedtoeitherZrO2orTiO2,alone[18,19].

ZrO2/TiO2 and Al2O3/ZrO2/TiO2 mixed oxides have recently

beenthoroughlystudiedwithaparticularemphasisonthesulfur

0920-5861/$–seefrontmatter©2014ElsevierB.V.Allrightsreserved.

(2)

tolerance,materialpreparation,NOxstoragecapacityandthermal

stabilityaspects.Takahashietal.[20]investigatedtheinfluenceof therelativeabundanceofTiO2andZrO2componentsandfoundthat

theNSRsystemthatwascomprisedof70wt%ZrO2and30wt%TiO2

exhibitedthebestsulfurtolerance.Imagawaetal.[21,22]reported adetailedcharacterizationstudyrelatedtotheAl2O3/ZrO2/TiO2

ternaryoxidesystememphasizingtheimpactofAl2O3

incorpora-tionintotheZrO2/TiO2 mixedoxidewhereitwasindicatedthat

nano-compositeAl2O3/ZrO2/TiO2hadahigherNOxstorage

capac-ityandahigherthermalresistanceascomparedtothephysically mixedAl2O3andZrO2/TiO2.

Thus,inthecurrentstudy,weaimedtoprovideamechanistic viewintotheNOxstorageandreductionpathwaysofbinaryand

ternarymixedoxidesbymonitoringthenitratereductionviaH2at

themolecularlevelbymeansofinsituFTIRandTPD.

2. Experimental

2.1. Materialpreparation

ZrO2/TiO2 binary and Al2O3/ZrO2/TiO2 ternary oxides were

synthesizedusingtheconventionalsol–gelmethod.Forthe syn-thesisofthebinaryoxides,zirconiumpropoxide(SigmaAldrich, ACSReagent,70wt%in1-propanol)andtitanium(IV)isopropoxide (SigmaAldrich,ACSReagent,97%)precursorswereinitially dis-solvedin100mlof2-propanol(SigmaAldrich,ACSReagent>99.5%) andstirred for40minunder ambientconditions.Thisstepwas followedby thedrop-wiseadditionof3mLof0.5Mnitricacid solution(SigmaAldrich,ACSReagent,65%)in ordertoobtaina gel.Similarly,thesynthesisoftheternaryoxidewascarriedout bymixingzirconiumisopropoxide,titaniumisopropoxideand alu-minumsec-butoxide(SigmaAldrich,ACSReagent,97%)followed by the addition of 100mL of 2-propanol. Next, theslurry was stirredfor 60min underambient conditions and gel formation wasachievedbydrop-wiseadditionof9mLof0.5Mnitricacid solution.Inthebinaryoxide,thecompositionratioofZrO2:TiO2

was70:30bymass.Thisspecificratiohasbeenreportedasthe optimumcandidateforthehighestNOxremovalabilityandthe

highesttoleranceagainstsulfur-poisoning[20].Finally,the mate-rialswere driedunderambientconditions for48hfollowed by calcinationinairwithin323–1173K.Relativecompositionofthe ternaryoxidesystem(i.e.Al2O3/ZrO2/TiO2)bymasswas50:35:15 [20].1wt%platinum-incorporatedbinaryandternaryoxide mate-rialsweresynthesizedbyincipientwetnessimpregnationmethod usingasolutionofPt(NH3)2(NO2)2 (Aldrich,

diamminedinitrito-platinum(II),3.4wt% solutionin diluteNH3(aq)). PriortothePt

addition,ZrO2/TiO2andAl2O3/ZrO2/TiO2wereinitiallycalcinedin

airat773Kfor150mininordertoremovetheorganic function-alitiesintheprecursors.Finally,eachmaterialwassubsequently calcinedinairat973Kfornitrite/nitratecontenteliminationand structuralstabilization.Inthecurrenttext,synthesizedZrO2/TiO2,

Al2O3/ZrO2/TiO2,Pt/ZrO2/TiO2,Pt/Al2O3/ZrO2/TiO2sampleswillbe

abbreviatedasZT,AZT,Pt/ZTandPt/AZT,respectively. 2.2. Instrumentation

Detaileddescriptionoftheinstrumentationused inthe cur-rentlypresented experimentsinvolvingX-raydiffraction(XRD), Ramanspectroscopy,BETsurfaceareaanalysis,temperature pro-grammeddesorption(TPD)andinsituFTIRcanbefoundelsewhere [8].Briefly, in situ FTIRspectroscopic measurementswere per-formed in transmission mode using a Bruker Tensor 27 FTIR spectrometerwhichwasmodifiedtohouseabatch-type spectro-scopicreactorcoupledtoaquadrupolemassspectrometer(QMS, StanfordResearchSystems,RGA200)forTPDmeasurements.

EachsynthesizedmaterialwasexposedtoNO2(g)whichwas

preparedbymixingNO(g)(AirProducts,99.9%)andexcessO2(g)

(LindeGmbH,Germany,99.999%).Freeze–thaw-pumpcycleswere appliedfortheremoval ofcontaminations andunreactedgases intheNO2(g).The materialsurfaceswereinitiallyflushed with

1.0TorrofNO2(g)for5minandsubsequentlyannealedto973K

witha12K/minheating rateundervacuum.Then, fortheFTIR analysis,material surfaces wereexposed to NO2(g) at 323K in

a stepwise fashion from low to higher pressures where each exposure takes 1min. Finally, surface saturation was achieved by the introduction of 5.0Torr NO2(g) over the samples for

10minat323Kfollowedbyevacuationtoapressurelowerthan 10−2Torr.

Nitratereductionexperiments forthePt-freematerialswere carriedoutbyexposingtheNO2(g)-saturatedmaterialsurfaceto

15.0TorrofH2(g)(LindeGmbH,Germany,>99.9%)at323K,

fol-lowedbygradualheatingataconstantrateof12K/minuntilthe desiredtemperature.ForthePt-containingmaterials,15.0Torrof H2(g)wasintroducedovertheNO2-saturatedmaterialat323Kand

thetime-dependentFTIRspectrawereacquiredfor2h.After2hof reductionat323K,samplewasheatedupto473Kinthepresence ofH2(g)forthecompletereductionandremovalofadsorbedNOx.

AlloftheFTIRspectragiveninthisstudywereobtainedat323K. InTPDexperiments,eachsamplewassaturatedbyNO2(g)as

describedabove.Subsequently,saturatedmaterialswereheated upto973Kwithalinearheatingrateof12K/mininvacuum.FTIR spectraofthecorrespondingsurfaceswerealsorecordedbefore andaftertheTPDexperiments.

3. Resultsanddiscussion

3.1. Structuralcharacterizationofthesynthesizedmaterials Fig.1illustratesexsituXRDanalysisfortheZTandAZT materi-alsrecordedaftercalcinationatvarioustemperaturesintherange of323–1173K.AsshowninFig.1a,theamorphousstructureof ZTbinaryoxidepersistsupto773Kfollowed bytheformation of crystalline phases above 773K, namely tetragonal ZrO2 and

ZrTiO4. The structural evolution of AZT is also shown by XRD

inFig.1bwhere theternary oxidesystembehavesquite differ-entlycomparedtothebinaryoxide.AZTpreserveditsamorphous natureupto973K withoutrevealing anywell-resolved diffrac-tionsignals.Alongtheselines,AZTshowedonlypoorlydiscernible diffractionsignalsat2=30.48◦,50.50◦,60.91◦correspondingto tetragonalZrO2(JCPDS80-2155)at1173K.Apparently,the

addi-tion of an alumina component to the ZT system elevates the ordering/crystallizationtemperaturesandsuppressesthe forma-tionofZrTiO4 (JCPDS 34-415).It isworthmentioningthatXRD

analysiswasalsoperformedforthePt/ZTand Pt/AZT materials (SupportingInformationFig.1),whereitwasobservedthatPt addi-tiondidnotleadtoamajorcrystallographicchangeovertheZTand AZTsystemsbesidesthepresenceofdiffractionsignalsassociated withmetallicPtparticles.

Thetemperature-dependentRamanspectraofZTandAZTare illustrated in Fig.2. ZrTiO4,one of the main crystallinephases

detectedforZTsamplesinXRD,hasanorthorhombicsymmetry withaPbcnspacegroupandammmpointgroup.Thisphasehas33 opticallyactivemodes,18ofwhichareRamanactive[23,24]. How-ever,intheRamandatacorrespondingtotheZTsamplepresented inFig.2a,onlysixofthesevibrationalfeaturesat135,259,320,391, 565and778cm−1arediscernible.Thiscanbeassociatedwiththe bandbroadeningandsignaloverlapduetotherandomdistribution ofZr4+andTi4+ionsinthecrystallattice[23,24].Ramanshiftsat

467and622cm−1inFig.2acorrespondingtotheZTsampleare mostlikelyassociatedwiththetetragonalZrO2phase,whilethe

(3)

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 623K 773K 973K 1173K 2 theta 2 theta Intensity (arb. u.)

ZrO2/TiO2 (b) Al2O3/ZrO2/TiO2

) a ( 250 0 250 0 323K 623K 773K 973K 1173K 323K ZrTiO4 t-ZrO2 ZrTiO4 t-ZrO2

Fig.1. XRDpatternscorrespondingto(a)ZrO2/TiO2and(b)Al2O3/ZrO2/TiO2materialsuponcalcinationattemperatureswithinof323–1173K.

featureat391cm−1canbeattributedtothepresencezirconium titanatephase[25,26].

AscomparedtotheZTbinaryoxide,Ramanspectra correspond-ingtotheAZTternaryoxidesample(Fig.2b)revealedmuchweaker signalsduetothepoorcrystallinityandthelackofatomicorderin thelattersample.InFig.2b,threeweakRamanfeatureslocatedat 320,465and625cm−1arevisiblewhichcanbeattributedtothe tetragonalzirconiaphase.Thisrevealsthatbesidesthetetragonal ZrO2phase,XRDandRamandatadonotprovideanyclear

indi-cationsforthepresenceofadditionalorderedphasesintheAZT system,suchasZrTiO4.Theseobservationsareinlinewith

stud-iesreportedbyEscobaretal.[27]whosuggestedthatintheZT binarysystemZrO2canprovideZr4+ionswhichmaydiffuseinto

theTiO2latticeintheabsenceofaluminumoxide,formingZrTiO4.

However,intheAZTternarysystem,XRDandRamandatagiven inFigs.1and2suggestthatAl2O3actsasadiffusionbarrier

pre-ventingdiffusionofZr4+ionsintotheTiO

2lattice,preventingthe

orderingofthecrystallatticeandtheformationZrTiO4.

Fig.3presentstheBETspecificsurfacearea(SSA)valuesforthe synthesizedmaterialswhichwerecalcinedat773,973and1173K. Fig.3indicatesthattheAZTternaryoxidesystemhasamuchhigher

surfaceareacomparedtotheZTbinaryoxidesystemforall calci-nationtemperatures.Whiletheternaryoxidesystemhasalmost two-foldgreatersurfaceareaat773K,thisgapwasobservedto extenduptoaten-fold differenceat973K.Theseresultsarein very good agreementwiththecurrent XRD and Ramanresults suggestingamoredisorderedstructurefortheAZTsystem. Crys-tallizationoftheZTbinaryoxideleadstorelativelyorderedand largerparticlesat973K,whiletheternary systempreservesits ratheramorphousstructureandsmallparticlesizeevenat1173K. ItisworthmentioningthatonaccountofthedifferentTiandZr precursorsused inthecurrent work,synthesizedternary oxide material(i.e.Al2O3/ZrO2/TiO2)hasahighersurfacearea(i.e.SSA

264m2/g)comparedtothenano-compositeternaryoxide

mate-rialwithaSSA∼200m2/gwhichwasreportedinarecentstudy [20].BETSSAanalysiswasalsoperformedforPt-containing sam-pleswhichwerepreparedasdescribedintheexperimentalsection. ThesemeasurementsshowedthatalthoughPtadditionand subse-quentcalcinationat973Kdidnothaveasignificantinfluenceon theSSAvaluesoftheZTsystem(26m2/gversus37m2/gforZT

andPt/ZT,respectively),SSAvaluesoftheAZTsystemsignificantly decreasedinthepresenceofPt(264m2/gversus191m2/gforAZT

200 400 600 800 x3 200 400 600 800 13 5 259 32 0 39 1 46 7 62 2 77 8 20 0 Raman Shift (cm-1) 46 5 62 5 32 0 Raman Shift (cm-1) 5 973K 1173K Intensity (arb. u)

ZrO2/TiO2 Al2O3/ZrO2/TiO2

(a) (b)

ZrTiO4 t-ZrO2

ZrTiO4 t-ZrO2

(4)

1200 1100 1000 900 800 0 50 100 150 200 250 300 350 400 264 342 11 3 17 7 26 3 SBE T (m 2/g) Temperature (K) ZrO2/TiO2 Al2O3/ZrO2/TiO2

Fig.3. BETspecificsurfaceareavaluesfor(a)ZrO2/TiO2(black)andAl2O3/ZrO2/TiO2

(red)aftercalcinationattemperatureswithin773–1173K.

andPt/AZT,respectively).Alongtheselines,itcanbearguedthatPt sitesfacilitatetheoxidationoftheAZTmatrixduringthe calcina-tioncarriedoutat979K,whichresultsinamoreorderedternary oxidesystemwithlargerZrO2andTiO2crystallites.Howeverthese

crystallitesstillseemtobesmallenoughtobeelusiveinXRD (Sup-portingInformationFig.1).Furtherevidenceforthisargumentwill beprovidedalongwiththediscussionoftheTPDresultsfortheAZT andPt/AZTsamplesgiveninthenextsection.

3.2. NO2(g)adsorptionanddesorptiononZrO2/TiO2and

Al2O3/ZrO2/TiO2

Fig. 4 represents the FTIR spectra corresponding to NO2(g)

adsorption on both of the binary and ternary oxide materials (alreadycalcinedat973K)at323Kforincreasingexposures.Five particularvibrationalfeaturesweredetectedforZTwhichwere locatedat1644,1578,1550,1280and1209cm−1 asillustrated in Fig.4a. The spectral regionbetween1700 and 1200cm−1 is

characteristicforthenitrateandnitritespeciescoordinatedonTiO2

andZrO2[28–30].Theobservedfrequenciesat1644and1209cm−1

canbeattributedtobridgingnitrates,whilethefeaturesat1578, 1550and1280cm−1canbeassignedtobidentatenitrates[8,31]. SimilarabsorptionfeaturesalsoappearedfortheAZTternaryoxide systemas shown in Fig. 4b. However, theposition of bridging nitrates(1639and1244cm−1)ontheAZTternaryoxideisdifferent whencomparedtotheZTbinaryoxidesystem.Probably,themost prominentaspectofFig.4isthedissimilarityintherelativeFTIR intensitiesofAZTandZTsystems.ItisclearthattheNOxadsorption

ontheAZTternaryoxideissignificantlyhigherthanthatoftheZT binaryoxideduetoaten-foldhigherspecificsurfaceareaandthe significantlygreaterIRabsorptionintensityuponNOxadsorption

oftheformersurfaceat973K.

MorequantitativeinsightintothetotalNOxadsorption

capabil-ityandthermalstabilityofadsorbednitratespeciescanbeobtained bycombining FTIRand TPDresults. TPD profilesrelated tothe ZTandAZTsystemsobtainedafterNO2(g)saturation(5.0Torrfor

10min)at323KarepresentedinFig.5aandb,respectively. Com-parisonoftheTPDlineshapesforZTandAZTsystemsimmediately revealsthedissimilarNOxdesorptioncharacteristicsoneach

mate-rial.WhilemostoftheNOxdesorptioniscompletedbelow800K

fortheZTsample,thisisnottrueforAZTwhereevenat1000K, NOxdesorptionisstillincomplete.NO(m/z=30)desorptionsignal

fortheZTsample(Fig.5a)showstwomajorfeaturesatof640and 750Krelatedtothenitratedecomposition.Inthefirstdesorption stateof640K,nitratedecompositiontakesplacebysimultaneous evolutionofNO,O2,N2OandNO2correspondingtom/zsignalsat

30,32,44and46,respectively.Ontheotherhand,thehigh tem-peraturenitratedesorptionstate(750K)oftheZTsystemreveals primarilyNOandN2OwithalessercontributionfromO2andNO2.

NO(m/z=30)desorptionsignalfortheAZTsysteminFig.5b indicatesthatwithinthetemperaturewindowofthecurrentTPD experiments(i.e.323–973K),NOxdesorptionwasnotcompleted.

Thistrendindicatesthattherelativethermalstabilityofthestored NOxspecies(i.e.nitrates)ontheAZTsurfaceismuchhigherthan

that of the ZT surface. Thiscan at least bepartially attributed totheexistenceofa largeconcentrationofsurface defectsand coordinativelyunsaturatedadsorptionsiteswhicharepresenton thedisordered/poorlycrystallineAZTsurfacerevealinga higher SSA. Furthermore, comparison of the TPD signalintensities for ZTandAZTsamplesrevealsthattheNOxadsorptionoftheAZT

ternaryoxideisfargreaterthanthatoftheZTbinaryoxide(i.e. thetotal integrated NOx-uptakerelated desorptionsignal

com-prisedofNO+NO2+N2+N2Odesorptionchannelsis%143greater

forAZT.ReaderisreferredtotheSupportingInformationsection forthedetailsoftheTPDintegratedsignalanalysis).Inaddition, Fig.5balsosuggeststhatthenitratedecomposition ontheAZT

1800 1700 1600 1500 1400 1300 1200 1100 1000 1800 1700 1600 1500 1400 1300 1200 1100 1000 164 4 157 8 155 0 128 0 120 9 163 9 158 2 155 5 124 4 128 3 ) b ( ) a

( ZrO2/TiO2 Al2O3/ZrO2/TiO2

Absorbance

(arb.

u.)

Wavenumber (cm-1) Wavenumber(cm-1)

0.5 0.5

Fig.4.FTIRspectracorrespondingtothestepwiseNO2(g)adsorptionat323Kon(a)ZrO2/TiO2and(b)Al2O3/ZrO2/TiO2surfaces.Thebold(red)spectrumineachpanel

correspondstotheNOx-saturated(5.0TorrNO2(g)for10minat323K)surface.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothe

(5)

300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000 ) K ( e r u t a r e p m e T ) K ( e r u t a r e p m e T QMS Intensity (arb. u.)

Fig.5.TPDprofilesobtainedfrom(a)ZrO2/TiO2and(b)Al2O3/ZrO2/TiO2samplesaftersaturationwith5TorrNO2(g)at323Kfor10min.Theinsetineachpanelpresentsthe

FTIRspectraofthesurfacesbefore(black)andafter(red)TPDanalysis.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb

versionofthearticle.)

surfaceoccursviaevolutionofmostlyNO,O2andNO2witha

rel-ativelyinsignificantcontributionfromotherdesorptionchannels. TheseTPDresultsareinperfectagreementwiththe correspond-inginsituFTIRdatapresentedasinsetsinFig.5aandb.Inthese insets,blackcurvescorrespondtoNO2-saturatedsurfacesbefore

theTPDexperiments,whiletheredcurvescorrespondtotheZTand AZTsurfacesaftertheTPDanalysis(i.e.afterannealingunder vac-uumat973K).FTIRdataclearlyshowthatwhilecompletenitrate eliminationwasachievedonZrO2/TiO2aftertheTPDexperiment,

asignificantamountofnitratespeciesobservedtoberemainingon theAZTsurfaceaftertheTPDrun.

TheeffectofPtincorporationonNOxadsorptiongeometryand

storagecapacitywasalsoinvestigatedviainsituFTIRspectroscopy and TPD. FTIR studies involving NOx adsorption experiments

onPt/ZrO2/TiO2andPt/Al2O3/ZrO2/TiO2(SupportingInformation Fig.2)leadustoconcludethatthepresenceofPthasno signif-icantinfluence ontheNOxadsorptiongeometries.Fig.6 shows

theTPD profilesobtainedafter NO2 saturationonPt/ZrO2/TiO2

and Pt/Al2O3/ZrO2/TiO2 at 323K. InFig. 6a, two NOdesorption

statesthatbelongtoPt/ZrO2/TiO2at630and755Karevisible,as

inthecaseofZrO2/TiO2(Fig.5a).However,thehightemperature

desorptionstatelocatedat755Kissignificantlysuppressedinthe presenceofplatinum.ThisimpliesthatonthePt/ZrO2/TiO2

sur-face,Ptsitesfacilitatethedecompositionofstronglyboundnitrate species,shiftingtheirdecompositiontemperaturestolowervalues. Furthermore,comparisonoftheTPDdatagiveninFigs.5aand6a suggeststhatPtadditionsignificantlyincreasestherelative desorp-tionofN2andN2OforthePt/ZrO2/TiO2.Thiscanpossiblybedue

tothePt-catalyzeddirectpartial/totalreductionoftheadsorbed nitratesonthePt/ZrO2/TiO2sampleintoN2andN2O,particularly

at755K.LackofasignificantO2desorptionsignalat755K,

indi-catesthattheoxidizingspeciessuchasatomicoxygenordiatomic oxygengeneratedduringthepartial/totalreductionofnitratesare possiblycapturedbythePt/ZrO2/TiO2systemwheretheymay

oxi-dizePtsitesand/ortitrateoxygendefectsinthetetragonalZrO2or

ZrTiO4phases.Itisalsoworthmentioningthatcomparisonofthe

integratedTPDdesorptionsignalsfortheZrO2/TiO2(Fig.5a)and

Pt/ZrO2/TiO2(Fig.6a)indicatesthatPtadditiontotheZTsystem

significantlybooststheNOxadsorption.Numerically,Ptaddition

totheZTsystemincreasestheintegratedNOdesorptionsignalby about32%andincreasesthetotalintegratedNOx-uptakerelated

desorptionsignalassociatedwithNO+NO2+N2+N2Oby101%(see

SupportingInformationsectionfordetails).Notethatthese num-bersdonotcorrespondtoNOxstoragecapacity(NSC)valuesand

usedmerelyforthesemi-quantitativecomparisonoftherelative NOxuptakesoftheinvestigatedsurfaces.

Investigationof theTPD datagiven in Fig.6b indicatesthat theinfluenceofthePtsitesonthenitratedecompositionismuch moreprominentfortheAZTsystem.Firstly,Ptincorporationseems to promote more facile thermal nitrate decomposition on the Al2O3/ZrO2/TiO2 ternary oxidesystem,wheretheNO (m/z=30)

desorptionmaximaaresignificantlyshiftedtolowertemperatures. Moreinterestingly,NOdesorptionmaximaforthePt/AZTsystem (640and730K,Fig.6b)arealmostidenticaltothatofZT(640and 750K,Fig.5a)andPt/ZT(630and730K,Fig.6a)andquiteunlike AZT(740,800,855K,Fig.5b).Combiningthisobservationwiththe SSA valuesobtainedforthesesystems discussedearlierimplies thatalthoughAZTsystemiscomprisedofaquitedisorderedand aratherdefectiveternaryoxidesystem,Pt/AZTsystemconsistsof moreorderedfinelydispersedsmallparticlesofZrO2,TiO2,ZrTiO4

andAl2O3.Theseparticlesarepossiblyformedduringthe

calci-nationstep,wherePtsitesoxidizetheAZTsurface,increasingthe crystallographicorderofthesurfacetoacertainextent,whichis elusivetodetectviabulkcharacterizationtechniquessuchasXRD (SupportingInformationFig.1).PresenceofAl2O3domainsonthe

Pt/AZTsurfaceisalsosupportedbytheexistenceoftheNO desorp-tionshoulderat400–450KinFig.6b(concomitanttoaNO2signal

whichalsoappearsatthesametemperaturewindow)whichisa characteristicfeatureofNO2TPDfrom␥-Al2O3[32]Althoughthis

400KNOxdesorptionfeatureisabsentforZTandPt/ZTsamples

(Figs.5aand6),itisvisible(thoughwithamuchsmallerintensity) fortheAZTsample,suggestingthatthealuminadomainsontheAZT samplearemuchlessfullyoxidized/ordered.SincetheNOx

desorp-tion/decompositionwasincompletefortheAZTsamplewithinthe thermalwindowoftheTPDanalysis,itisdifficulttomakea quanti-tativecomparisonfortheNOxuptakeofAZTversusPt/AZTsystems.

Howeveranalysisof theintegratedTPD signalsassociated with AZT(Fig.5b)andPt/AZT(Fig.6b)samplesshowsthatPtaddition totheAZTsystemincreasestheintegratedNOdesorptionsignal more than 288% and increasesthetotal integratedNOx-uptake

relateddesorptionsignalassociatedwithNO+NO2+N2+N2Oby

morethan50%.Itcanalsobenotedthatalthoughthe640KNOx

desorptionfromthePt/AZTsurfaceoccursintheformofNO,O2

andNO2;NOxdesorptionat730Ktakesplacewiththeevolutionof

NOandO2only.

Ontheotherhand,relativeNOxadsorptionamountsshouldbe

alsoassessedconsideringtherelativespecificsurfaceareavalue foreachmaterial.OurcalculationsindicatethatPtincorporation totheZTbinaryoxidesystemincreasesthetotalintegratedNOx

-uptake/m2by41%.Moreover,intheAZTternaryoxidesystem,Pt

playsamuchmoreeffectiveroleinincreasingthetotalintegrated NOxuptake/m2by109%.

(6)

300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000 ) K ( e r u t a r e p m e T ) K ( e r u t a r e p m e T

Fig.6.TPDprofilesobtainedfrom(a)Pt/ZrO2/TiO2and(b)Pt/Al2O3/ZrO2/TiO2samplesaftersaturationwith5TorrNO2(g)at323Kfor10min.Theinsetineachpanelshows

theFTIRspectraofthesurfacesbefore(black)andafter(red)TPDanalysis.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb

versionofthearticle.)

TrendsobservedfortheTPDdatagiveninFig.6areinverygood agreementwiththecorrespondingFTIRspectraobtainedbefore andaftertheTPDrunswhicharegivenasinsetsofFig.6. Particu-larly,theinsetofFig.6bshowshowPtplaysasignificantroleinthe nitratedecompositionperformanceoftheAZTternaryoxide sys-tem.AsshownintheinsetofFig.6b,Pt/AZTsurfacewascompletely freeofadsorbedNOxspeciesaftertheTPDrun(i.e.afterannealing

at973K)whilethiswasnotthecaseforthePt-freeAZTcounterpart (insetofFig.5b).

CurrentresultsdiscussedaboveallowsustoconsidertheAZT systemasapromisingcandidatematerialforlow-temperatureNSR applications.ComparedtotheconventionalPt/20wt%BaO/Al2O3

system,Pt/AZT materialcalcined at973Khasa specificsurface areaof191m2/g, whileconventional Pt/20wt%BaO/Al

2O3 hasa

SSAof125m2/g.Ontheotherhand,althoughPt/20wt%BaO/Al 2O3

hasalowersurfacearea,ithas19%greaterintegratedtotalNOx

desorptionsignalthanPt/AZT70obtainedviaidenticaladsorption experiments(datanotshown).InfluenceoftheBaOdomainsonthe NOxadsorptionandreleasepropertiesofZTandAZTsystemsisan

interestingaspectwhichwillbediscussedindetailinaforthcoming report[33].

3.3. NOxreductiononbinaryandternaryoxidesystemsviaH2(g)

AswellastheNOxstoragecharacteristicsofZTandAZT

materi-als,theirNOxreduction/regenerationperformancesunderreducing

conditionsshouldalsobetakenintoconsiderationforthesakeof NSRapplications.ReductionresistanceofnitratespeciesonPt-free

ZTandAZTmaterialswasinvestigatedviaFTIRspectroscopyinthe presenceofanexternalreducingagent(i.e.H2(g)),asillustratedin Fig.7aandb,respectively.Priortonitratereduction,thematerial surfacesweresaturatedwith5.0TorrNO2(g)for10minat323K.

AfterthesaturationofthesurfacewithNO2(g),15.0TorrofH2(g)

wasintroducedoverthesamplesurface.Temperature-dependent FTIRspectrawereobtainedafterannealingtheNO2-saturated

sur-facesat373,473, 573,623,673,723KinthepresenceofH2(g).

AdsorbednitratesonZT(Fig.7a)fullysurvivedunderreducing con-ditionsupto473KwithonlyminorIRintensitychanges.However, theIRsignalintensitiesstartedtodecreaseat573K,where sig-nificantamountsofnitrateswerelostfromthesurface.Itisalso apparentinFig.7athatbidentatenitrates(1580cm−1)arerelatively more stablethan bridging nitrates (1649cm−1)under reducing conditionsonthebinaryoxidesystem.Finally,completeremovalof nitratesontheZTsurfaceunderH2(g)environmentwasachievedat

623K(correspondingtotheredspectruminFig.7a);atemperature thatiscompatiblewiththethermalwindowofrealisticexhaust emissioncontrolsystems.

SimilarexperimentswerealsoperformedontheAZTternary oxidesystem(Fig.7b).Asdiscussedabove,adsorbednitratesonAZT revealaveryhighthermalstabilityinaH2-freeenvironment.Even

underreducingconditions,nitratesonAZTsurfacewerefoundto bequitestableevenat573K(Fig.7b).FTIRanalysisclearlyindicates thatunderreducingconditions,allofthenitratespeciesonAZTcan becompletelyreducedat723K.

Our preliminary experiments (data not shown) related to elevated-temperature nitrate reduction on Pt-containing

1800 1700 1600 1500 1400 1300 1200 1100 1000 1800 1700 1600 1500 1400 1300 1200 1100 1000 164 9 158 2 155 4 128 0 120 6 164 7 158 3 155 4 123 8 128 1 ) b ( ) a

( ZrO2/TiO2 Al2O3/ZrO2/TiO2

Absorbance (arb. u.) Wavenumber (cm-1) Wavenumber(cm-1) 0.5 0.5 373K 623K 373K 723K 573K 673K

Fig.7.FTIRspectracorrespondingtothetemperature-dependentnitratereductionvia15.0TorrofH2(g)on(a)ZrO2/TiO2and(b)Al2O3/ZrO2/TiO2surfaces.Thetopmost

spectrumineachpanelcorrespondstotheNOx-saturated(5.0TorrNO2(g)for10minat323K)surface.Theseriesofblackspectraineachpanelwerecollectedatdifferent

temperatureswithin323–723K.Thebottommost(red)spectrumineachpanelcorrespondstothehighestreductiontemperatureexploited(i.e.623KforZTand723Kfor

(7)

1800

160

0

140

0

120

0

100

0

180

0

160

0

140

0

120

0

100

0

164 6 158 0 15 11 129 1 120 5

(a) Pt/ZrO2/TiO2

Absorbance (arb. u.) Wavenumber (cm-1) Wavenumber (cm-1) 142 2 1st 2nd 3rd 0-40 min 50-120 min 373-473K 0.25 164 3 158 2 15 11 129 9 123 2

(b) Pt/Al2O3/ZrO2/TiO2

14 11 1st 2nd 3rd 0-80 min 90-120 min 373-473K 0.75

Fig.8. FTIRspectracorrespondingtothetime-dependentnitratereductionvia15.0TorrofH2(g)on(a)Pt/ZrO2/TiO2and(b)Pt/Al2O3/ZrO2/TiO2surfaces.Thetopmost

spectrumineachpanelcorrespondstotheNOx-saturated(5.0TorrNO2(g)for10minat323K)surface.Theseriesofspectrainthe“1st”and“2nd”intervalswerecollectedas

afunctionoftimeduringtheinitial120minofreductionat323K.“1st”intervalcorrespondstothe0–40minor0–80minoftheinitialreductionperiodsforPt/ZrO2/TiO2and

Pt/Al2O3/ZrO2/TiO2,respectively;whilethe“2nd”intervalcorrespondstotheremainingtimeevolutionuntil120minofreduction.FTIRspectrainthe“3rd”intervalwere

collectedaftertheinitial120minreductionat323Kbyincreasingtotemperatureto373,423and473KinthepresenceofH2(g).

materials (i.e. Pt/ZT and Pt/AZT) revealed extremely fast reac-tionevenatrelativelylowertemperatures,renderingmechanistic comparisonofthesetwosystemsratherdifficult.Therefore, time-dependentexperimentswerecarriedoutwithslowerkineticsat lowtemperatures(i.e.323K)inordertomonitorandelucidatethe temporalchangesinthesurfacefunctionalgroupsonmaterial sur-facesuponreductionbyH2(g).Fig.8illustratesthecorresponding

FTIRspectraforPt/ZTandPt/AZTrecordedasafunctionoftime afterNOxsaturated(5.0TorrNO2for10min)materialsurfacewas

exposedto15.0TorrofH2(g).Forthesakeofclarity,eachpanelin Fig.8isdividedintothreetimeintervals.Thefirstintervalofthe datasetinFig.8aisrelatedtotheinitialreductionperiodof40min at323K.Inthefirstperiod,whiletheintensitiescharacteristicfor bridgingnitrates(1646and1205cm−1)diminish,othervibrational features at1511and 1291cm−1 correspondingtomonodentate nitratespeciessimultaneouslystarttoemerge[31].Another grow-ingfeaturein thisperiodobservedat1422cm−1 (together with 1291cm−1)canbeassignedtonitrites[34].Forthesecondtime intervalbetween50 and120min,initiallyformedmonodentate nitratesandnitritesconcurrentlyattenuateuponinteractionwith H2(g)togetherwithallothernitratespeciessuchasbridgingand

bidentatenitrates.Since theNOx reductiononPt/ZThasmostly

ceasedafter120min(Fig.8a),inthethirdstage,thematerialwas annealedtohigher temperaturesinH2(g)inorder toeliminate

anyremainingNOxspeciesonthesurface.Thespectrainthethird

intervalcorrespondingtothereductionofnitritesandnitrateson thematerialsurfacewerecollectedat373,423and473K.These resultsallowustoobtainabetterinsight regarding thenitrate reductionmechanismonthePt/ZTsurfaceunderH2(g)atmosphere

whichinitiallytakesplaceviatransformationofbridgingnitrates intomonodentatenitratesandnitritesfollowedbythecomplete removalofallNOxspeciesaround473K.

Anidentical set of experimentswas also performedfor the Pt/AZTsurface(Fig.8b).AsthereducingagentH2(g)isintroduced

overtheNOx-saturatedsurface,theintensitiesofthevibrational

features at 1643 and 1232cm−1 (bridging nitrates) attenuate togetherwithincreaseintheintensitiesof1511and1299cm−1 (monodentate nitrates)as wellas 1411cm−1 (nitrites).A note-worthydifferencebetweenthebinaryandternarysystemsisthat whileallnitrate-relatedstretchingsignalsdiminishinthesecond timeintervalat323KonPt/ZT(Fig.8a),nospectralchangeswere observedinthesecondtimeinterval(90–120min)ofthePt/AZT system(Fig.8b).Theseobservationsareinharmonywithprevious TPDandFTIRresultsindicating thatadsorbedNOxspecies

typi-callypossessahigherstabilityontheAZTsurfacethanZT.Similar totheZTsystem,almostalloftheadsorbedNOxspeciescanbe

eliminatedfrom thePt/AZT surfacein thepresence ofH2(g)at

473K.ItisworthmentioningthatcomparisonoftheNOxreduction

capabilitiesofthePt/AZTsystemwithconventionalNSRsystems thatwehaveinvestigatedinthepastsuchasPt/20wt%BaO/Al2O3

andPt/20wt%BaO/20wt%CeO2/Al2O3[8],revealsthatreductionof

adsorbedNOxspecieswithH2(g)at473Koccursinamorefacile

manneronthePt/AZTsurface.

Fig.9illustratestheregionoftheinsituFTIRspectraassociated withthe OHand NHx stretchingregionsofthePt/ZTsystem,

whichwereacquiredduringthetime-dependentreduction exper-imentsdescribed abovealong withthedatapresentedinFig.8. Fig.9aandbshowstheevolutionoftheinsituFTIRspectraforthe first(0–40min)andthesecond(50–120min)timeintervalsofthe nitratereductionviaH2(g),respectively.UponNO2(g)introduction

tothePt/ZTsurface(5.0TorrNO2(g)for10min),negativefeaturesat

3722and3678cm−1wereobserved(Fig.9a).Whiletheformer fea-turehasbeenassignedtolinear(type-I) OHspecies,thelatterone ischaracteristicsforthree-fold(type-III)hydroxyls[35–42]which disappear from the surface upon interaction/coordination with adsorbednitratesand nitrites.Anotherbroadandhighly convo-lutedfeaturecenteredat3512cm−1canbeattributedtoH-bonded surfacehydroxylspecies[38,39].InFig.9a,theinteractionofH2

(8)

3800

360

0

340

0

320

0

300

0

3800

360

0

340

0

320

0

300

0

372 2 367 8 351 2 335 0 325 6 0.1 (a) 0-40 minutes 372 2 367 8 351 2 335 0 325 6 (b) 50-120 minutes Absorbance (arb. u.) Wavenumber (cm-1) Wavenumber (cm-1) 0.05

Pt/ZrO2/TiO2 Pt/ZrO2/TiO2

Fig.9. OH/ NHstretchingregionoftheinsituFTIRspectracorrespondingtoNO2adsorptionandsaturation(5.0TorrNO2(g)for10minat323K)followedbysubsequent

reductionwith15.0TorrofH2(g)onPt/ZrO2/TiO2at323Kduring(a)0–40minofreductionand(b)50–120minofreduction.Bold(red)spectrumineachpanelcorresponds

tothelastspectrumobtainedattheendofthegiventimeinterval.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversion

ofthearticle.)

withnitratespeciesonthePt/ZrO2/TiO2 surfaceinthefirsttime

intervalcanbefollowedbythegraduallyemergingvibrational fre-quenciesat3350and3256cm−1 relatedto NHstretchingsand thegrowing featureat 3512cm−1 related toH-bonded surface

hydroxyls[43,44].Thereforeinthefirsttimeinterval(0–40min), itisapparentthatthenitratereductionmechanisminvolves con-versionofbridgingnitratesintomonodentatenitratesandnitrites togetherwiththeformationofH-bondedsurfacehydroxylgroups

3800

360

0

340

0

320

0

300

0 3800

360

0

340

0

320

0

300

0

371 9 367 8 351 5 336 5 327 8 0.1 (a) 0-80 minutes 371 9 351 5 336 5 327 8 0.1 (b) 90-120 minutes Absorbance (arb. u.) Wavenumber (cm-1) Wavenumber (cm-1)

Pt/Al2O3/ZrO2/TiO2 Pt/Al2O3/ZrO2/TiO2

Fig.10.OH/–NHstretchingregionoftheinsituFTIRspectracorrespondingtoNO2adsorptionandsaturation(5.0TorrNO2(g)for10minat323K)followedbysubsequent

reductionwith15.0TorrofH2(g)onPt/Al2O3/ZrO2/TiO2at323Kduring(a)0–80minofreductionand(b)90–120minofreduction.Bold(red)spectrumineachpanel

correspondstothelastspectrumobtainedattheendofthegiventimeinterval.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredto

(9)

222

5

(a)

(b)

Absorbance

(arb.

u.)

Wavenumber

(cm

-1

)

Wavenumber

(cm

-1

)

Pt/ZrO

2

/TiO

2

Pt/Al

2

O

3

/ZrO

2

/TiO

2

222

5

1 min

120 min

1 min

120 min

0.005

0.005

2225

2125

2225

2125

Fig.11. Time-dependentinsitugasphaseFTIRspectracorrespondingtonitrate

reductionvia15.0TorrofH2(g)on(a)Pt/ZrO2/TiO2and(b)Pt/Al2O3/ZrO2/TiO2at

323Kfor120min.Redspectrumineachpanelcorrespondstothelastspectrum

obtainedattheendofthegiventimeinterval.(Forinterpretationofthereferences

tocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

and NH functionalitieswhich mightbeassociatedwith NH2,

NH3, OH···NHxor OH···NOxspecies[8,43,44].

InsituFTIRdatapresentedinFig.9bshowsadditional signif-icantspectralchangesin thecourseofthesecondtime interval (50–120min)of reduction, during which a largeportionofthe nitrategroupswerereducedbyH2.Duringthisperiod,whilethe

isolatedterminalandbridging OHspecies(initiallypresent nega-tivefeaturesat3722and3678cm−1)wereregenerated,thefeature at3512cm−1relatedtoH-bondedsurfacehydroxylspecies dimin-ished.Inotherwords,asthenitrateswereeliminatedfromthe surface, OH···NHxor OH···NOxinteractionsseizedtoexistand

someofthesurface OHfunctionalitieswereconvertedinto iso-latedhydroxyls.

Fig.10illustratesthesamesetofexperimentsperformedonthe Pt/AZTsystem.SimilartoPt/ZT,inthefirsttimeintervalofH2(g)

interaction(0–80min) withtheNOx-saturated surfacerevealsa

gradualincreaseofthevibrationalintensitiesat3515cm−1related toH-bondedhydroxylspeciesandnewlyformedfeaturesat3365 and3278cm−1relatedto NHxstretchingsindicatingamechanism

ofNOxreductionoverPt/AZTwhichissimilartothatofPt/ZT.We

shouldalsonotethattheformationof NHxspecies,whichisan

indicationofnitratereduction,occursatalatertimeonthePt/AZT system(Fig.10a)comparedtoPt/ZT(Fig.9a).Thisisinverygood agreementwiththecurrentFTIRandTPDresultsdiscussedearlier indicatingthatnitratespeciesonthePt/AZTternaryoxidesystem possessahigherstabilityandahigherresilienceagainstreduction withrespecttothatofthePt/ZTbinaryoxidesurface.Thisargument isalsoinlinewiththeobservationthatunlikethePt/ZTbinaryoxide

system(Fig.9b),nospectralchangeswereobservedforthePt/AZT ternaryoxidesurface(Fig.10b)after80minofreduction.

3.4. MonitoringtheNOxreductionproductsinthegasphase

GasphaseproductsformedduringtheNOxreductionviaH2(g)

overPt/ZTandPt/AZTsurfaceswerealsomonitoredbymeansof gas-phaseinsituFTIRspectroscopy.Inthesesetofexperiments, catalyst sampleswerelifted abovetheIRbeamin the spectro-scopicreactor,sothattheincomingIRphotonswereonlyabsorbed bythegasphase species.Abackgroundspectrumwasobtained immediatelyaftertheintroductionoftheH2(g)intothereactor

overtheNO2-saturatedcatalystsurfaces.Allgas-phaseinsituFTIR

spectragiveninFig.11wereacquiredusingtheaforementioned backgroundspectra.Theevolutionofgas-phasereductionproducts fromPt/ZTandPt/AZTsurfacesover120minisshowninFig.11a andb,respectively.Thegasphasespectraforbothmaterialsreveal theimmediateformationofN2O(g)(i.e.2225cm−1feature)even

afterthefirstminuteofH2(g)exposure,indicatingthatN2Oisan

earlyintermediate/byproductofthenitratereductionmechanism overPt/ZTandPt/AZTsystems.Itisworthmentioningthatother possiblegasphasereductionfeaturesinadditiontoN2O(g)suchas

NH3(g),waselusivetodetectingas-phaseFTIRspectroscopydueto

theoverwhelmingintensityoftheH2O(g)absorptionenvelopeat

1620cm−1whichappearedinthespectraastheIRbeamtraveled throughambientconditionsafterexitingthespectroscopicreactor.

4. Conclusions

In the current work, binary and ternary oxide materials, ZrO2/TiO2 (ZT) and Al2O3/ZrO2/TiO2 (AZT), as wellas their

Pt-functionalized counterparts were synthesized by the sol–gel methodandcharacterizedbymeansofXRD,Ramanspectroscopy andBETtechniques.TheNOxstoragecapacity(NSC)andreduction

performanceofeachmaterialwereinvestigatedandthe charac-teristicbehaviorsofsurfacenitratefunctionalgroupsuponH2(g)

interactionweremonitoredviainsituFTIRandTPDanalysis.Our findingscanbesummarizedasfollows:

• IntheZTbinaryoxidesystem,astronginteractionbetweenTiO2

andZrO2domainswereobservedathightemperatures(>973K),

whichresultedintheformationofahighlyorderedcrystalline ZrTiO4phaseandalowspecificsurfacearea(i.e.26m2/gat973K).

• IncorporationofAl2O3 intheAZTstructurerendersthe

mate-rialhighlyresilienttowardcrystallization andorderingwhere AZTmaterialwasfoundtobemostlyamorphousevenat1173K. Moreover,aluminaactsasadiffusionbarrierintheAZT struc-ture,preventingtheformationofZrTiO4andleadingtoavery

highspecificsurfacearea(i.e.264m2/gat973K).

• NOxadsorptioncapabilityoftheAZTternaryoxidesystemwas

foundtobesignificantlygreaterthanthatofZT,inlinewiththe almostten-foldgreaterSSAoftheformersurface.

• The interactionof NO2(g) withZT and AZT surfacesrevealed

adsorbednitratespecieswithsimilargeometries.WhilePt incor-porationdidnotalterthetypeoftheadsorbednitratespecies,it significantlyboostedtheNOxadsorptionamountonbothPt/ZT

andPt/AZTsystems.Thermalstabilityofnitrateswashigheron theAZTcomparedtoZT,mostlikelyduetothedefective struc-tureandthepresenceofcoordinativelyunsaturatedsitesonthe formersurface.

• Ptsiteswerefoundtoassistthepartialordering/crystallization oftheAZTsystem.Ptsiteswerealsoobservedtofacilitatethe decompositionofnitratesintheabsenceofanexternal reduc-ingagentbyshiftingthedecompositiontemperaturestolower valuesandbyboostingtheformationofN2andN2O.

(10)

• In the presence of H2(g), the complete reduction of surface

nitrateswasachievedat623KonZT,whilethis wasachieved at723KforAZT.

• Nitratereduction overPt/ZT andPt/AZT viaH2(g)under mild

conditionsinitiallyleadstotheconversionofbridgingnitrates intomonodentatenitratesandnitritestogetherwiththe forma-tionofsurface OHand NHxfunctionalities.N2O(g)wasalso

observedintheveryearlystagesofthereductionprocessasan initialintermediate/byproduct.

AppendixA. Supplementarydata

Supplementarymaterialrelated tothis article canbefound, in the online version, at http://dx.doi.org/10.1016/j.cattod. 2013.12.037.

References

[1]N.Miyoshi,S.Matsumoto,K.Katoh,T.Tanaka,J.Harada,N.Takahashi,K.Yokota, M.Sugiura,K.Kashahara,SAEPaper950809,1995.

[2]N.Takahashi,H.Shinjoh,T.Iijima,T.Suzuki,K.Yamazaki,K.Yokota,H.Suzuki,N. Miyoshi,S.Matsumoto,T.Tanizawa,T.Tanaka,S.Tateishi,K.Kasahara,Catalysis Today27(1996)63.

[3]S.Roy,A.Baiker,ChemicalReviews109(2009)4054.

[4]W.S.Epling,L.E.Campbell,A.Yezerets,N.W.Currier,J.E.Parks,CatalysisReviews 46(2004)163.

[5]E.Ozensoy,J.Szanyi,C.H.F.Peden,JournalofCatalysis243(2006)149. [6]E.I.Vovk,E.Emmez,M.Erbudak,V.I.Bukhtiyarov,E.Ozensoy,JournalofPhysical

ChemistryC115(2011)24256.

[7]E.I.Vovk,A.Turksoy,V.I.Bukhtiyarov,E.Ozensoy,JournalofPhysicalChemistry C117(2013)7713.

[8]Z.Say,E.I.Vovk,V.I.Bukhtiyarov,E.Ozensoy,AppliedCatalysisB: Environmen-tal142–143(2013)89.

[9]R.Hummatov,D.Toffoli,O.Gulseren,E.Ozensoy,H.Ustunel,JournalofPhysical ChemistryC116(2012)6191.

[10]Z.Say,E.I.Vovk,V.I.Bukhtiyarov,E.Ozensoy,TopicsinCatalysis56(2013)950. [11]S.M.Andonova,G.S.Senturk,E.Kayhan,E.Ozensoy,JournalofPhysical

Chem-istryC113(2009)11014.

[12]E.Emmez,E.I.Vovk,V.I.Bukhtiyarov,E.Ozensoy,JournalofPhysicalChemistry C115(2011)22438.

[13]G.S.Senturk,E.I.Vovk,V.I.Zaikovskii,Z.Say,A.M.Soylu,V.I.Bukhtiyarov,E. Ozensoy,CatalysisToday184(2012)54.

[14]S.Matsumoto,Y.Ikeda,H.Suzuki,M.Ogai,N.Miyoshi,AppliedCatalysisB: Environmental25(2000)115.

[15]S.M.Andonova,G.S.Senturk,E.Ozensoy,JournalofPhysicalChemistryC114 (2010)17003.

[16]T.Kanazawa,CatalysisToday96(2004)171.

[17]K.Ito,S.Kakino,K.Ikeue,M.Machida,AppliedCatalysisB:Environmental74 (2007)137.

[18]K.Arata,Akutagawa,K.Tanabe,BulletinoftheChemicalSocietyofJapan49 (1976)390.

[19]I.Wang,W.F.Chang,R.J.Shiau,J.C.Wu,C.S.Chung,JournalofCatalysis83(1983) 428.

[20]N.Takahashi,A.Suda,I.Hachisuka,M.Sugiura,H.Sobukawa,H.Shinjoh,Applied CatalysisB:Environmental72(2007)187.

[21]H.Imagawa,T.Tanaka,N.Takahashi,S.Matsunaga,A.Suda,H.Shinjoh,Journal ofCatalysis251(2007)315.

[22]H.Imagawa,N.Takahashi,T.Tanaka,S.Matsunaga,H.Shinjoh,AppliedCatalysis B:Environmental92(2009)23.

[23]M.A.Krebs,R.A.Condrate,JournalofMaterialsScienceLetters7(1988)1327. [24]F.Azough,R.Freer,J.Petzelt,JournalofMaterialsScience28(1993)2273. [25]V.Lughi,D.R.Clarke,JournalofAppliedPhysics101(5)(2007)053524. [26]M.T.Colomer,M.Maczka,JournalofSolidStateChemistry184(2011)365. [27]C.A.Ulin,J.A.deLosReyes,J.Escobar,M.C.Barrera,M.A.Cortes-Jacome,Journal

ofPhysicsandChemistryofSolids71(2010)1004.

[28]K.Hadjiivanov,V.Bushev,M.Kantcheva,D.Klissurski,Langmuir10(1994)464. [29]M.Kantcheva,AppliedCatalysisB:Environmental42(2003)89.

[30]M.Kantcheva,V.S.Vakkasoglu,JournalofCatalysis223(2004)352. [31]M.Kantcheva,JournalofCatalysis204(2001)479.

[32]E.Kayhan,S.M.Andonova,G.S.Senturk,C.C.Chusuei,E.Ozensoy,Journalof PhysicalChemistryC114(2010)357.

[33]Z.Say,M.Tohumeken,E.Vovk,E.Ozensoy,inpreparation.

[34]T.Szailer,J.H.Kwak,D.H.Kim,J.C.Hanson,C.H.F.Peden,J.Szanyi,Journalof Catalysis239(2006)51.

[35]M.Kantcheva,E.Z.Ciftlikli,JournalofPhysicalChemistryB106(2002)3941. [36]K.T.Jung,A.T.Bell,JournalofMolecularCatalysisA163(2000)27.

[37]G.Cerrato,S.Bordiga,S.Barbera,C.Morterra,AppliedSurfaceScience115 (1997)53.

[38]E.Ozensoy,D.Herling,J.Szanyi,CatalysisToday136(2008)46. [39]G.Busca,CatalysisToday27(1996)457.

[40]G.Busca,CatalysisToday41(1998)191.

[41]D.Dautzenberg,H.Knozinger,JournalofCatalysis33(1974)142. [42]H.Knozinger,K.Kochloefl,W.Meye,JournalofCatalysis28(1973)69. [43]A.Davydov,MolecularSpectroscopyofOxideCatalystSurfaces,Wiley,USA,

2003,pp.81–83.

[44]T.A.Gordymova,A.A.Davydov,JournalofAppliedSpectroscopy39(1983) 621.

Şekil

Fig. 1. XRD patterns corresponding to (a) ZrO 2 /TiO 2 and (b) Al 2 O 3 /ZrO 2 /TiO 2 materials upon calcination at temperatures within of 323–1173 K.
Fig. 3. BET specific surface area values for (a) ZrO 2 /TiO 2 (black) and Al 2 O 3 /ZrO 2 /TiO 2
Fig. 5. TPD profiles obtained from (a) ZrO 2 /TiO 2 and (b) Al 2 O 3 /ZrO 2 /TiO 2 samples after saturation with 5 Torr NO 2 (g) at 323 K for 10 min
Fig. 7. FTIR spectra corresponding to the temperature-dependent nitrate reduction via 15.0 Torr of H 2 (g) on (a) ZrO 2 /TiO 2 and (b) Al 2 O 3 /ZrO 2 /TiO 2 surfaces
+4

Referanslar

Benzer Belgeler

In this study, we describe the isolation and genome sequencing of two SARS-CoV-2 isolates from infected humans in Turkey, viral replication kinetics in Vero E6 cells and outcome

A new array signal processing technique, called as CAF-DF, is proposed for the estimation of multipath channel parameters in- cluding the path amplitude, delay, Doppler shift

As predicted, pride tracked the valuation of foreign audiences when the valuations of foreign and local audiences were correlated, but it failed to track foreign audiences for

ill iliis sl.iK.ly, we i)roposc an aiui.lyl.ical model to dctcnniiic the withdrawal cycle length, kanban sizes a.nd number of kanbans simultaneously in a periodic

Bu çalışmada Lamiaceae familyasından bazı Salvia (Salvia macrochlamys BOISS. ET KOTSCHY, Salvia huberi HEDGE. ve Salvia kronenburgeii RECH.FIL) türlerinin ekstraktlarındaki

A replenishment order of Q units was placed when the inventory level drops to r as in Embedded Cycle 1, however the items reach their effective shelf lives during the lead time

Cikan sonuplar uyannca, genel olarak gu s6ylenebilir: Eger genlik bilgisi bi- linen kesir dgerleri arasindaki fark l'e yakm ise, ki tam 1 oldugunda

Fama (1972) considered portfolio managers’ forecasting abilities in two major parts: microforecasting and macroforecasting. Microforecasting ability refers to the