• Sonuç bulunamadı

Development of a distance-independent wireless passive RF resonator sensor and a new telemetric measurement technique for wireless strain monitoring

N/A
N/A
Protected

Academic year: 2021

Share "Development of a distance-independent wireless passive RF resonator sensor and a new telemetric measurement technique for wireless strain monitoring"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

A:

Physical

jo u r n al hom e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n a

Development

of

a

distance-independent

wireless

passive

RF

resonator

sensor

and

a

new

telemetric

measurement

technique

for

wireless

strain

monitoring

Akbar

Alipour

a

,

Emre

Unal

a

,

Sayim

Gokyar

a

,

Hilmi

Volkan

Demir

a,b,∗

aDepartmentofElectricalandElectronicsEngineering,DepartmentofPhysics,andUNAM-NationalNanotechnologyResearchCenterandInstituteof

MaterialsScienceandTechnology,BilkentUniversity,Bilkent,06800,Ankara,Turkey

bLUMINOUS!CenterofExcellenceforSemiconductorLightingandDisplays,SchoolofElectricalandElectronicEngineering,SchoolofMathematicaland

PhysicalSciences,NanyangTechnologicalUniversity,Singapore639798,Singapore

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14September2016

Receivedinrevisedform

15December2016

Accepted9January2017

Availableonline11January2017

Keywords: Strainsensor PassiveRFresonator Inductivecoupling Wirelessmonitoring

a

b

s

t

r

a

c

t

WeproposedanddevelopedanovelwirelesspassiveRFresonatorschemethatenablestelemetricstrain sensingavoidingtheneedforcalibrationatdifferentinterrogationdistances.Thespecificarchitectureof theproposedstructureallowsforstronginductivecouplingand,thus,ahigherwirelesssignal-to-noise ratio.Here,inoperation,thefrequencyscanofthesensorimpedancewasusedtomeasuresimultaneously boththeimpedanceamplitudeandresonancefrequency.Usingthiswirelesssensor,wefurther intro-ducedanewtelemetricmonitoringmodalitythatemploysfullelectricalcharacteristicsofthesystemto achievecorrectstrainextractionatanyinterrogationdistance.Inprinciple,anydeformationofthesensor structureresultsintheresonancefrequencyshifttotrackstrain.However,changingoftheinterrogation distancealsovariestheinductivecouplingbetweenthesensoranditspick-upantennaatthe interro-gationdistance.Therefore,atvaryinginterrogationdistances,itisnotpossibletoattributeanindividual resonancefrequencyvaluesolelytoanindividualstrainlevel,consequentlyresultingindiscrepancies inthestrainextractioniftheinterrogationdistanceisnotkeptfixedordistance-specificcalibrationis notused.Inthiswork,weshowedthatbyusingboththeproposedpassivesensorstructureandwireless measurementtechnique,straincanbesuccessfullyextractedindependentoftheinterrogationdistance forthefirsttime.Theexperimentalresultsindicatehighsensitivityandlinearityfortheproposed sys-tem.Thesefindingsmayopenupnewpossibilitiesinapplicationswithvaryinginterrogationdistance formobilewirelesssensing.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Precisestrainmonitoringisessentialinnumerousstrainsensing applicationsincludingimplants, foodqualitycontrol,and struc-turalhealthmonitoring[1–4].Overthepastfewdecades,enormous progresshasbeenachievedinwirelesspassiveandimplantable strainmonitoringtechniques.Wirelessreadability,lowcost,power source-freeoperation,andlowperturbationfromthesurroundings areamongthemainadvantagesofthewirelesspassiveapproaches

∗ Correspondingauthorat:DepartmentofElectricalandElectronicsEngineering,

DepartmentofPhysics,andUNAM-NationalNanotechnologyResearchCenterand

InstituteofMaterialsScienceandTechnology,BilkentUniversity,Bilkent,06800,

Ankara,Turkey.

E-mailaddress:volkan@bilkent.edu.tr(H.V.Demir).

overcommonactiveones[5,6].Intelemetricstrainsensing,the abilitytowirelesslytrackthepassiveresonanceisofcritical impor-tance[7].Thefundamentaloperatingprincipleofwirelesssensing resultsfrom inductive couplingbetween thepassive radio fre-quency(RF)resonatoranditsreaderantenna[8].Theconceptof suchpassiveRFresonatorsusingdifferentelectromagnetic struc-tures has beenproposed and demonstrated for the purposeof wirelessstrainmonitoring.Sincetheelectromagneticresonance frequencyofaresonatorissensitivetoitsphysicaldimensions,any deformationinitsgeometryresultsinresonancefrequencychange [9].

The most recently studied architecture for wireless passive strain monitoring includes micro-strip patch antennas, radio frequency identification(RFID),andmetamaterial-basedRF res-onators.Thefeasibilityofusingacircularmicro-strippatchantenna (CMPA)wasreportedbyDalirietal.[10].Usingtheoretical cal-http://dx.doi.org/10.1016/j.sna.2017.01.010

(2)

culationsandnumericalsimulations,theauthorsshowedalinear relationshipbetweenthestrainandtheresonancefrequency of theproposedsystem.AnychangeinthedimensionoftheCMPA structurechangestheimpedanceofthesystem,whichleadstothe shiftinresonancefrequency.AcomplementaryworkonCMPAs wasreportedin [11].It wasshownthat CMPAscanbeusedas apassivesensorforwirelessstrainmonitoringincivilstructures andaerospace.Theeffectoftheconductivityofthehostmaterial onthewirelessmeasurementefficiencywasalsoinvestigated.It wasdemonstratedthatstraincanbemonitoredwirelesslyinany desireddirectionusingalinearlypolarizedhornantenna.However, duetothesensorsignalinterferencewithbackgroundreflections, onlyalimitedinterrogationdistancewasachieved.

RFID structures have also been investigated for wireless passive strain measurements. The RFID-based wireless sen-sors are fed by interrogation electromagnetic wave radiated from a reader antenna. Xiaohua et al. [12] developed a passive wireless antenna sensor for strain and crack detec-tion. The antenna signal modulation was used to isolate the backscattered signal from the undesired environmental reflec-tions.

Fromthepreviousworksofourgroup,Meliketal.[13]proposed ahighlysensitivemetamaterial-basedstrainmonitoringtechnique totrackbonefracturehealing.Thissensorconsistsofdouble comb-shapedmultiplesplitringresonators(SRRs).Thecompactnested architecture of this SRR design with multiple gaps provides a lower operating frequency and higher sensitivity. In operation, thewireless passive metamaterial strain sensor is mountedon animplantablefracturefixationhardwaretomonitorandaccess theprogressionofbonefracturehealing.Whenanexternalload isappliedtothehardware,thestrainisrecordedremotelyusing thecoaxialprobelocatedintheproximityofthesensor.This sen-sorcanmeasurestrainbasedonthechangeinthecapacitanceof nestedSRRthatresultsinthetransmissionspectrumshiftusing distance-specificcalibration.Theinvivoresultsshowedthatthe metamaterial-basedpassivestrainsensorprovidestheabilityto determinestatisticallyimportantdifferencebetweenthefracture healingandnon-healinggroups[14].However,thesesensorsare resonantstructureswithoutagroundplane,sotheyexhibit rela-tivelylowsignal-to-noise(SNR)ratioandqualityfactor.Ourgroup alsodevelopedanothermetamaterial-basedremotestrainsensor systemusinganarrayoftheSSRspatternedoveraflexibleKapton goldcladsubstrate[15].Thisapproachwaslimitedbytheweak reflectedsignalfromthesensortothereaderantenna.

In most of these studies, misalignment and variation in interrogationdistancecanchangethetransmissionspectrum, con-sequentlycontributing someinaccuracy tostrainextraction. To overcomethis problem, in this paper, we propose a distance-independentpassive RFresonator sensor and a newtelemetric measurementmethodologyforitswirelessstrainmonitoring.Here thecomb-shapesplitringsarepatternedonbothsidesofthe flexi-bledielectrictoformadistributedcapacitanceandinductancetank circuit.Thecombinationofthecapacitanceandinductancecreates anLCresonatortooperateatacertainfrequency.Thecomb-shape splitringsarealignedby90◦rotationwithrespecttoeachotheron bothsidesofthedielectric.Thisspecificarchitectureofthesensor allowsforthepossibleexcitationofbothofthelayersbythesame incomingelectromagneticwave.Thus,bothofthelayerscontribute totheresonancefrequencyandthequalityfactorofthestructure. Wealsointroduceanewmeasurementtechniqueofwirelessstrain sensingwhich,incombinationwiththeproposedsensor,straincan bemonitoredindependentlyoftheinterrogationdistance.Based onthisapproach,possiblediscrepanciesinducedbythecoupling coefficientvariationsareeliminatedinthestrainextraction. Exper-imentalresultsindicategreatlinearityandsensitivity.

Fig.1. Schematicoftheproposedsystem.Thesensorisinductivelycoupledtothe

pick-upreaderantenna.Toobtaintheexactvalueoftheresonancefrequency(f0)

ofthesensor,alltheresistance,capacitanceandinductancevaluesinducedbythe

cable,theconnector,andtheantennaareincluded.

2. Methods 2.1. Theory

Inoursystem,theprincipleofwirelessstrainmonitoringbased oninductivecouplingisillustratedin Fig.1.Weinclude allthe electrical components that come from the system (e.g., cable, connector,andantenna)todeterminetheaccurateresonance fre-quency of the sensor. All the impedance parameters of these componentswere calculated, and theireffects weretaken into account in theresonance frequency extraction. Zeq1, Zeq2,Zeq3, andZeq4aretheimpedancesthatareseenattheinputofcable, cable-connector, cable-connector-antenna,and cable-connector-antenna-sensor,respectively.

The inductive coupling between the sensor and the reader antennaaffectstheimpedanceattheinputoftheantenna.Since thesensorimpedanceZsreachesaminimumatitsresonance fre-quency(f0),thisprovidesmaximumimpedance,whichappearsat theinputoftheantennaatf0.Byscanningthevariationonthe equivalentimpedance,monitoredbythereaderantenna,the reso-nancefrequencycanbeextracted.Assuminganinductivecoupling betweenthesensorandreaderantenna,thesensorimpedanceZs, measuredbythereaderantennaisgivenby

V={(R1+jwL1)+



(Rc+jwC1 c



(Ra+jwLa−jwMII 3 2 )]}I1 (1) whereMisthemutualcouplingcoefficientbetweenthesensorand thepick-upantenna,

(Rs+jwLs+jwC1

(3)

Rs+jwLs+jwC1 s=Zs (3) From(1)and(3); Zeq=IV 1 = (R1+jwL1)+



Rc+jwC1 c

 

Ra+jwLa+w 2M2 Zs



(4) Zs= w2M2

R 1+jwL1+Rc+jwC1c−Zeq

(Zeq−R1−jwL1)

Rc+jwC1c+Ra+jwLa

Rc+jwC1c

(Ra+jwLa) (5) Theresonancefrequencyofthesensorisdeterminedby scan-ningthefrequencyresponseofthesensorimpedance,Zs.When thesensorstaysintheinterrogationregionofthepick-upreader antenna,anetresonancecomesalongattheoperatingfrequency ofthesensor.Thevariationofthecouplingvaluewouldleadtoa changeintheimpedanceZsand,consequently,theshiftofthe sys-temresonancefrequency.Anystrainvariationsonthesensorcan befaithfullydetectedusingtheassociatedelectricalcharacteristics (f0and|Zs|)changes,whicharepickedupbythereaderantenna. Each(f0and|Zs|)setpointisdevotedtoanindividualstrainvalue.

Thus,usingbothfrequencyandimpedanceinformationtogether straincanbecalculatedindependentofthecouplingvalue.

Here,notethattheproposedsensorhastwomainelements:(1) thesplitringcapacitorsbetweenthefingers,whichserveasthe sensingcomponent,and(2)thesplitringsinductor,whichcollects electromagneticenergyfromantenna.

2.2. Modeling

Thedesignofthestrainsensorreliesontheresonance character-istics,especiallytheresonancefrequency,f0andthequality-factor, Q,whicharefunctionsofthesensorcapacitance(Cs),inductance (Ls),andresistance(Rs).Asimplegeometryoftheproposedstrain sensorwithsevengeometricalvariablesisshowninFig.2a.The valuesofCs,Ls,andRsaredeterminedbythesedesignparameters: numberoffingersn,gapwidths,fingersspacingt,sensorlengthk, linewidthw,shortfingerslengthl1,andlongfigureslengthl2.

ThesensorismodeledtooperateasanelectricalLCresonant circuit.Fig.2bshowsa3-dimensional(3D)sketchofourproposed strain sensor. The top/frontside of the device includesa layer ofcomb-shapedSRRsmetallization.Thebottom/backsideofthe deviceisthe90◦rotatedversionofthetop/frontsidethatis pat-ternedontheotherfaceofthedielectricsubstrate.Thisarchitecture bringsus two mainadvantages: first,it allows electromagnetic wavetopenetratethroughtheupperlayerandbottomone. Accord-ingly,withproperpolarization,bothofthelayerscanbeexcited bythe sameincomingelectromagneticwave. Thus, both layers contributetotheoperatingfrequencyandQ-factorofthedevice. Second,duetosymmetricstructure ofthesensor, straincanbe measuredinanydirection.

The sensor has inductance Ls and capacitance Cs. Cs is thecombination of thesplit (metal-air-metal) and sandwiched (metal-substrate-metal)capacitorsthatbuildupfromthesensor architecture.TheintegrationofcapacitanceCswithinductanceLs formsaresonancecircuit.Thecorrespondingresonancefrequency issimply

f0= 1 2

LsCs

(6) TheQ-factorofthesensoraffectstheprecisewireless identi-ficationofthesensorresonancefrequency.HighQ-factorresults instronginductivecouplingandthelargerinterrogationdistance. Toincreasethepowerreflectedbythesensor,theQ-factorofthe sensorisincreasedbyimprovingthestructuralparametersofthe sensor.

Themetalthicknessisoneofthemainparametersthatcan con-troltheQ-factor,consequentlythereflectedpower.Tomaximize thereflectedpowerbacktotheantenna,themetalthicknessis settobetwotimesthickerthantheelectricalskindepth[16].The well-knownequationtocalculatetheskindepthisgivenbellow: ı=

2 2f0␮0␮R

(7) where␴istheconductivity(m−1),␮0thepermeabilityconstant (4␲×10−7H/m),and␮Rtherelativepermeability.Forthetarget operatingfrequency ofourproposedstrainsensor(∼600MHz), theskindepthofgoldiscalculatedtobe∼3␮m.Theinvestigations ofthegoldskineffectontheQ-factorattheoperatingfrequency shownthattheQ-factorisincreasedbytheincreasingmetal thick-ness,andbecomesfixedafter∼6␮mmetalthickness.Thus,inthis study,thegoldthicknessof6␮mwasusedinthesensorfabrication. Duringtheoperation,whenthesensorissubjectedtostrain ineachdirection,thegeometricaldeformationonthesensorleads tochangeinthesplitringcapacitance(betweenfingers)values, which resultsin theresonance frequencyshift.Thevariationof capacitancevaluescontributetotheresonancefrequencyshiftand, consequentlystrainsensing.

2.3. Devicedesignandfabrication

Ourproposedarchitectureisbasedonamultilayerlaminated structure consisting of two comb-shaped SRRs, which are pat-ternedonbothsidesofthedielectricsubstrate,with90◦alignment withrespecttoeachother(Fig.2).Wefabricatedourstrainsensor using standard microfabricationtechnique. Thefabrication pro-cessesincludethefollowingsteps:(1)Thermalevaporationwas usedtodeposit a thinlayerof Auonbothsides oftheflexible dielectricsubstrate(Kapton®polyimidefilms,DuPontTM).(2) Con-ventionallithographyandwet-etchingwereusedtopatternthe Aulayersofcomb-shapedSRRsonbothsidesof25-␮m-thick Kap-ton.Finally,a flexiblesensorwiththethicknessof∼37␮mwas obtained.AphotoofthefabricatedsensorontheflexibleKapton filmandthecorrespondingopticalimagearedisplayedinFig.2c, alongwithallphysicaldimensions.Duetotheflexibilityand ultra-thinstructureofthesensor,thesensorhasthecapabilitytoconform tovariousnon-planarsurfaces.

2.4. Experimentalsetupandmeasurements

Ourexperimentalsetupandcorrespondingblockdiagram uti-lized for the telemetric strain monitoring is shown in Fig. 3. Thefabricatedsensorissetonthehoststructuretocharacterize the sensor performance in strain measuring. The host struc-ture is a homo-polymer rod; namely, Delrin® withdimensions 1.2cm×1.2cm×10.0cm and Young’smodulus of 2.4 Gpa.The axialtensileforceof2kNwasappliedtothesysteminfour load-ingstepswith500Nloadincrementperstepusingatensiletester machine(INSTRONTM5542).Toverifytheuniformstraininduction intheareawherethesensorismounted,astandardresistivestrain gauge(TokyoSokkiKenkujoCo.,Ltd.)issettothehoststructure asshowninFig.3.Thestraingaugeispositionedontheotherside oftheDelrin,whichdoesnotaffectthesensorperformance.The teststartswith0␮␧initialloadandendsataround21,300␮␧.The impedanceofthestrainsensorismeasuredatthevarious interro-gationdistancesusingthepick-upcoil(with8mmindiameter)as thereaderantennaundereachloadingstep.

Thereaderantennaismountedona3Dstagemachine(VELMEX, Inc.).Thestageautomaticallyinterrogatestheregionstepbystep. We used a network analyzer(Agilent FieldFoxN9915A) as the signalacquisitioninstrumentthatwasarrangedintheoperating

(4)

Fig.2. (a).Simplesensorgeometry,thetoplayer(left)andthebottomlayer(right).Thebottomlayeris90◦rotatedwithrespecttothetoplayer.(b).3Dschematicsofthe

proposedstrainsensor(notdrawntoscale).Red(onbottom/backlayer)andblue(ontop/frontlayer)dotsindicatedonthesensorgeometrycoincidewiththesamepoints

onthe3Dschematics,whichareshownwiththesamecolors.(c).Opticalimageofthefabricatedflexiblestrainsensor.(Forinterpretationofthereferencestocolourinthis

figurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.3.Experimentalsetup.Thestrainsensorissetonthehomo-polymerrod(Delrin),apick-upantennaisusedtoreadthesensorsignal,acommercialstraingaugeis

placedattheoppositesidesoftherodtoverifythestrainvalue,anda3Dstagemachineisusedtoscantheinterrogationdistanceprecisely.Inthetoprightmostinsetwe

showablockdiagramofthepassivewirelessstrainsensingsetup.Networkanalyzerwassettoscaninthefrequencyrangefrom540to700MHzwith1601datapoints.Ata

specificinterrogationdistance,theaxialtensileforceatvariousloadswasappliedtothemechanicalsystemandtheRFdatawasrecordedusingthenetworkanalyzer.This

(5)

Fig.4.Bychangingtheinductivecoupling(byvaryingtheinterrogationdistance)

betweenthereaderantennaandsensor,theoperatingfrequencyofthesystemand

impedanceofthesystem(Zeq4)werechanged.Thestrongcoupling,medium

cou-pling,andweakcouplingcorrespondtothedistancesof0.5mm,1.3mmand2.4mm

farfromthepick-upantenna,respectively.

frequencyrangewith1601datapoints.Theexperimentwas con-ductedatteninterrogationdistancesfrom0.5to3.0mm.Thesensor withfollowingdesignparameterswasusedinthestrainmeasuring experiment:n=32,s=100␮m,t=100␮m,k=6.3mm,w=100␮m, l1=2.1mm,andl2=4.1mm.

3. Resultsanddiscussion

Beforestudying thestrain sensor performance, theeffect of interrogationdistancewasinvestigated.Asithasbeenexpected, changingtheinterrogationdistancethelevelofinductivecoupling betweenthesensorandthepick-upantennavaries,asshownin Fig.4.Duetothecouplingcoefficientvariation,thesystem oper-atingfrequency changes at variousinterrogationdistances. The variationintheoperatingfrequencycanbelargerthantheshifts causedbytheappliedload.Therefore,itbecomes impossibleto attributeanindividualresonancefrequencyvaluetoanindividual strainvalue,consequentlyresultingindiscrepanciesinthestrain extraction,unlessspecificcalibrationcurves areusedatspecific fixedinterrogationdistances.

Tosolvethisproblem,thesensorwastestedunderdifferentload valuesandvaryinginterrogationdistancestofindrelationbetween thestrain,|Zs|,andf0.Hereboththefrequencyand|Zs|information

areusedtoextracttheindividualstrainvalue.Fig.5ashowsthe resonancefrequencyvariationbychangingtheinductivecoupling coefficient(bychangingtheinterrogationdistance)undervarious strainvalues.Thisfigurealsoshowsaclearresonancefrequency increasewiththeincreasingcouplingcoefficient.

Toinvestigatethetensilestrainresponseofthesensorasthe strainincreases,theresonancefrequencyismeasuredatdifferent strainvalues.Therelationbetweentheresonancefrequencyshift ofthesensorandstrainisdisplayedinFig.5.Thisplotconfirms thatthemeasuredresonancefrequencyofthesensoratvarious loadvaluesexhibitsacharacteristiclinearresponse.Themeasured resonancefrequencyofthesensorgraduallyincreasesasthestrain increases.Theresonancefrequencyofthesensorat0␮␧isaround 591MHz,and thenitreachesapproximatelyto597MHz,asthe strainincreasesup to10,500␮␧.The experimentalresultsshow thatthesensorachievessuccessfulstrainperformancewiththe highsensitivity.Duetotheproximityofthesensorandpick-up antenna,mutualcouplingismoredominant,whichdoesnotallow forthesignificantresonancefrequencychangebythestrain vari-ation.Strongcouplingbetweenthesensorandtheantennaatthis

Fig.5.(a)Resonancefrequencyvariationunderdifferentstrainlevelsatdifferent

interrogationdistances.Linear fitsatvariousstrainvaluesintersectata

com-moninterpolatedreferencepoint.Duetocloseproximityofthesensorandreader

antenna(dominantcouplingeffect),measuredsignalstendtointersectatthispoint

atdifferentstrainlevels.(b).Thecalculatedslopeofanymeasuredpointwiththe

referencepointcorrespondstoanindividualstrainvalue(measuredbystraingauge).

pointallowsalllinearfitsatvariousstrainlevels(Fig.5a)tendtoa singleintersectingpointwhichwecallReferencePointhere.Fig.5b showstheslopevaluesoftheselinearfitsatvariousstrainlevels, measuredbythestraingauge.Anymeasuredsetpoint(f0and|Zs|)

createsaslopebytheReferencePoint.Thisslopegivestheextracted strainvalue.

Afterthestraincharacterizationandanalyzingtherelationship betweenthestrainandsetpoint(f0and|Zs|),similartensiletestis

conducedtoinvestigatethesensorperformanceandverification. Thesensorwassubjectedtoarandomsetofstrainlevelsand inter-rogationdistancevalues.TheexperimentalerroranalysisinFig.6a exhibitedexcellentsensorperformance.Thefittedcurveinthis fig-urereportsamaximumerrorofonlylessthat0.5%correspondingto nonlinearityerrorattheearlystagesofthestrainimplementation. Thiscouldbelargelyexplainedbythedominanteffectofthe uncor-relatedmeasuredstrainbetweenthestraingaugeandoursensor. Also,somepartofthiserrorstemsfromthestraingaugevoltage measurementerror.Byincreasingthestrain,calculatederrorwas minimized,whichcouldbeexplainedbythedominanteffectof theappliedstrain.Theresonancefrequencyand|Zs|ofthesensor

canbeinterrogatedbythepick-upantennaintherangeof3mm. Beyondthisdistance,duetotheverylowcouplingefficiency,the readerantennaisnotbeabletosensethesignalreflectedbackfrom thesensor.Therefore,thisdistanceisthelargestoperatingrange foroursystem.

Toinvestigatetheeffectofthedirectionoftheappliedloadon wireless strainmeasurement,theexperimentwasconductedat twodifferentsensororientations.Thestrainwasappliedinboth xandydirections.Duetosymmetricstructureofthesensor,the experimentsresultedinthesamebehavior.

The stability and reliability of the sensor were studied by multicyclestrainperformingonthesensor.Thesensorwasfirst subjectedtozerostrainloadingandthenfollowedbyextension loadingof5400␮␧.AsshowninFig.6b,thesestepswererepeated

(6)

Fig.6. (a)Nonlinearityerrorpercentage.Athighstrainvalueserrorwasminimized.

(b).Themulticycleoperationofthesensorbetweenthetwostrainstates(achieved

bystraingauge)showedthattheresponseofthesensorisstableandreliable.

20 times.The plot of therepeatability showedthat the sensor showedexcellent stabilityandreliability, withonlyslightdrifts (<0.01%)observedbetweenthecycles.

4. Conclusion

The present study reports a new telemetric measurement techniqueandapassiveRFsensorfordistance-independent wire-lessstrainmonitoring.Distance-independentstrainmonitoringis achievedbymeasuringtheimpedanceofthesensorinadditionto itsresonance.Inourproposedtelemetricmonitoring,weinclude theimpedanceparametersofallelectricalcomponentstomeasure preciselytheresonancefrequencyofthesensor.Theproposed sen-sorconsistsofanultra-thinandmultilayer(metal-dielectric-metal) structurewithcomb-shapedSRRsthatpatternedonbothsidesof theflexibledielectric.Topandbottomlayersofthesensorare90◦ rotatedwithrespecttoeachother.Thespecificarchitectureofthis designallowsforthebothmetallayerstocontributeinthesensor electricalcharacteristics(f0,Q-factor,andZs).Thesensoristested undervariousstrainvaluesandinterrogationdistances.Alinear relationbetweenthesensorf0and|Zs|isobtainedatdifferent lev-elsofstrain.Theslopeofthisresponsegivesthestrain.Thisstrong linearityresultsinexcellentstrainsensingperformance.By tak-ingtheadvantagesofthistelemetricmeasurementtechniqueand sensorstructure,distance-independentstrainextractionhasbeen successfullydemonstratedinthisstudy.Theresultspresentthat thesensorhasexcellentaccuracywithlessthan0.5%error,and alsoshowedgreatstabilityandreliability.

Ourfuturestudywillfocusontheapplicationareasofthisstrain sensor.The proposedsensorhasgreat potentialfor performing faithfulwireless strainmeasurementinvivo whilethepatient’s bodypartsmaybemoving.Thiscanbeusedtoregisterstrain vari-ationpreciselyduringbonefracturehealingevenwhenthepatient

fracturesitecannotbepreciselylocatedexternally.Furthermore, futureresearchneedstobeconductedtoimprovesensing perfor-manceatlongerinterrogationdistances.Thesefindingsgivenfor telemetricstrainmonitoringmaybeapromisingwirelessstrain measurementmethodinthesystemswithvaryinginterrogation distance.Studiesperformedinpassivewirelessmonitoringshowed thatchangingtheinterrogationdistancemayresultininaccurate measurement.Theproposedapproachhereresolvestheproblem ofinterrogationdistancevariation.

References

[1]P.Zhao,N.Deng,X.Li,C.Ren,Z.Wang,Developmentofhighly-sensitiveand

ultra-thinsiliconstresssensorchipsforwearablebiomedicalapplications,

Sens.ActuatorsAPhys.216(2014)158–166,http://dx.doi.org/10.1016/j.sna.

2014.05.018.

[2]P.J.A,S.F.Pichorim,Biotelemetricpassivesensorinjectedwithintendonfor

strainandelasticitymeasurement,IEEETrans.Biomed.Eng.53(2006)

921–925,http://dx.doi.org/10.1109/TBME.22006.872157.

[3]E.L.Tan,W.N.Ng,R.Shao,B.D.Pereles,K.G.Ong,Awireless,passivesensorfor

quantifyingpackagedfoodquality,Sensors7(2007)1747–1756,http://dx.

doi.org/10.3390/s7091747.

[4]JohnC.Butler,JAnthonyJ.Vigliotti,FredW.Verdi,ShawnMWalsh,Wireless,

passive,resonant-circuit,inductivelycoupled,inductivestrainsensor,Sensor

Actuat.A:Phys.102(2002)61–66,

http://dx.doi.org/10.1016/S0924-4247(02)00342-4.

[5]P.Broutas,H.Contopanagos,E.D.Kyriakis-Bitzaros,D.Tsoukalas,S.

Chatzandroulis,AlowpowerRFharvesterforasmartpassivesensortagwith

integratedantenna,SensorActuat.A:Phys.176(2012)34–45,http://dx.doi.

org/10.1016/j.sna.2011.12.053.

[6]Y.Jia,K.Sun,F.J.Agosto,M.T.Qui ˜nones,Designandcharacterizationofa

passivewirelessstrainsensor,Meas.Sci.Technol.17(2006)2869,http://dx.

doi.org/10.1088/0957-0233/17/11/002.

[7]Hee-JoLee,Jong-GwanYook,Recentresearchtrendsofradio-frequency

biosensorsforbiomoleculardetection,Biosens.Bioelectron.61(2014)

448–459,http://dx.doi.org/10.1016/j.bios.2014.05.025.

[8]WilliamB.SpillmanJr.,S.Durkee,Noncontactpower/interrogationsystemfor

smartstructures,SPIE2191(1994)362–372,http://dx.doi.org/10.1117/12.

173966.

[9]X.Yi,C.Cho,J.Cooper,Y.Wang,M.M.Tentzeris,R.T.Leon,Passivewireless

antennasensorforstrainandcracksensing—electromagneticmodeling,

simulation,andtesting,SmartMater.Struct.22(2013)085009,http://dx.doi.

org/10.1088/0964-1726/22/8/085009.

[10]A.Daliri,A.Galehdar,W.S.T.Rowe,K.Ghorbani,S.John,Utilisingmicrostrip

patchantennastrainsensorsforstructuralhealthmonitoring,Intell.Mater.

Syst.Struct.23(2011)169–182,http://dx.doi.org/10.1177/

1045389x11432655.

[11]A.Daliri,A.Galehdar,S.John,C.H.Wang,W.S.T.Rowe,K.Ghorbani,Wireless

strainmeasurementusingcircularmicrostrippatchantennas,SensorActuat.

APhys.184(2012)86–92,http://dx.doi.org/10.1088/0964-1726/22/8/085009.

[12]X.Yi,T.Wu,Y.Wang,R.T.Leon,M.M.Tentzeris,G.Lantz,Passivewireless

smart-skinsensorusingRFID-basedfoldedpatchantennas,Int.J.SmartNano

Mater.2(2011)22–38,http://dx.doi.org/10.1080/19475411.2010.545450.

[13]E.U.R.Melik,N.K.Perkgoz,B.Santoni,D.Kamstock,C.Puttlitz,H.V.Demir,

Nestedmetamaterialsforwirelessstrainsensing,IEEEJ.Sel.Top.Quantum

Electron.16(2010)450–458,http://dx.doi.org/10.1109/JSTQE.2009.2033391.

[14]K.C.McGilvray,E.Unal,K.L.Troyer,B.G.Santoni,R.H.Palmer,J.T.Easley,H.V.

Demir,C.M.Puttlitz,Implantablemicroelectromechanicalsensorsfor

diagnosticmonitoringandpost-surgicalpredictionofbonefracturehealing,J.

Orthop.Res.33(2015)1439–1446,http://dx.doi.org/10.1002/jor.22918.

[15]I.Jones,L.Ricciardi1,L.Hall,H.Hansen,V.Varadan,C.Bertram,S.Maddocks,

S.Enderling,D.Saint,S.Al-Saraw,WirelessRFcommunicationinbiomedical

applications,SmartMater.Struct.17(2008)015050,http://dx.doi.org/10.

1063/1.3250175.

[16]D.A.Sanz,C.Mitrosbaras,E.A.Unigarro,F.Segura-Quijanod,Passive

resonatorsforwirelesspassivesensorreadoutenhancement,Appl.Phys.Lett.

103(2013)133502,http://dx.doi.org/10.1088/0964-1726/17/1/015050.

Biographies

AkbarAlipourreceivedtheB.Sc.inElectricalandElectronicsEngineeringfrom

UrmiaUniversity,Urmia,Iranin2007.HecompletedhisMasterdegreein

bio-medicalscienceatMETUandGaziUniversity,Ankara,Turkeyin2011.Since2012,

heisworkingtowardsthePh.D.degreewiththedepartmentofElectricaland

Elec-tronicsEngineering,BilkentUniversity.Hiscurrentresearchinterestsincludethe

implantsensorsforbiomedicalapplications.

EmreUnalreceivedhisB.S.degreeinelectricalandelectronicsengineeringfrom

HacettepeUniversity,Ankara,Turkey,in2005.Heisafull-timeResearchEngineer

(7)

andNanotechnology,BilkentUniversity,Ankara,whereheisworkingonthe

devel-opmentofmicrowaveandoptoelectronicdevices.

SayimGokyarreceivedhisB.S.degreeinelectricalandelectronicsengineeringfrom

FatihUniversity,Istanbul,Turkey,in2009.HecompletedhisM.S.degreeinelectrical

andelectronicsengineeringfromBilkentUniversity,Ankara,Turkey,in2011.He

iscurrentlyaPhDcandidateatelectricalandelectronicsengineeringdepartment,

BilkentUniversity,Ankara,Turkey.Hisresearchareaofinterestincludeswireless

sensors.

HilmiVolkanDemir(M’04-SM’11)receivedtheB.S.degreeinelectricaland

elec-tronicsengineeringfromBilkentUniversity,Ankara,Turkey,in1998andtheM.S.

andPh.D.degreesinelectricalengineeringfromStanfordUniversity,Stanford,CA,

in2000and2004,respectively.InSeptember2004,hejoinedBilkentUniversity,

whereheiscurrentlyaprofessorwithjointappointmentsattheDepartmentof

Elec-tricalandElectronicsEngineeringandtheDepartmentofPhysicsandisalsowith

theInstituteofMaterialsScienceandNanotechnology.Concurrently,heisafellow

ofNationalResearchFoundationinSingaporeandaprofessorofNanyang

Tech-nologicalUniversity.Hisresearchinterestsincludethedevelopmentofinnovative

optoelectronicandRFdevices.Dr.DemirwastherecipientoftheEuropeanUnion

MarieCurieFellowship,theTurkishNationalAcademyofSciencesDistinguished

YoungScientistAward(TUBA-GEBIP),theEuropeanScienceFoundation-European

YoungInvestigatorAward(ESF-EURYI),andNanyangAwardforResearch

Şekil

Fig. 1. Schematic of the proposed system. The sensor is inductively coupled to the pick-up reader antenna
Fig. 3. Experimental setup. The strain sensor is set on the homo-polymer rod (Delrin), a pick-up antenna is used to read the sensor signal, a commercial strain gauge is placed at the opposite sides of the rod to verify the strain value, and a 3D stage mach
Fig. 4. By changing the inductive coupling (by varying the interrogation distance) between the reader antenna and sensor, the operating frequency of the system and impedance of the system (Z eq4 ) were changed
Fig. 6. (a) Nonlinearity error percentage. At high strain values error was minimized.

Referanslar

Benzer Belgeler

Fârâbî‟ye göre bilme, duyum ve tahayyüle uğradıktan sonra esas olarak akılda meydana gelen bir soyutlamadır. Maddî durumlardan soyutlanmıĢ suret olan düĢünülür

Tablo 17: Cinsiyet Değişkenine Göre Hizmet Boyutuna İlişkin İç Paydaşların Algılamaları İle İlgili Bağımsız Gruplarda t testi

magnetic moment ␮ in ␮ B Bohr magneton per adsorbate atom of individual atoms adsorbed on a possible four adsorption sites in a single cell and the most favorable binding site for

Furthermore, in this special issue, a survey paper titled “Emerging Accelerator Platforms for Data Centers,” by Mustafa Ozdal, is provided to give the readers an overview of

The article offers description of the Marianism of the English Catholic Church — in particular as manifested in the celebration of the definition of the doctrine of the

Finally, we consider the geometry of two classes of sequential warped product space-time models which are sequential generalized Robertson-Walker space-times and sequential

Furthermore, this performance improvement is achieved using a relatively short cyclic redundancy check as the outer code and a practically implementable successive cancellation

The discursive construction of modern domesticity and femininity through the promotion of electric household appliances could be fully comprehended through a focus on