• Sonuç bulunamadı

On the basis of the burnside ring of a fusion system

N/A
N/A
Protected

Academic year: 2021

Share "On the basis of the burnside ring of a fusion system"

Copied!
31
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Journal

of

Algebra

www.elsevier.com/locate/jalgebra

On

the

basis

of

the

Burnside

ring

of

a

fusion

system

Matthew Gelvina, Sune Precht Reehb, Ergün Yalçınc,∗

aMathematicsandComputerScienceDepartment,Wesleyan University,

Middletown,CT06459-0128,USA

b

DepartmentofMathematicalSciences,UniversityofCopenhagen, Copenhagen, Denmark

cDepartmentofMathematics,BilkentUniversity,06800Bilkent,

Ankara,Turkey

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received 23 May 2014

Available online 12 November 2014 Communicated by Michel Broué

Keywords:

Burnside ring Fusion systems Mobius function

WeconsidertheBurnsideringA(F) ofF-stableS-setsfora saturatedfusionsystemF definedonap-groupS.Itisshown byS.P. ReehthatthemonoidofF-stablesetsisafree commu-tativemonoidwithcanonicalbasis{αP}.Wegiveanexplicit

formulathatdescribesαP asanS-set.Intheformulaweuse

acombinatorialconceptcalledbrokenchainswhichwe intro-ducetounderstandinversesofmodifiedMöbiusfunctions.

© 2014ElsevierInc.All rights reserved.

1. Introduction

ForafinitegroupG,theBurnsideringA(G) isdefinedastheGrothendieckringofthe

isomorphismclassesof G-sets with additiongiven by disjoint unionand multiplication

The research is supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92). The third author is also partially supported by TÜBİTAK – TBAG/110T712.

* Corresponding author.

E-mailaddresses:mgelvin@wesleyan.edu(M. Gelvin), spr@math.ku.dk(S.P. Reeh), yalcine@fen.bilkent.edu.tr(E. Yalçın).

http://dx.doi.org/10.1016/j.jalgebra.2014.10.026

(2)

by Cartesian product. The Burnside ring A(G) isfree as an abelian group, with basis

givenbyisomorphismclassesoftransitiveG-sets[G/H].Inparticularthebasiselements

are inone-to-onecorrespondencewithG-conjugacyclassesofsubgroupsof G.

OneoftenstudiestheBurnsideringofafinitegroupG usingthemarkhomomorphism

Φ : A(G) → ZCl(G), where Cl(G) is the set of G-conjugacy classesof subgroups of G.

For K≤ G, theK’th coordinateof Φ isdefinedbyΦK(X)=|XK| whenX isaG-set,

extendedlinearlyfortherestofA(G).TheringA∗(G):=ZCl(G)istheringofsuperclass

functions f : Cl(G) → Z with multiplication given by coordinate-wise multiplication.

It is called the ghost ring of G and it plays an important role for explaining G-sets

using their fixed point data. In particular, it is shown that the mark homomorphism

is an injectivemap with a finite cokernel. This means that using rational coefficients,

one can express the idempotent basis of A∗(G) in terms of basiselements [G/H] (see

D. Gluck [6]).

Given asaturatedfusionsystemF on ap-groupS, onecandefinetheBurnside ring

A(F) ofthefusionsystem F asasubringof A(S) formedby elements X ∈ A(S) such thatΦP(X) = Φϕ(P )(X) foreverymorphism ϕ: P → S in F. Thissubringis alsothe

GrothendieckringofF-stableS-sets(see(2.3)foradefinition).ItisprovedbyS.P. Reeh

[10] thatthemonoid ofF-stableS-sets is afree commutativemonoidwith acanonical

basis satisfying certain properties. Our primary interest is to identify the elements of

this basis,sowedescribeitinmoredetailhere.

For every X ∈ A(S), let cQ(X) denote the number of [S/Q]-orbits in X so that

X = cQ(X)[S/Q], where the sum is taken over the set of S-conjugacy classes of

subgroups of S.ForeachF-conjugacy classof subgroupsP of S, there isaunique(up

to S-isomorphism)F-stableset αP satisfying

(i) cQ(αP)= 1 ifQ isfullynormalizedandF-conjugateto P ,

(ii) cQ(αP)= 0 ifQ isfullynormalizedandnotF-conjugatetoP .

Theset{αP} overallF-conjugacyclassesofsubgroupsforman(additive)basisforA(F) (see Proposition 2.2).

The main purpose of this paper is to give explicitformulas for the numberof fixed

points|(αP)Q| andforthecoefficientscQ(αP) of[S/Q]-orbits,forthebasiselement αP.

Our first observation is that the matrix of fixed points FMarkQ,P = |(αP)Q| can

be described using a simple algorithm in linear algebra. We now explain this

algo-rithm.

Let Möb = Mark−1 denote theinversematrixof theusualtableof marksfor S.For each F-conjugacy class of subgroups of S, takethe sumof the corresponding columns

of Möb, obtaining a non-square matrix. Then, from the set of rows corresponding to

an F-conjugacy class, select one representing a fully F-normalized subgroup; delete

the others. TheresultingmatrixFMöb is asquarematrix withdimension equalto the

(3)

FMark := FMöb−1 is the matrix of marks for A(F). In other words, we prove the following:

Theorem 1.1. Let F be a saturated fusion system over a finite p-group S. Let the

square matrix FMöb be constructed as above, with rows and columns corresponding to the F-conjugacy classes of subgroup in S. Then FMöb is invertible, and the inverse FMark := FMöb−1 is thematrix ofmarks forA(F),i.e.

FMarkQ∗,P∗=(αP∗)Q

 .

Here Q∗ and P∗ denotethe chosenF-conjugacy class representatives.This theorem

isproved asTheorem 3.1 inthepaper.We alsogiveadetailedcalculation toillustrate

thismethod(seeExample 3.2).ThisisalldoneinSection3.

InSection4welookcloselyattheabovematrixmethodandanalyzeitusingMöbius

inversion. We observe that the entries of FMark, the table of marks for F, can be

explained by a combinatorial formula using a concept called (tethered) broken chains

(seeDefinition 4.7).ThisformulaisprovedinTheorem 4.9.

InSection5,we provethe maintheorem ofthepaper, whichgivesaformulaforthe

coefficients cQ(αP) in the linearcombination αP =



cQ(αP)[S/Q]. As inthe case of

fixed pointorders, herealso theformula isgiven intermsof analternatingsumof the

numberof brokenchainslinkingQ toP (see Definition 5.1).Themain theorem of the

paperisthefollowing:

Theorem1.2.LetF beasaturatedfusionsystemoverafinitep-groupS.LetBCF(Q,P )

denotethe set of F-broken chains linkingQ to P . Then thenumber of [S/Q]-orbits in each irreducibleF-stable setαP,denoted cQ(αP),can be calculatedas

cQ(αP) = |WS P∗| |WSQ| ·  σ∈BCF(Q,P ) (−1)(σ)

forQ,P subgroups of S, whereP∗∼FP isfullynormalized.

Intheaboveformula, (σ) denotesthelengthof abrokenchainσ = (σ01,. . . ,σk)

linkingQ to P defined as theinteger (σ):= k +|σ0|+· · · + |σk| (see Definition 5.1).

Thistheorem isprovedinSection5as Theorem 5.2.InExample 5.5,we illustratehow

this combinatorial formula can be used to calculate the coefficients cQ(αP) for some

subgroupsQ,P forthefusionsystemF = FD8(A6).

InSection6,weprovesomesimplificationsfortheformulainTheorem 1.2.These

sim-plificationscomefrom observationsaboutbroken chainsand frompropertiesofMöbius

functions.TheninSection7wegiveanapplicationofourmaintheoremtocharacteristic

bisets.Sinceunderstandingthecharacteristic bisetswasoneofthemotivationsfor this

(4)

LetS beap-groupandF beafusionsystemon S asbefore.A characteristicbisetfor

thefusionsystemF isan(S,S)-bisetΩ satisfyingcertainproperties(seeDefinition 7.1).

ThesebisetswerefirstintroducedbyLinckelmannandWebb,andtheyplayanimportant

role in fusion theory. One of the properties of a characteristic biset is stability under

F-conjugation,namelyforeveryϕ: Q→ S,the(Q,S)-bisetsϕΩ andQΩ areisomorphic.

Since each (S,S)-biset is aleft (S× S)-set, we can convert this stability condition to

a stability condition for the fusion system F × F on the p-group S× S and consider

characteristic bisetsaselementsinA(F × F).

It isshownbyM. Gelvinand S.P. Reeh[5]thateverycharacteristic bisetincludesa

uniqueminimalcharacteristicbiset,denotedbyΩmin.Theminimalbisetcanbedescribed

as the basis element αΔ(S,id) of the fusion system A(F × F), where for a morphism

ϕ : Q → S in F, the subgroup Δ(P,ϕ) denotes the diagonal subgroup {(ϕ(s),s) | s ∈ P } in S× S. Now Theorem 1.2 can be used to give formulas for the coefficients cΔ(P,ϕ)(Ωmin).Suchformulasareimportantforvariousotherapplicationsofthesebisets

(seeforexample[12]).Usingthenewinterpretationofthesecoefficientswewereableto

give aproof for the statementthat allthe stabilizers Δ(P,ϕ) appearing inΩmin must

satisfy P ≥ Op(F) whereOp(F) denotesthelargest normalp-subgroupof F.This was

originallyprovedin[5,Proposition 9.11],theproofwegiveinProposition 7.3usesbroken

chainsandismuchsimpler.

2. Burnsideringsforgroupsandfusionsystems

InthissectionwerecalltheBurnsideringofafinitegroupS andhowto describeits

structureintermsofthehomomorphismofmarks,whichembedstheBurnsideringinto

asuitableghostring.WealsorecalltheBurnsideringofasaturatedfusionsystemF on

ap-groupS,inthesenseof[10].

LetS beafinitegroup.WeusetheletterS insteadof G forafinitegroupsinceinall

theapplicationsoftheseresultsthegroupS willbeap-group.Theisomorphismclasses

of finite S-sets form a semiring with disjoint unionas addition and Cartesian product

as multiplication.TheBurnsideringof S,denotedA(S),isthendefinedastheadditive

Grothendieckgroupofthissemiring,andA(S) inheritsthemultiplicationaswell.Given

a finiteS-set X,welet [X] denotethe isomorphismclass ofX as an element ofA(S).

Theisomorphismclasses[S/P ] oftransitiveS-sets formanadditivebasisforA(S),and

two transitive setsS/P and S/Q are isomorphicifand only ifthesubgroups P and Q

are conjugatein S.

ForeachelementX ∈ A(S) wedefinecP(X),withP ≤ S,tobethecoefficientswhen

we writeX asalinearcombination ofthebasiselements [S/P ] inA(S),i.e.

X = 

[P ]∈Cl(S)

cP(X)· [S/P ],

whereCl(S) denotesthesetofS-conjugacyclassesofsubgroupinS.Theresultingmaps

(5)

To describe the multiplication of A(S), it is enough to know the products of basis

elements[S/P ] and[S/Q].BytakingtheCartesian product(S/P )× (S/Q) and

consid-eringhow it breaks into orbits,one reaches thefollowing double cosetformula for the

multiplicationinA(S):

[S/P ]· [S/Q] = 

s∈P \S/Q 

S/(P ∩sQ), (2.1)

whereP\S/Q isthesetofdouble cosetsP sQ withs∈ S.

Insteadofcountingorbits,analternativewayofcharacterizing afiniteS-setis

count-ingthefixedpointsforeachsubgroupP ≤ S.ForeveryP ≤ S andS-set X,wedenote

thenumberofP -fixedpointsbyΦP(X):=|XP|.Thisnumberonlydependson P upto

S-conjugation.Since wehave

(X Y )P=XP+YP and (X× Y )P=XP · YP

forallS-setsX andY ,thefixedpointmap ΦP forS-setsextendstoaringhomomorphism

ΦP : A(S)→ Z. Onthebasiselements [S/P ],thenumberoffixed pointsisgivenby

ΦQ 

[S/P ]=(S/P )Q= |NS(Q, P )|

|P | , (2.2)

whereNS(Q,P )={s∈ S |sQ≤ P } isthetransporterinS fromQ toP .Inparticular,

ΦQ([S/P ]) = 0 ifandonlyifQS P (Q is subconjugatetoP ).

Wehave onefixed point homomorphism ΦP per conjugacy class ofsubgroups in S,

andwecombinetheminto thehomomorphism ofmarks

Φ = ΦS: A(S) [P ]ΦP −−−−−→ [P ]∈Cl(S) Z.

This ringhomomorphismmaps A(S) into theproduct ringA∗(S):= [P ]∈Cl(S)Z, the

so-calledghostring for theBurnside ringA(S).

WethinkoftheelementsintheghostringA∗(S) as superclassfunctionsCl(S)→ Z

definedonthesubgroupsof S andconstantoneveryS-conjugacyclass. Foranelement

ξ∈ A∗(S) wewriteξ(Q),withQ≤ S,todenotethevalueoftheclassfunctionξ onthe

S-conjugacy class of Q. We thinkof ξ(Q) as the numberof Q-fixed points for ξ, even

thoughξ might notbe thefixedpoint vectorforan actualelement ofA(S). Theghost

ring A∗(S) has a naturalbasis consisting of eP for each [P ] ∈ Cl(S), where eP is the

classfunctionwithvalue1 ontheclass[P ],and0 onalltheotherclasses.Theelements

{eP | [P ]∈ Cl(S)} aretheprimitiveidempotentsof A∗(S).

ResultsbytomDieckandothersshowthatthemarkhomomorphismisinjective,but

(6)

containstheobstruction toξ beingthefixedpointvector ofa(virtual) S-set,hencewe

speakofthiscokernelastheobstructiongroup Obs(S):= [P ]∈Cl(S)(Z/|WSP|Z),where

WSP := NSP/P .Thesestatementsarecombinedinthefollowingproposition,theproof

of whichcanbefound in[2,Chapter 1],[3],and[13].

Proposition 2.1. LetΨ = ΨS : A(S)→ Obs(S) be givenby the[P ]-coordinatefunctions

ΨP(ξ) :=  s∈WSP ξs P mod |WSP|  .

Then, thefollowingsequenceof abeliangroups isexact: 0→ A(S)−→ AΦ ∗(S)−→ Obs(S) → 0.Ψ

Note that in the exact sequence above Φ is a ring homomorphism, but Ψ is just a

grouphomomorphism.

2.1. TheBurnsidering of asaturatedfusion system

LetS beafinitep-group,andsupposethatF isasaturatedfusionsystemon S (see[1]

fornecessary definitionsonfusionsystems).WesaythatafiniteS-set isF-stableifthe

actionisunchangeduptoisomorphismwheneverweactthroughmorphismsofF.More

precisely, if P ≤ S is a subgroup and ϕ : P → S is a homomorphism in F, we can

considerX asaP -setbyusingϕ todefinetheactiong.x:= ϕ(g)x forg∈ P .Wedenote

the resulting P -set by P,ϕX. In particular when incl : P → S is the inclusion map,

P,inclX hastheusual restrictionoftheS-actionto P .

Restrictingtheactionof S-setsalongϕ extendstoaringhomomorphismrϕ: A(S)→

A(P ),andweletP,ϕX denotetheimagerϕ(X) forallelementsX∈ A(S). Wesaythat

anelement X ∈ A(S) isF-stable ifitsatisfies

P,ϕX =P,inclX inside A(P ), for all P ≤ S and

homomorphisms ϕ : P → S in F. (2.3)

The F-stability condition originally came from considering action maps S → ΣX into

thesymmetricgrouponX thataremapsoffusionsystemsF → FΣX.

Alternatively,onecancharacterizeF-stabilityintermsof fixedpointsand themark

homomorphism, andthefollowingthreepropertiesareequivalentforallX ∈ A(S):

(i) X isF-stable.

(ii) ΦP(X)= ΦϕP(X) for allϕ∈ F(P,S) andP ≤ S.

(7)

A proof ofthis claim canbe found in[4, Proposition 3.2.3] or [10]. Weshall primarily

use(ii)and(iii)tocharacterizeF-stability.

Itfollows fromproperty (iii)thattheF-stableelementsform a subringof A(S).We

define the Burnside ring of F to be the subring A(F) ⊆ A(S) consisting of all the

F-stable elements. Equivalently, we can consider the actual S-sets that are F-stable: TheF-stable sets form a semiring, and we define A(F) to be the Grothendieckgroup

hereof.ThesetwoconstructionsgiverisetothesameringA(F) –see[10].

Accordingto [10], everyF-stableS-set decomposesuniquely (upto S-isomorphism)

as adisjoint union ofirreducible F-stable sets, where theirreducible F-stable sets are

thosethatcannotbewrittenasdisjointunionsofsmallerF-stablesets.Eachirreducible

F-stablesetcorrespondstoanF-conjugacyclass[P ]F ={Q≤ S | Q is isomorphic to P inF} ofsubgroups,and theysatisfythefollowingcharacterization:

Proposition2.2.(See[10, Proposition 4.8 and Theorem A].) LetF beasaturatedfusion

systemoverS.ForeachconjugacyclassinF ofsubgroups [P ]F thereisaunique(upto S-isomorphism)F-stableset αP satisfying

(i) cQ(αP)= 1 ifQ is fullynormalizedandF-conjugatetoP ,

(ii) cQ(αP)= 0 ifQ is fullynormalizedandnotF-conjugate toP .

ThesetsαP formanadditivebasisforthemonoidofallF-stableS-sets.Inaddition,by constructionin [10]thestabilizerof anypointinαP isF-conjugatetoasubgroupofP .

3. FixedpointordersoftheirreducibleF-stablesets

LetMark be the matrixof marksfor theBurnside ringof S, i.e.the matrixfor the

markhomomorphismΦ: A(S)→ A∗(S) withentries

MarkQ,P =(S/P )Q= |N

S(Q, P )| |P | .

Therowsand columns of Mark correspond to theS-conjugacy classes[P ]S ∈ Cl(S) of

subgroups in S. We order the subgroup classes by increasing order of the subgroups,

inparticular the trivial group1 corresponds to the first row and column,and S itself

correspondsto thelast rowandcolumn.This wayMark becomesuppertriangular.

OvertherationalnumbersthemarkhomomorphismΦ: A(S)⊗ Q−→ A∼= ∗(S)⊗ Q is

anisomorphism,andweletMöb = Mark−1 be theinverserationalmatrix.

FromMöb weconstructafurthermatrixFMöb asfollows:ForeachF-conjugacyclass

of subgroups in S we take the sum of the corresponding columns of Möb to be the

columnsofFMöb.ForeachF-conjugacyclassofsubgroupswechooseafullynormalized

representative of the class, and then we delete allrows thatdo not correspond to one

(8)

matrix with dimension equal to the number of F-conjugacy classes of subgroups; the

rows and columns correspond to the chosenrepresentatives ofthe F-conjugacy classes

(see Example 3.2).

Foreachclass[P ]F letP∗ bethechosenrepresentative.Theprecisedescriptionofthe

entries FMöbQ∗,P∗ intermsofMöbQ,P isthen

FMöbQ∗,P∗:= 

[P ]S⊆[P∗]F

MöbQ∗,P.

Theorem 3.1. Let F be a saturated fusion system over a finite p-group S. Let the

square matrix FMöb be constructed as above, with rows and columns corresponding to the F-conjugacy classes of subgroup in S. Then FMöb is invertible, and the inverse FMark := FMöb−1 isthematrixof marks forA(F),i.e.

FMarkQ∗,P∗=(αP∗)Q∗.

Proof. IntherationalghostringA∗(S)⊗Q= [P ]SQ theunitvectoreP isthesuperclass

functionwithvalue1 fortheclass[P ] andvalue0 fortheothersubgroupclasses.Wehave

oneunitvectoreP corresponding toeachconjugacyclass[P ]S,andthematrixofmarks

Mark expressesthe usualbasisfor A(S)⊗ Q,consisting of thetransitivesets[S/P ], in

termsoftheidempotentseP.Conversely,theinverseMöb = Mark−1 thenexpressesthe

idempotents eP as(rational)linearcombinations oftheorbits[S/P ].

AnelementX∈ A(S)⊗Q isF-stableifthenumberoffixedpoints|XQ| and|XP| are

the samefor F-conjugate subgroups Q∼F P ,i.e. if thecoefficients of X with respect

to the idempotents eQ and eP are the same forF-conjugate subgroups. The F-stable

elements ofA∗(F)⊗ Q≤ A∗(S)⊗ Q thushaveanidempotent basisconsisting of

eFP := 

[P]S⊆[P ]F eP,

with a primitive F-stable idempotent eFP corresponding to each F-conjugacy class of

subgroups. To express the idempotent eFP as alinear combination of orbits [S/P ], we

justhavetotakethesumofthecolumnsinMöb associatedtotheconjugacyclass[P ]F.

Hencecountingthenumberof[S/Q]-orbitsineFP, weget

cQ 

eFP= 

[P]S⊆[P ]F

MöbQ,P.

LetP∗denotethesetofchosenfullynormalizedrepresentativesforeachF-conjugacy

classofsubgroupsinS.ForeachP∗∈ P∗,wehaveanirreducibleF-stablesetαP∗,and

byProposition 2.2 anylinearcombination X ofthe{αP∗} canbe determinedsolely by

counting thenumberof[S/P∗]-orbitsforeachP∗∈ P∗.

Because eFP is F-stable, it is a (rational)linear combination of the {αQ∗}. The

(9)

expressthe idempotentseFP intermsof the{αQ∗} weonly careabouttherowsofMöb

corresponding to Q∗ ∈ P∗, and ignore all the other rows. Consequently, FMöb is the

matrixthatexpressestheidempotentseFP intermsofthe{αQ∗}.

The inverseFMark = FMöb−1 therefore expresses the irreducible F-stable sets αP

intermsoftheF-stableidempotentseQF,whichexactlyreduces tocountingtheQ-fixed

pointsofαP. 2

Example3.2.LetS = D8 bethedihedralgroupoforder 8andF = FD8(A6) denotethe

fusionsysteminducedbythefinitegroupA6.LetP betheentiresubgroupposetofD8

andP/F theposetofF-conjugacyclassesofsubgroupsinD8:

P P/F D8 [D8] V1 4 C4 V42 [V41] [C4] [V42] C21 C21 F Z C 2 2 F C 2 2 [Z] 1 [1]

where V4 is anelementary abelian2-group oforder 4, Cn isacyclic groupof order n,

Z ∼= C2 is the centre of D8, and square brackets denote the F-conjugacy class. The

horizontalsquigglylines indicatesubgroups’ being inthe sameD8-conjugacyclass and

dashedlinesmeansthattheyareinthesameF-conjugacy class.

ThetableofmarksMark anditsinverseMöb = Mark−1 aregivenbelow

Mark 1 C21 Z C22 V41 C4 V42 D8 1 8 4 4 4 2 2 2 1 C21 2 0 0 2 0 0 1 Z 4 0 2 2 2 1 C2 2 2 0 0 2 1 V1 4 2 0 0 1 C4 2 0 1 V42 2 1 D8 1

(10)

Möb 1 C1 2 Z C22 V41 C4 V42 D8 1 1/8−1/4 −1/8 −1/4 1/4 0 1/4 0 C1 2 1/2 0 0 −1/2 0 0 0 Z 1/4 0 −1/4 −1/4 −1/4 1/2 C22 1/2 0 0 −1/2 0 V1 4 1/2 0 0−1/2 C4 1/2 0−1/2 V2 4 1/2−1/2 D8 1

Below we givethe matrixfor FMöb andits inverseFMark = FMöb−1. Recallthat the

matrixforFMöb isobtainedbyaddingthecolumnsofMöb forthesubgroupswhichare

F-conjugate, and then by choosing a fully normalized subgroup in everyF-conjugacy

class on the rows. Here Z is theunique fully normalizedsubgroup inits F-conjugacy

class. FMöb 1 Z V41 C4 V42 D8 1 1/8−5/8 1/4 0 1/4 0 Z 1/4−1/4 −1/4 −1/4 1/2 V1 4 1/2 0 0 −1/2 C4 1/2 0 −1/2 V2 4 1/2 −1/2 D8 1 FMark 1 Z V1 4 C4 V42 D8 1 8 20 6 10 6 1 Z 4 2 2 2 1 V41 2 0 0 1 C4 2 0 1 V2 4 2 1 D8 1

From this we obtain the Φ(αP) by reading off the columns of FMark (since eFZ =

eC1 2 + eZ+ eC22): Φ(α1) = 8eF1 = 8e1 Φ(αZ) = 20eF1 + 4eFZ = 20e1+ 4eC1 2+ 4eZ+ 4eC22 Φ(αV1 4) = 6e F 1 + 2eFZ + 2eFV1 4 = 6e1+ 2eC 1 2 + 2eZ+ 2eC22+ 2eV41 Φ(αC4) = 10eF1 + 2eFZ + 2eFC4 = 10e1+ 2eC21+ 2eZ+ 2eC22+ eC4 Φ(αV2 4) = 6e F 1 + 2eFZ + 2eFV2 4 = 6e1+ 2eC 1 2 + 2eZ+ 2eC22+ 2eV42 Φ(αD8) = eF1 + eFZ + eFV1 4 = e1+ eC 1 2 + eZ+ eC22 + eFC4+ eFV2 4 + e F D8 + eV41+ eC4+ eV42+ eD8

(11)

Finally,applyingthematrixMöb toeachofthese fixedpoint vectorsyieldstheS-orbit descriptionoftheαP: α1= [S/1] αZ = [S/Z] + 2  S/C21+ 2S/C22 αV1 4 =  S/V41+S/C22 αC4 = [S/C4] +  S/C21+S/C22 αV2 4 =  S/V42+S/C21 αD8 = [S/D8]

Thereisanexplicitformulaforexpressingtheidempotentbasis{eQ} intermsofthe

transitiveS-set basis{[S/P ]} using the combinatoricsof thesubgroup poset, which is

often referred as the Gluck’s idempotent formula [6]. In the following two sections we

findsimilar explicitformulasfor thecoefficientsofαP∗ withrespect tothe idempotent

basis{eQ} andthenwithrespecttotheS-setbasis{[S/P ]}.Forthisweneedtolookat

theMöbiusinversioninGluck’sidempotentformulamoreclosely.

4. FixedpointordersandMöbiusinversion

Inthissectionwediscusshowamoreexplicitformulacanbeobtainedforfixedpoint

ordersofbasiselementsusingMöbiusinversion.Wefirstintroducebasicdefinitionsabout

Möbiusinversion.Formoredetails,wereferthereaderto[11].

LetP beafinite poset.Theincidencefunctionof P isdefinedas thefunction

ζP :P × P → Z : (a, b) →

1 a≤ b,

0 else.

Theincidence matrix ofP isthe |P|× |P|-matrix P) with entriesP)a,b = ζP(a,b).

Whenlabelling therows/columnswerespect thepartial orderof P,suchthata≤ b in

P impliesthatthe a-row/-columnprecedes theb-row/-column. This waythe incidence

matrixisalwaysupperunitriangular(anuppertriangularmatrixwithalldiagonalentries

equalto 1).

Definition4.1.TheMöbiusfunction for aposetP isμP :P × P → Q defined by

 a∈P

ζP(x, a)μP(a, y) = δx,y =

a∈P

μP(x, a)ζP(a, y)

forallx,y∈ P.If thecorresponding |P|× |P| Möbius matrix is(μP),wehave(μP)=

P)−1.

(12)

Proof. Byourlabellingconvention,(ζP) isupperunitriangular.Thereforewecanwrite

P) = I + (ηP), where P)i,j = 1 when ai < aj and vanishes elsewhere. Then ηP is

strictly uppertriangular,andP)|P|= 0,so

(μP) = (ζP)−1=I + (ηP)−1

= I− (ηP) + (ηP)2− (ηP)3+ . . . + (−1)|P|−1(ηP)|P|−1

hasallintegralentries. 2

Each of the matrices Pk) := (ηP)k hasan interpretation interms of chains in the

posetP.

Definition 4.3. A chain of length k in P is atotally ordered subset of k + 1 elements

σ ={a0< a1< . . . < ak}.Suchachainlinks a0 toak.

LetCkP(a,b) bethesetofchainsoflengthk linkinga tob,andCkP thesetofallchains

of lengthk inP. C0P is theset ofelements ofP.Similarly,letCP(a,b) betheset of all

chains linking a to b, CP the set of all chains in P, and for any chain σ ∈ CP let |σ|

denote thelengthof σ.

Lemma4.4.(ηkP)a,b=|CkP(a,b)|.

Proof. With a0:= a and ak := b,thedefinitionofmatrixmultiplicationgivesus

 ηPka 0,ak=  a1,...,ak−1∈P ηP(a0, a1)· ηP(a1, a2)· · · ηP(ak−1, ak).

BydefinitionoftheincidencefunctionηP,eachfactorηP(ai,ai+1) is1 ifai< ai+1 and

zero otherwise. The product ηP(a0,a1)· · · ηP(ak−1,ak) is therefore nonzero and equal

to 1 precisely whena0< a1<· · · < ak isak-chaininP linkinga0 toak. 2

Proposition 4.5. Foralla,b∈ P,

μP(a, b) =  k=0 (−1)kCkP(a, b)=  σ∈CP(a,b) (−1)|σ|.

Proof. Immediatefrom Lemmas 4.2 and4.4andtheirproofs. 2

Remark4.6.FromtheformulaaboveitisclearthattheMöbiusfunctioncanbeexpressed

as the reducedEuler characteristic of asubposet inP.More specifically,for a< b, let

(a,b)P denote the poset of all c ∈ P with a < c < b. Then μP(a,b) is equal to the

reduced Euler characteristic χ((a,b)P) of the subposet (a,b)P for every a,b ∈ P such

(13)

4.1. Möbiusfunctionsandfixed points

Onthenextfewpageswe gothroughtheconstructionofthematrixFMark in

The-orem 3.1 again, butthis time we follow the calculationsin detailusing the framework

ofincidenceandMöbiusfunctions.Forafinite p-groupS,weletP betheposetof

sub-groupsordered byinclusion.Thisposethasincidence andMöbiusfunctionsζP and μP

asdescribed intheprevioussection,denotedthereafterbyζ,respectivelyμ.

The matrix of marks Mark for the Burnside ring of S has entries Mark[Q],[P ] =

|NS(Q,P )|/|P | defined for pairs ([Q],[P ]) of S-conjugacy classes of subgroups in S.

Each column is divisible by the diagonal entry, which is the order of the Weyl group

WSP = NSP/P .Ifwedividethe[P ]S-columnby|WSP|,weget

Mark[Q],[P ]· 1 |WSP| = |NS(Q, P )| |NSP| = |{s ∈ S | sQ≤ P }| |NSP| =|{s ∈ S | Q ≤ P s}| |NSP| = P≤ SP∼S P and Q≤ P=  P∼SP ζQ, P.

We denote this value by ζS([Q],[P ]), and we call ζS the modified incidence function

for theS-conjugacy classesof subgroups. We have( ζS)[Q],[P ] = Mark[Q],[P ]/|WSP|, so

the modified incidence matrix ( ζS) is upper unitriangular (see Example 4.10 for the

computationsinthecaseS = D8).

Inverting the matrix ( ζS), we define ( μS) := ( ζS)−1 which gives rise to a modified

Möbius function μS forS-conjugacy classes of subgroups. Since Möb = Mark−1 is the

inverseofthematrixofmarks,wehave( μS)[Q],[P ]=|WSQ|·MöbQ,P.As( ζS) istriangular

withdiagonalentries1,wealsohave( μS)= ( ζS)−1=



k=0(−1)k· (( ζS)− I)k asinthe

proofofLemma 4.2,whichweusetocalculatetheentriesof( μS):

μS[Q], [P ]=  k=0 (−1)k·( ζS)− I k =  ([R0],[R1],...,[Rk])∈TS (−1)k ζS  [R0], [R1]  · · · ζS  [Rk−1], [Rk] 

whereTS consistsofalltuples ([R0],[R1],. . . ,[Rk]), fork≥ 0,ofS-conjugacyclassesof

subgroups[Ri]∈ Cl(S) suchthat[R0]= [Q],[Rk]= [P ],and|R0|<|R1|<· · · < |Rk|.

Sincewehave ζS  [Ri], [Rj]=  Rj∼SRj ζRi, Rj 

(14)

 ([R0],[R1],...,[Rk])∈TS R0=Q  R1∼SR1 (−1)kζR0, R1 ζS  R1, [R2]  · · · ζS  [Rk−1], [Rk]  .. . =  ([R0],[R1],...,[Rk])∈TS R0=Q  R1∼SR1  R2∼SR2 · · · ×  Rk∼SRk (−1)kζR0, R1  ζR1, R2· · · ζRk−1, Rk =  R0<R1<···<Rk s.t. R0=Q, Rk∼SP (−1)k =  PSP  k=0 (−1)kCkPQ, P=  PSP μQ, P.

Therefore, thematrixMöb,theinverseofthematrixofmarks,hasentries

Möb[Q],[P ]= 1 |WSQ| μS  [Q], [P ]= 1 |WSQ|  P∼SP μQ, P.

Thisconcludesthepartofourinvestigationconcerningonlythesubgroupstructureof S,

andforthecalculationsbelowweincludetheextradataofasaturatedfusionsystemF

on S.

In order to determine the number of fixed points |(αP)Q| as in Theorem 3.1, we

wish to calculate theF-analogs ofMark and Möb above. To dothis, we first choosea

fullynormalizedrepresentativeP∗foreachF-conjugacyclass[P ]F ofsubgroups,andas

before letP∗ be thecollectionofthese representatives.RecallthatthematrixFMöb is

constructedfromMöb bypickingouttherowscorrespondingtoQ∗∈ P∗,andthecolumn

inFMöb correspondingto P∗ ∈ P∗ isthesumof thecolumnsinMöb correspondingto

[P ]S withP ∼F P∗.Moreexplicitly,wehave

FMöbQ∗,P∗ :=  [P ]S⊆[P∗]F Möb[Q∗],[P ]= 1 |WSQ∗|  P∼FP∗ μQ∗, P.

We definethe modifiedMöbius function μF :P∗× P∗ → Z forthe(representatives of)

F-conjugacy classesofsubgroups,tobe

μFQ∗, P∗:=WSQ∗ · FMöbQ∗,P∗ =

 P∼FP∗

μQ∗, P,

summing the usual Möbiusfunction. The associated matrix( μF) isthen upper

unitri-angular.

The modified incidence matrixfor F is definedas the inverse( ζF):= ( μF)−1, with

theassociated function ζF :P∗× P∗→ Z.ByTheorem 3.1wethenhave

(αP)Q=FMark

(15)

where FMark := FMöb−1.Recall thatfor eachsubgroup R ≤ S, wedenote by R∗ the

chosenfullynormalizedrepresentativefortheF-conjugacyclassofR.Aspreviously,the

factthat( μF) isunitriangularimplies

ζFQ∗, P∗=  k=0 (−1)k·( μF)− Ik =  (R∗0,R∗1,...,Rk∗)∈TF (−1)k μFR0∗, R1  · · · μFR∗k−1, R∗k 

where TF consists of all tuples (R∗0,R1∗,. . . ,R∗k), for all k ≥ 0, of F-conjugacy class

representatives R∗i ∈ P∗ suchthatR∗0 = Q∗, Rk = P∗, and |R0∗| <|R∗1|<· · · < |R∗k|.

Sincewehave μFR∗i, R∗j=  Rj∼FR∗j μR∗i, Rj  ,

forallR∗i,R∗j ∈ P∗,weobtainthat

ζF(Q∗, P∗) =  (R∗0,R1∗,...,R∗k)∈TF  R1∼FR∗1 (−1)kμR∗0, R1  μFR∗1, R∗2  · · · μFR∗k−1, R∗k  .. . =  (R∗0,R∗1,...,R∗k)∈TF, R1,...,Rk∈P s.t. Ri∼FR∗i (−1)kμR∗0, R1  μR∗1, R2  · · · μR∗k−1, Rk  =  (R∗0,R∗1,...,R∗k)∈TF, R1,...,Rk∈P s.t. Ri∼FR∗i  σi∈CP(R∗i−1,Ri) for 1≤i≤k (−1)k+|σ1|+···+|σk|. (4.1)

Tocalculate ζF(Q∗,P∗) wehencehavetocountsequencesofchains1,. . . ,σk) such

thattheendRi ofσi isF-conjugateto thestartR∗i ofσi+1,and thefirstchainσ1 has

to startat Q∗ whilethefinal chainσk only hasto endat P∗ upto F-conjugation.We

givethesesequencesaname:

Definition4.7.AtetheredF-brokenchaininP linkingQ∗∈ P∗toP ∈ P isasequenceof

chains1,. . . ,σk) inP subject tothefollowingrequirements.Witheachchainwritten

asσi= (ai0,. . . ,aini) theymustsatisfy

• ai

ni ∼F a

i+1

0 for all1≤ i≤ k − 1, sothe endpointsof thechainsfit togetherupto

conjugation inF.

• ai

0∈ P∗ forall1≤ i≤ k. Everychainstartsat oneofthechosenrepresentatives.

|σi|= ni> 0,forall1≤ i≤ k.

(16)

If Q∗∼F P ,we allowthetrivialbrokenchainwith k = 0.LettBCF(Q∗,P ) be theset

oftetheredF-brokenchainslinkingQ∗toP .Thetotallength ofatetheredbrokenchain

σ = (σ1,. . . ,σk) isdefinedtobe

(σ) := k +|σ1| + · · · + |σk|.

Wevisualize atethered brokenchainas azigzagdiagram inthefollowingway:

a10 · · · a1n1 a2 0 · · · a2n2 . .. ak 0 · · · aknk < < < < < <

Thetotallengthofthetetheredbrokenchainisthenthetotalnumberof< and∼ signs

plus 1. The added 1 can be viewed as an additional hidden Q F Q∗ infront of the

broken chain,and this interpretationmatchesthe description,inRemark 5.3below,of

tethered brokenchainsas aspecialcaseofthebroken chains definedinSection5.

With theterminology of tethered brokenchains, thecalculations abovetranslateto

thefollowing statements:

Proposition 4.8. The modified incidence function ζF for a saturated fusion system F,

can be calculatedas ζFQ∗, P∗=  σ∈tBCF(Q∗,P∗) (−1)(σ)=  1,...,σk)∈tBCF(Q∗,P∗) (−1)k+|σ1|+···+|σk|

forallfullynormalized representativesQ∗,P∗∈ P∗.

Wenow statethemain resultof thissection.

Theorem4.9.LetF beasaturatedfusionsystemoverafinitep-groupS,andletP∗bea

setoffullynormalizedrepresentativesfortheF-conjugacyclassesofsubgroupsinS.Let

tBCF(Q∗,P∗) denotethesetofalltetheredF-brokenchainslinkingQ∗ toP∗.Thenthe

numbers offixed pointsfortheirreducible F-stablesetsαP∗,P∗∈ P∗,canbe calculated as (αP)Q∗=WSP∗ ·  σ∈tBCF(Q∗,P∗) (−1)(σ) forQ∗,P∗∈ P∗.

(17)

Proof. Immediatefromthepropositionsince|(αP∗)Q∗|=|WSP∗|· ζF(Q∗,P∗). 2

Example4.10.LetS = D8andF = FS(A6) asbefore.TheincidencematrixζP andthe

MöbiusmatrixμP aregivenasfollows.

ζP 1 C1 2 C21  Z C2 2  C2 2 V41 C4 V42 D8 1 1 1 1 1 1 1 1 1 1 1 C1 2 1 1 1 C21 1 1 1 Z 1 1 1 1 1 C2 2  1 1 1 C2 2 1 1 1 V41 1 1 C4 1 1 V2 4 1 1 D8 1 μP 1 C1 2 C21  Z C2 2  C2 2 V41 C4 V42 D8 1 1−1 −1 −1 −1 −1 2 0 2 0 C12 1 −1 0 C1 2  1 −1 0 Z 1 −1 −1 −1 2 C2 2  1 −1 0 C22 1 −1 0 V14 1 −1 C4 1 −1 V24 1−1 D8 1

Below we see the matrices for μS and ζS obtained by summing over the columns of

subgroups belongingto the sameS-conjugacyclass and choosing anS-conjugacy class

representativeontherows.

μS 1 C1 2 Z C22 V41 C4 V42 D8 1 1 −2 −1 −2 2 0 2 0 C1 2 1 0 0−1 0 0 0 Z 1 0 −1 −1 −1 2 C22 1 0 0−1 0 V1 4 1 0 0−1 C4 1 0−1 V2 4 1−1 D8 1 ζS 1 C21 Z C22 V41 C4 V42 D8 1 1 2 1 2 1 1 1 1 C21 1 0 0 1 0 0 1 Z 1 0 1 1 1 1 C2 2 1 0 0 1 1 V1 4 1 0 0 1 C4 1 0 1 V42 1 1 D8 1

(18)

WD8 1 C 1 2 Z C22 V41 C4 V42 D8 1 8 C1 2 2 Z 4 C22 2 V1 4 2 C4 2 V2 4 2 D8 1 mD8 1 C 1 2 Z C22 V41 C4 V42 D8 1 8 4 4 4 2 2 2 1 C1 2 2 0 0 2 0 0 1 Z 4 0 2 2 2 1 C22 2 0 0 2 1 V1 4 2 0 0 1 C4 2 0 1 V2 4 2 1 D8 1

The lasttwo matrices aboveare thediagonalmatrixWD8 withentries (WD8)[P ],[P ]=

|WS(P )|, and the matrix mD8 = ζS · WD8 which is the same as matrix of the mark

homomorphismMark.SowealsohaveMöb = W−1D8· μS.

Nowlet μF bethematrixobtainedbysummingcolumnsof μS overtheF conjugacy

classesandpickingfullynormalizedrepresentativesfortherows.Let ζF = ( μF)−1.

μF 1 Z V1 4 C4 V42 D8 1 1−5 2 0 2 0 Z 1−1 −1 −1 2 V1 4 1 0 0 −1 C4 1 0 −1 V2 4 1 −1 D8 1 ζF 1 Z V1 4 C4 V42 D8 1 1 5 3 5 3 1 Z 1 1 1 1 1 V1 4 1 0 0 1 C4 1 0 1 V2 4 1 1 D8 1

From the definition of FMöb, it is easy to see thatFMöb = W−1F · μF and FMark =

FMöb−1 = ζ

F · WF where WF is the diagonal matrix with entries (WF)P∗,P∗ =

|WS(P∗)| for all P∗ ∈ P∗. Theorem 4.9 says thatwe can calculate the entries of the

matrix ζF bycountingthenumberoftetheredbrokenchains.Forexample, ζF(1,Z)= 5

because there are 5 tethered broken chainslinking 1 to Z. We givemore complicated

examplesoftetheredbroken chaincalculationsinExample 5.5.

Remark 4.11. Note thatthe modified incidence matrix with respect to S-conjugations

and themodifiedMöbiusfunctiononS-conjugatesubgroups(comingfromtheposetof

subgroups)areconstructedinthesameway:AddthecolumnsofS-conjugatesubgroups,

pick outany row from eachclass. It is interesting thatperforming thesameoperation

on the originals of the incidence function and the Möbius inverse ends up giving you

inverse matrices; inparticular, thisis notwhathappensfor modifications withrespect

to F-conjugation which is what is done in the rest of the paper. We think that this

shows that the S-conjugation action on the subgroup poset is more special that the

(19)

5. Brokenchains andthemaintheorem

Now thatwehaveformulas for thenumberof fixed pointsof αP, we will determine

how each αP decomposes into S-orbits. For every element X ∈ A(S) of the Burnside

ring,weletcQ(X) denotethenumberof(virtual)[S/Q]-orbits,i.e.thecoefficientsofthe

linear combination X = [Q]ScQ(X)· [S/Q]. The matrixof marks Mark encodes the

numberoffixedpointsintermsofthenumberoforbits,sothenumbers|XQ| formafixed

pointvectorϕ:= Mark·(cQ(X)).RecallthatMöb istheinverseofMark.Givenanyfixed

pointvectorϕ,wecanthereforerecovertheorbitdecompositionas (cQ(X))= Möb·ϕ.

ForαP we alreadyhaveaformula forthenumberof fixed points|(αP)Q|, which we

writeintheformof

(αP)Q=FMarkQ∗,P∗=WSP∗ · ζFQ∗, P∗

where ζF(Q∗,P∗) has acomplicated Möbiusformula givenin(4.1).We alsoknow how

Möb is given in terms of Möbius functions. The number of [S/Q]-orbits in αP must

thereforebe cQ(αP) =  [R]∈Cl(S) MöbQ,R·(αP)R= 1 |WSQ|  [R]∈Cl(S) μS[Q], [R]·(αP∗)R∗ = 1 |WSQ|  R∈P μ(Q, R)·WSP∗ · ζF  R∗, P∗ = |WSP | |WSQ|  R∈P μ(Q, R) ·  (R∗0,R∗1,...,R∗k)∈TF, R1,...,Rk∈P s.t. Ri∼FR∗i (−1)kμR∗0, R1  μR∗1, R2  · · · μR∗k−1, Rk 

where thesum isover TF of allk-tuples,for allk ≥ 0, of(prefixed) F-conjugacy class

representatives R∗i ∈ P∗ suchthat R∗0 = R∗, R∗k = P∗, and |R∗0| <|R∗1|<· · · < |R∗k|.

Fromthis weobtainthat

cQ(αP) =|WSP | |WSQ|  R0,R1,...,Rk∈P s.t. Rk∼FP∗, |Q|≤|R0|<|R1|<···<|Rk| (−1)kμ(Q, R0  R∗0, R1  μR∗1, R2  · · · μRk−1, Rk  =|WSP | |WSQ|  R0,R1,...,Rk∈P s.t. Rk∼FP∗, |Q|≤|R0|<|R1|<···<|Rk|  σ0∈CP(Q,R0)  σi∈CP(Ri−1 ,Ri) for 1≤i≤k (−1)k+|σ0|+|σ1|+···+|σk|.

(20)

Theresultingformulaisverysimilartothecalculationsforfixedpointsintheprevious

section,exceptthatwehaveanadditional(possiblytrivial)chainσ0infront.Wecombine

this additional chain with the definition of tethered broken chains and arrive at the

following definition:

Definition 5.1.AnF-brokenchain inP linkingQ∈ P toP ∈ P isasequence ofchains

01,. . . ,σk) inP subject tothe following requirements.Witheachchainwrittenas σi= (ai0,. . . ,aini) theymustsatisfy

• aini F ai+10 forall 0≤ i≤ k − 1, so theendpoints of thechainsfittogether upto

conjugationinF.

• ai

0 ∈ P∗ for all 1≤ i ≤ k. Every chain except for σ0 starts at one of the chosen

representatives.

|σi|= ni> 0,forall1≤ i≤ k.Note thatσ0is allowedtobe trivial.

• a0

0= Q andaknk∼F P .

As before, ifQ∼F P ,we allowthetrivial brokenchainwith k = 0 andσ0 trivial.Let

BCF(Q,P ) betheset ofF-brokenchainslinkingQ toP .Wedefine thetotal length of

abrokenchainσ = (σ0,. . . ,σk) tobe

(σ) := k +|σ0| + · · · + |σk|.

To visualizeabrokenchain,werepresentitbythediagram

a0 0 · · · a0n0 a1 0 · · · a1n1 . .. ak 0 · · · aknk < < < < < <

The totallengthoftherepresentedbroken chainisthen equalto thenumberof< and

∼ signsputtogether.

Now westateourmain theorem:

Theorem5.2.LetF beasaturatedfusionsystemoverafinitep-groupS.LetBCF(Q,P )

denote the set of F-broken chains linking Q to P . Thenthe number of [S/Q]-orbits in each irreducibleF-stable setαP,denoted cQ(αP), can becalculated as

(21)

cQ(αP) = |WS P∗| |WSQ| ·  σ∈BCF(Q,P ) (−1)(σ)

forQ,P ∈ P, whereP∗∼FP is fullynormalized.

Proof. Immediatefromtheargumentat thebeginningofthesection. 2

Remark5.3.Ifabrokenchain01,. . . ,σk)∈ BCF(Q,P ) happenstohaveσ0equalto

thetrivialchain,i.e.0|= 0,thenQ istheendpointofσ0soσ1 hastostartatQ∗.The

converseisalsotrue,ifσ1startsatQ∗,thenσ0hastobetrivial.Inthiscase1,. . . ,σk)

isexactlythedata ofatethered brokenchainlinkingQ∗ to P .

Hencethetetheredbrokenchains1,. . . ,σk)∈ tBCF(Q∗,P ) correspondpreciselyto

thebrokenchains01,. . . ,σk)∈ BCF(Q,P ) whereσ0 isthetrivialchain.Thisway,

indiagram form,atetheredbrokenchainlinkingQ (orrather Q∗)toP looks like

Q Q∗ · · · a1n1 a2 0 · · · a2n2 . .. ak0 · · · aknk < < < < < < withak

nk ∼F P .Drawninthisform,thetotallengthofthetetheredbrokenchainisthe

totalnumberof < and ∼ symbols,where the initialQ∼ Q∗ adds thenecessary +1 in

comparisonwithDefinition 4.7.

Theorem 4.9canthusbereformulated as

Corollary 5.4 (Theorem 4.9 revisited). Let F be a saturated fusion system over a

fi-nitep-group S.The numbers of fixed pointsforeach irreducible F-stableset αP can be calculatedas (αP)Q=W SP∗ ·  σ=(σ0,...,σk)∈BCF(Q,P ) 0|=0 (−1)(σ)

(22)

Example5.5.LetS = D8andF = FS(A6) asbefore.WeshowedearlierthatcQ(αP)= 1

when Q = C21 and P = V42. Note that inthis case |WSP∗| =|WSQ| = 2 andthere is

onlyonebrokenchainfromC1

2 toV42 whichis C1 2 Z V2 4 <

Note thatthis isalsoatethered brokenchain.Sowehave|(αP)Q|=|WSP∗|· 1= 2 for

Q= C1

2 andP = V42.

IfwerepeatthesamecalculationforQ= C1

2 andP = D8,thenweobservethatthere

are 10 brokenchainsfrom C1

2 to D8 whichare C1 2 D8 C1 2 V41 D8 < < < C1 2 Z D8 < C1 2 V41 V1 4 D8 < < C21 Z V41 D8 < < C21 Z C4 D8 < < C21 Z V42 D8 < < C1 2 Z V1 4 V1 4 D8 < < C1 2 Z C4 C4 D8 < < C1 2 Z V2 4 V2 4 D8 < <

If we sum thesigns (−1)(σ) over all the broken chainsabove, and multiplyit with

|WSP∗|/|WSQ|,weget

cQ(αP) =1

2(1− 2 + 4 − 3) = 0.

Note thatifweonlyconsiderthetethered brokenchains,then weobtain

(αP)Q=W

SP∗(1− 3 + 3) = 1.

Note thatin the aboveexample someof the broken chainsnaturally canbe paired

(23)

secondrowcancelswiththebrokenchainsonthethirdrow.Inthenextsectionweprove

thatthebrokenchaincalculationsforcalculatingcQ(αP) and|(αP)Q| canbesimplified.

6. Computationalsimplifications

Inthis section, weshow thatcertaintypes ofbroken chainscanbe naturallypaired

withcertain other typesofbroken chainsinsuchaway thattheircontributions inthe

summationinTheorem 5.2canceleachother.Thisgivesamodifiedversionoftheformula

inTheorem 5.2wherewe onlyconsider brokenchainswhicharenotineithertype.We

startwithadefinitionofthese types.

Definition6.1.Letσ = (σ0,. . . ,σk) beabrokenchaininF withσi= (ai0,. . . ,aini).

Sup-posethatasubgroupai

j inthebrokenchainisS-conjugatetothechosenrepresentative

(ai

j)∗∈ P∗.Wesaythatsuchanaji isa∗-groupoftype 1 if0< j < ni,orifi= j = 0 and n0> 0.Wesaythataij is a∗-groupof type 2 ifj = ni and0≤ i< k.Intheremaining

caseswe eitherhavej = 0 and i> 0,in whichcase ai

j ∈ P∗ is always required, or we

havei= k andj = nk withaij as theverylastgroup.Ineitherof theselast cases,aij is

not a∗-group.

Indiagramformthetwo typesof∗-groupsareas follows:

. .. · · · (ai j) · · · . .. < < or (a0 0) · · · . .. < (Type 1) . .. · · · (ai j) ai+10 · · · . .. < < or (a0 0) a1 0 · · · . .. < (Type 2)

Ifabrokenchainσ containsatleastone∗-group,wesaythatσ issparklingof type 1

or 2 wherethetypeof σ isdeterminedbythetypeofthesmallest∗-groupin σ.A broken

chainis drab ifithasno∗-groupsatall.

Example6.2.ConsiderthelastcalculationinExample 5.5,whereQ= C1

2 andP = D8.

Thebrokenchainsonthesecondrowareallsparklingoftype 1.Morespecificallyinall

these,thesecondchainsinclude∗-groupsoftype 1 whichareV1

4,C4,andV42.Notealso

thatthe secondbroken chainonthefirstrowis asparklingbroken chainof thetype 1.

Thefourthchainonthefirstrowandallthechainsonthethirdrowaresparklingbroken

(24)

inan obviousway. Theonlydrab brokenchainsinthis examplearethefirst andthird

broken chainsonthefirstrow.

Proposition6.3.LetF beasaturatedfusionsystemoverafinitep-groupS.Incalculating

the coefficientscQ(αP) byTheorem 5.2, itissufficient toconsideronly thedrabbroken chains: cQ(αP) = |WS P∗| |WSQ| ·  σ∈BCF(Q,P ) σis drab (−1)(σ)

forQ,P ∈ P, whereP∗∼F P isfullynormalized.

Proof. ByTheorem 5.2wehave

cQ(αP) =|WSP | |WSQ| ·  σ∈BCF(Q,P ) (−1)(σ)

for Q,P ∈ P, where P∗ F P is fully normalized. For each subgroup R ≤ S we will

consider allthesparklingbrokenchainsthathaveR astheirsmallest∗-groupandlinks

Q to P .ForeachR we willshowthatthese brokenchainscanceleachother inthesum

above, leavingonly the drabbroken chains at theend. Inorder for R to be a∗-group

at all, R must be S-conjugateto the chosenrepresentative R∗ ∈ P∗. Wecantherefore

chooseans∈ S suchthatsR = R,andwelets befixedfortheremainderoftheproof.

Let σ∈ BCF(Q,P ) beabroken chainwith R as itssmallest∗-group. Suppose σ =

(. . . ,σ,. . .) where σ is thechain containingR as a∗-group. If R is at theend of σ,

then σ istype 2,otherwiseσ istype 1.

If σ is type 1, then we write σ = (A0,. . . ,Am−1,R,B1,. . . ,Bn) where n ≥ 1.

We can then conjugate the entire second part of the chain with s to get subgroups

Ci := sBi. These form a chain (R∗,C1,. . . ,Cn) which starts at R∗ ∈ P∗ and has

length at least 1 (see the illustration (6.1) below). We also have Cn ∼S Bn ∼F Bn∗,

so we can “break” σ at R into two chains and get a legal broken chain σ :=

(. . . ,(A0,. . . ,Am−1,R),(R∗,C1,. . . ,Cn),. . .) wherewedon’tchangeanyotherpartof σ.

Thenewbrokenchainσ istype 2 withR asitssmallest∗-group.Sinceσhasoneextra

break comparedto σ,(σ)= (σ)+ 1.

Ifalternativelyσ hastype 2,wewriteσ= (A0,. . . ,Am−1,R) andlet(R∗,C1,. . . ,Cn)

be the chain of σ that follows σ (such a chain exists since R is not the very last

group of σ). We conjugate every Ci with s from the right Bi := Cis, and they form

a chain (R,B1,. . . ,Bn) starting at R and satisfying Bn ∼S Cn ∼F Cn∗. We canthen

combine σ with the Bi-chain to get a single chain, and a new broken chain σ :=

(. . . ,(A0,. . . ,Am−1,R,B1,. . . ,Bn),. . .) of type 1 with R as its smallest ∗-group. We

also have(σ)= (σ)− 1.

(25)

. .. A0 · · · Am−1 R B1 · · · Bn R∗ C1 · · · Cn . .. < < < < < < S S < < < S Type 1 Type 2 (6.1)

Becauseany twocorrespondingbroken chainshavelengthsthatdifferby1,theycancel

inthesumofTheorem 5.2. 2

Anotherway to reducethe numberof terms inthe sum of Theorem 5.2, is to limit

thesizes of the individual chainsina broken chain.This stems from thefact thatthe

usualMöbiusfunctionforsubgroupsofp-groupshasμ(A,B)= 0 unless B≤ NSA with

B/A elementaryabelian(see[7,Corollary 3.5],[8,Proposition 2.4]).

Proposition6.4.LetF beasaturatedfusionsystemoverafinitep-groupS.Incalculating

the coefficients cQ(αP) by Theorem 5.2, it is sufficient to consider only broken chains 0,. . . ,σk) where every σi = (ai0,. . . ,aini) has a

i ni ≤ NS(a i 0) with aini/a i 0 elementary abelian.Therefore, wehave

cQ(αP) = |WS P∗| |WSQ| ·  σ=((ai j)nij=0)ki=0∈BCF(Q,P ), s.t. each ai ni/a i 0is elm.ab. (−1)(σ)

forQ,P ∈ P, whereP∗∼FP is fullynormalized.

Proof. IntheproofofTheorem 5.2 weconsiderthesum

cQ(αP) = |WSP | |WSQ|  R0,R1,...,Rk∈P s.t. Rk∼FP∗, |Q|≤|R0|<|R1|<···<|Rk| (−1)kμ(Q, R0  R∗0, R1  μR∗1, R2  · · · μRk∗−1, Rk 

A term of this sumis only nonzero ifQ R0 and Ri−1 Ri with elementary abelian

quotientsforalli.Hencethesumreduces to

cQ(αP) =|WSP | |WSQ|  R0,R1,...,Rk∈P s.t. Rk∼FP∗, |Q|≤|R0|<|R1|<···<|Rk|,

R0/Q and Ri/Ri−1are elm.ab.

(−1)kμ(Q, R0  R∗0, R1  μR∗1, R2  · · · μR∗k−1, Rk 

(26)

As inthe proof of Theorem 5.2 we then replace each product of Möbius functions by

broken chainsandarriveattheformulaintheproposition. 2

Remark6.5. Sadlythetwo reductionsofPropositions 6.3 and 6.4cannot becombined,

as thatwould requirecanceling thesame brokenchainwith two different otherbroken

chains. To see this, let F = FD8(A6) be as in Example 3.2, where we showed that

αD8 = [S/D8].Letusshowthatifweexcludeboththesparklingbrokenchainsandthose

that violate the hypothesisof Proposition 6.4, then we would notbe ableto compute

thecoefficientoftheorbit[S/C1

2] inαD8 correctly.

AsitislistedinExample 5.5,thereareatotalof10brokenchainslinkingC1

2toD8.Of

these,only(C1

2 < D8) and(C21,Z < D8) aredrab,andofthose,onlythesecondwouldbe

countedinProposition 6.4.Thusthereisnochanceforcancelation,andtheintersections

of Propositions 6.3 and 6.4 wouldyield cC1

2(αD8)= 1/2, which is obviously false. The

issue isthatthere canbecancelation betweensparkling subgroupsand subgroupsthat

violatethehypothesisofProposition 6.4, sothatbycombiningbothconditionswemay

undercountthecancelationsneededintheproofofTheorem 5.2.

7. Anapplicationto characteristicbisets

InthissectionwedemonstratehowwecanuseTheorem 5.2togivestructuralresults

fortheminimal characteristicbisetassociatedto asaturatedfusionsystem.

Definition7.1.Weconsider(S,S)-bisets,i.e.finitesetsequippedwithbothaleftS-action

and aright S-action,andsuchthattheactionscommute.Thestructureofsuchabiset

X is equivalent to anaction ofS× S onX with (s1,s2).x= s1.x.(s2)−1,and for each

point x∈ X wespeakofthestabilizerStabS×S(x) asasubgroupofS× S.

An F-characteristic biset for a fusion system F on S is a biset Ω satisfying three

propertiesoriginallysuggestedbyLinckelmannandWebb:

(i) For every point ω ∈ Ω the stabilizer StabS×S(ω) has theform of agraph/twisted

diagonal Δ(P,ϕ) for some ϕ ∈ F(P,S) and P ≤ S, where the twisted diagonal Δ(P,ϕ)≤ S × S isdefinedas

Δ(P, ϕ) = ϕ(s), s s∈ P.

(ii) Ω is F-stable with respect to both S-actions. For bisets thatsatisfy property (i)

thisboils downto checkingthatthenumberoffixed pointssatisfy

ΩΔ(P,id)=ΩΔ(P,ϕ)=ΩΔ(ϕP,id) forallϕ∈ F(P,S) andP ≤ S.

(iii) Theprimep doesnotdivide|Ω|/|S| (whichisanintegerbecauseof(i)).Thisensures

(27)

In [9] it is shown that there exists a characteristic biset for F if and only if F is

saturated,anditisshownhowto reconstructF given anyF-characteristicbiset.In[5]

two of the authors of this paper give a parametrization of all the characteristic bisets

for agiven saturatedfusion systemF. In particular it isshown thatthere is aunique

minimal F-characteristic biset ΛF, and every other F-characteristic biset contains at

leastonecopyof ΛF.

Theorem 7.2. (See [5, Theorem 5.3 and Corollary 5.4].) Let F be a saturated fusion

systemon afinite p-group S,andconsider theproductfusion system F × F onS× S. AccordingtoProposition 2.2there isan irreducible(F × F)-stable(S× S)-set αΔ(S,id) corresponding tothediagonal Δ(S,id)≤ S × S.Denote this (S× S)-set or(S,S)-biset byΛF:= αΔ(S,id).

The biset ΛF is then F-characteristic, and every F-characteristic biset contains a copy of ΛF (up to isomorphism).Hence ΛF is the unique minimalcharacteristic biset forF.

InordertoapplyTheorem 5.2tostudyΛF weneedtofigureoutwhatbrokenchains

looklike inthecontextof bisetsand thefusionsystemF × F.

In a product fusion system the conjugation is defined coordinate-wise. Hence two

twisted diagonals Δ(P,ϕ) and Δ(P,ϕ) are conjugate in F × F if and only if there

are additionalisomorphismsψ,ρ∈ F such thatϕ = ψ◦ ϕ◦ ρ−1.Consequently, every

Δ(P,ϕ) withϕ ∈ F(P,S) isconjugate to Δ(P,id) which is conjugate to Δ(P,id) for

allP F P . Inaddition the subgroups ofS× S that aresubconjugate to Δ(S,id) in

F × F areprecisely allthetwisteddiagonals Δ(P,ϕ) withϕ∈ F(P,S) and P ≤ S. To

study ΛF = αΔ(S,id) we thereforehave to consider broken chainswhere all the groups

aretwisteddiagonalscomingfrommapsinF.

Two twisted diagonals satisfy Δ(Q,ψ) ≤ Δ(P,ϕ) exactly when ϕ extends ψ, i.e.

Q ≤ P and ψ = ϕ|Q. Every (F × F)-conjugacy class of twisted diagonals contains a

fully normalizedrepresentative on theform Δ(P∗,id) where P∗ is fully F-normalized,

suppose for Theorem 5.2 that we have chosen such at fully normalized representative

Δ(P∗,id) for each conjugacy class. The broken chains that we consider are chains of

inclusionsconnectedby(F × F)-conjugations.

• Every chain of inclusionsΔ(P11) ≤ · · · ≤ Δ(Pk,ϕk) is asequence of extensions

withϕi= ϕk|Pi.

• Everychain(exceptforthe0’thchain)startswithadiagonaloftheformΔ(P∗,id)

where P∗ afullynormalizedrepresentativefortheF-conjugacyclass.

Withthis insight we cannow apply Theorem 5.2 and relateΛF to the largest normal

subgroup in F. Here normality is in the sense of [1, Definition 4.3] where P ≤ S is

normalinF ifeveryhomomorphismϕ∈ F(Q,R) extendstosomeϕ ∈ F(QP,RP ) with

Referanslar

Benzer Belgeler

Bunlar: kabir, ömrün geçişi, ölüm, vahdet-i vücut, dünyalık, Allah’a iman ve yaka­ rış, dini temler, insanın yalnızlığı, aşk ve mavera, nasihatlar ve

He- riyo’yu, Yugoslav ve İngiliz kırallarını kabul et­ tiği oda ve o devre ait tarihî vakaların cere­ yan ettiği yerler gayet doğru olarak tesbit

Bir kısım edebiyat tarihçilerimiz ise, sade­ leştirme girişimlerinde Şinasi- Namık Kemal İkilisini öncü olarak belirlerlerken, Akif Paşa’- yı da -Avrupa'yı

Kö y Enstitüleri’nin m im arı, başta Rum eli H isarı ve Topkapı Sarayı Harem D airesi olm ak üzere pek ço k tarihi eserin resto ratö rü, Bedri Rahmi ve

öğretmen, köy eğitimcisi ve köy için şart olan elemanları yetiştirme yolla nm , köy eğitim i kurumlannı (iş e- ğitim li köy okulu, eğitm enli

The focus was to cover all security issues around VoIP services including social engineering attacks which are almost independent of the technology advancements and

argument presented here, given that the causal theory of properties does not distinguish between the case in which zombie worlds are impossible because physicalism is true and the

Based on the percentage analysis result, it is revealed that the level of family dynamics and its dimensions of prospective teachers with regard to type of family