• Sonuç bulunamadı

Karabulut, Ş., Gökmen, U., Karakoç, H., Hakan, Ö. K., & Çitak, R. (2016). Experimental Investigation Of B 4 C Particulate Reinforced Aluminium 6061 Based Composite Material In Wire-Cut Edm.

N/A
N/A
Protected

Academic year: 2021

Share "Karabulut, Ş., Gökmen, U., Karakoç, H., Hakan, Ö. K., & Çitak, R. (2016). Experimental Investigation Of B 4 C Particulate Reinforced Aluminium 6061 Based Composite Material In Wire-Cut Edm."

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

1239

МЕТАЛЛИЧЕСКИЕ ПОВЕРХНОСТИ И ПЛЁНКИ

PACSnumbers:06.20.Dk,06.60.Mr,06.60.Vz,62.20.mm,62.20.Qp,62.23.Pq,68.35.Ct

Experimental

Investigation

of

B

4

C

Particulate

Reinforced

Aluminium

6061

Based

Composite

Material

in

Wire-Cut

EDM

Ş.Karabulut,U.Gökmen*,H.Karakoç,Ö.K.Kalkan,andR.Çıtak**

HacettepeUniversity,

DepartmentofMechanicalProgram, 06935Ankara,Turkey

*GaziUniversity,

TechnicalSciencesVocationalSchool, 06935Ostim,Ankara,Turkey

**

GaziUniversity, FacultyofTechnology,

DepartmentofMetallurgyandMaterialsEngineering, 06500Ankara,Turkey

Inthepresentpaper,theinfluencesofcuttingparametersonsurface

rough-ness in wire electric-discharge machining of (WEDM) process of

particle-reinforcedaluminiumAA6061alloycompositeareinvestigated.The

compo-sitesareproducedusing15%wt.B4Cfractionusingpowdermetallurgy.

Ex-perimental trialsare performedbasedonTaguchiL18(2132)withamixed

orthogonalarray,andthe WEDMcuttingparametersareoptimizedforthe

bestsurfacequality.Theinvestigationresultsareevaluatedbyresponse

sur-faceplotsandmaineffectgraphs.Themachinedsurfaceofthemetalmatrix

composite isinvestigatedusingscanningelectronmicroscopy(SEM)

micro-graphs.TheeffectofWEDMmachiningvariablesaredeterminedusing

anal-ysis of variance(ANOVA).Theanalysisresult showsthat themost

signifi-cantcuttingparameterispeakcurrentforsurfaceroughness.TheSEMand

opticalmicrographsindicatethatthereinforcedB4Cparticlesare

homogene-ouslydistributedinthematrixstructure.Mathematicalmodelsarealso

gen-erated using regression analysis for the surface roughness. Confirmation

tests arecarriedout todeterminethepredictionperformanceofthe

mathe-matical models,and thesurface roughness ispredicted with an acceptable

meansquarederror.

Вційроботідослідженовпливпараметріврізаннянашерсткістьповерхні приобробленнінаелектроерозійномувирізномустанку(ЕЕВС)композита алюмінійовогостопуAA6061,армованогочастинками.Композити вироб-лялися з використанням 15% вагової фракції B4C методою порошкової Фотокопирование разрешено только в соответствии с лицензией Напечатано в Украине.

(2)

металургії. Експерименти виконувалися на базі Taguchi L18 (2132) зі змішаним ортогональним масивом; параметри ЕЕВС-оброблення різан-нямоптимізувалися,щободержатинайкращуякістьповерхні. Результа-ти досліджень оцінювалисязаграфіками поверхнівідгуку та головного ефекту.Обробленаповерхнякомпозитноїметалевоїматриці досліджува-лася з використанням мікрознімків сканівної електронної мікроскопії (СЕМ). Вплив ЕЕВС-оброблення визначався за допомогою дисперсійної аналізи(ДА).Аналізарезультатівпоказала,щонайбільшістотним пара-метромрізаннядляшерсткостиповерхнієпіковийструм.СЕМтаоптичні мікрознімкипоказали,щоармувальнічастинкиB4Cрозподіленів струк-турі матриці рівномірно. З використанням реґресійної аналізи були та-кожзґенерованіматематичнімоделідляповерхневоїшерсткости. Випро-буваннянавідповідністьтехнічнимумовамбуливиконанізметою попе-редньої оцінки математичних моделів, і поверхневу шерсткість було спрогнозованозприпустимоюсередньоквадратичноюпохибкою. Вданной работеисследовановлияниепараметров резания на шерохова-тостьповерхностиприобработкенаэлектроэрозионномвырезномстанке (ЭЭВС) композита алюминиевого сплаваAA6061, армированного части-цами.Композитыпроизводилисьсиспользованием15%весовойфракции B4Cметодомпорошковойметаллургии.Экспериментыпроизводилисьна базе Taguchi L18 (2132) со смешанным ортогональным массивом; пара-метры ЭЭВС-обработки резанием оптимизировались с целью получения наилучшего качества поверхности. Результаты исследований оценива-лись по графикамповерхностиотклика и главногоэффекта. Обработан-ная поверхность композитной металлической матрицы исследовалась с использованиеммикроснимковсканирующейэлектронноймикроскопии (СЭМ). ВлияниеЭЭВС-обработкиопределялосьпри помощи дисперсион-ногоанализа(ДА).Анализрезультатовпоказал,чтонаиболее существен-нымпараметромрезаниядляшероховатостиповерхностиявляется пико-выйток.СЭМиоптическиемикроснимкипоказали,чтоармирующие ча-стицыB4Cраспределенывструктурематрицыравномерно.С использова-ниемрегрессионногоанализабылитакжесгенерированыматематические модели для поверхностной шероховатости. Испытания на соответствие техническимусловиямбылипроведенысцельюпредварительнойоценки математическихмоделей,и поверхностнаяшероховатостьбыла спрогно-зированасприемлемойсреднеквадратичнойпогрешностью.

Key words: wire electric dischargemachining, surface roughness,Taguchi

method,responsesurfacemethodology.

(ReceivedJuly6,2015)

1.INTRODUCTION

Metalmatrixcomposites(MMCs)havebeenwidelyinvestigatingin

re-cent years andare now utilizedin manyengineering fields including

(3)

sporting goodsbecauseoftheirlowdensityincombinationwiththeir

excellent wear resistance, highspecific strength,hardness, and

frac-turetoughness [1—6].However,machinabilityofMMCsisconsidered

difficult in connection with hard reinforcement elements in matrix

structure[1—7].Boroncarbide (B4C)is extremelyhard reinforcement

material with the superior properties such as good wear resistance,

highhardness,lowspecificweight,corrosionresistance,highmelting

point, adequate resistance to chemical agents, and good mechanical

properties.Theseoutstanding performancesofB4Cmadeita

prefera-ble reinforced material, widely used in numerous industrial

applica-tionsrequiringhighresistance,suchasthenuclearindustry,fortank

armour, and ballistic protections. Hence, several researchers have

studied the production and machinability properties of MMCs

rein-forced with B4C in recent years [8, 9]. However, there are two main

problems hindering the superior properties of B4C, one is that very

hightemperatureisrequiredforitssinteringandtheotheristhelow

fracturetoughness[10].Wireelectricaldischargemachining(WEDM)

is ahighprecision machiningmethod widelyusedforhardmaterials,

metallic alloys, andgraphite that would bevery difficult tocutwith

traditional machine tools using the best economic cutting tools. In

wire-cutting technique, a thin single-strand metal wire is machined

the workpiecesubmerged inatank of deionized watertoutilize heat

fromelectricalsparks.WEDMusesanonstopcuttingwireelectrodeto

machine the desired shape alongside the cutting path using 0.05—

0.30mmindiameterthin copper,brassor tungstenwireandcan

ma-chineverysmallcornerradiuswithhighprecision[11].Motorcuetal.

studied theinfluenceofcuttingparametersonthesurface roughness

andmaterialremovalrate(MRR)incuttingofAl/B4C/Grhybrid

com-posites usingWEDMdependenceonthewirespeed,pulse-ontimeand

pulse-off time.Theyobservedthat themost significantparameter on

surfaceroughnessandMRRwasthewirespeedwith85.94%

contribu-tionrate[12].Yanetal.investigatedtheeffectsofmachiningprocess

on surface roughness (Ra), cutting width, and material removal rate

andwirebreakagebehaviourintheWEDMofAl6061compositeswith

different reinforcement ratios of Al2O3.The test results showed that

theAl2O3 reinforcementvolumefractioninfluencesontheRa,kerfand

MMR.Theyalsoreportedthatahighwirespeed,verylowwiretension,

and highflushing ratemust bechosentopreventwire breakage[13].

Shandilyaet al.studiedtheeffectoftheinputparametersonaverage

cutting speed duringWEDM ofAl6061/SiC metal matrix composite.

Servovoltageisthemoresignificantinputparameterforaverage

cut-ting speed than pulse-off time and wire feed rate [14]. The surface

roughness and material removal rate were increasedwith increase in

pulse-ontimeanddecreasedwithincreaseinpulse-offtime.MRRwas

(4)

time (Toff), pulse-on time (Ton) and peak current (IP), pulse-off time

(Toff)andpeakcurrent(IP).Pulse-ontime(Ton)and peakcurrent (IP)

affected themachinedsurfaceroughness[15].SatishKumar etal.

in-vestigatedtheeffectsofdifferentmachiningparametersonMRRand

Ra intheWEDMofAl6063/SiCMMCatdifferentreinforcement

rati-os. The researchers reported that surface quality and MRR were

de-creasedwiththeincreasingpercentagevolumefractionofSiCparticles

[16]. Surface roughness and gap width were mainly affected by the

pulse-ontimeintheWEDMofAl6061 reinforcedwithAl2O3 particle

MMC[17].Pulse-ontimeandcurrentwerethemosteffective

parame-tersformachiningspeed andsurfacequalityintheWEDMofAl—SiC

metalmatrixcomposite[18].

2.EXPERIMENTALMATERIALSANDMETHOD

Theexperimentalworkpieceswereproducedfromhigh-purity

alumin-ium 6061mixedwith15%commercial-gradeB4Cpowdersusing

pow-der metallurgy method. The median size of Aluminium 6061 powder

used in metal matrix composite (MMC) was100m and B4C powders

had average size of 10m. Aluminium alloy and B4C powders were

mixed toachieve homogeneity for 45minutes ina three-dimensional

Turbula mixer. The mixed powders were compacted by cold pressing

under 300MPa.Thespecimens were sintered inavacuum furnace at

550Cfor60minutesandextrudedusingapre-heatedextrusionmould

oftemperature500Cfor1hour.Thethicknessofproducedcomposite

sheetswas12.7mm.WorkpiecematerialswereanalysedusingaJEOL

JSM6060LWscanningelectronmicroscope(SEM)andenergy

disper-sive spectroscopy(EDS).Theoptical and SEMmicrographofthe

sur-face texture of the machined composite and B4C reinforcement

ele-mentscanbeseeninFig.1.TheopticalandSEMmicrographs

(5)

ed that the B4C particles distribution is fairly uniform in composite

specimenandachievedagoodinterfacialbondingbetweenmatrixand

B4Cparticles.Thechemicalcompositionsandmechanicalpropertiesof

Al6061alloyandreinforcedwith15%wt.B4Cmetalmatrixcomposite

arepresentedinTable1andTable2,respectively.Thehardness

meas-urements ofspecimens wereperformedbyVickers HV3 hardness

ma-chineEMCOTESTDuravision200applyingaloadof3kgforaperiod

of 5s. The average hardness value for each sample was obtained by

measuring five different areas. Impact energy of composite samples

was tested using sharply impact-testing machine Instron Wolpert

PW30 withmaximumhammerenergy of150J.Impacttestswere

ap-pliedtoV-notchedspecimensforfracturetoughnessdeterminationof

composite samples according to EN ISO148.01. Tensile and flexural

testswereperformedusingInstron3363universaltestingmachineat

a constant strain rate of 1mm/s. Everyimpact, tensile and flexural

testswereemployedatleastthreetimes,andtheaveragevalueforeach

setofthecompositessampleswascalculated.

The experiments wereperformed ontheMitsubishiMV1200 series

CNC WEDM.Rectangularparts ofsize 31.76.3512.7mm3werecut

fromtheworkpiecematerialasshowninFig.2.Abrasswireelectrode

of diameter 0.30mm wasused as the cuttingtool forconducting the

experiments anddeionizedwaterwasusedasthedielectricfluid.The

machined surface of the workpiece was measured using Mitutoyo

SurftestSJ210device.Surfacequalitywasmeasuredatfourdifferent

machinedsurfacesandtheaveragesurfaceroughnessvaluewas

calcu-lated. Machining parameters and their levels used in the WEDM of

MMCsarelistedinTable3.

3.EXPERIMENTALRESULTSANDDISCUSSION

Thepurposeofthisstudyistoinvestigatetheeffectofwire-EDM

ma-TABLE1.ChemicalcompositionofAl6061alloyelements.

Element Fe Si Cr Mn Mg Zn Cu Ti Al

Al6061 0.5 0.6—1.0 0.1 0.2—0.8 0.8—1.2 0.25 0.6—1.1 0.1 Balance

TABLE2.MechanicalpropertiesofAl6061/B4C.

Workpiece material Hardness, HV Impactenergy, J Maximumtensile stress,MPa Maximumflexure stress,MPa Al6061 68.2 26.3 201 467 15%wt.B4C 74 6.1 194 456

(6)

chiningparametersonthesurfaceroughnessduringcuttingofB4C

re-inforced metal matrix composite. The effects of spark gap voltage,

peakcurrentandwiretensiononsurfaceroughnessusingabrass

elec-trodewereinvestigated.Theexperimentswerecarriedoutbasedonthe

TaguchiL18(2132)withamixedorthogonalarrayandtheanalysisof

variance (ANOVA) has been employed using statistical software

Minitab16todeterminethesignificantcontributionofmachining

pa-rameters. Theexperimental time and costcan bedecreased using

or-thogonalarraysbyreducingthenumberoftestsandminimizesthe

ef-fectsofparametersthatcannotbecontrolled.

Furthermore, it ensures a simple, powerful, and systematic

ap-TABLE3.Machiningparametersandtheirlevels.

Factor Processparameters Level1 Level2 Level3

A Wiretension(WT) 10g 13g

B Sparkgapvoltage(SV) 30V 60V 80V

C Peakcurrent(IP) 8A 10A 13A

a b

(7)

proachtospecifyingtheoptimalmachiningfactorsduringthe

experi-ments. A number of external factors not considered in the

experi-mentaldesigncanaffecttheexperimentalresults.Theseexternal

fac-torsand theireffectontheresultsintermsofqualitycharacteristics

are named ‘thenoise’. Thesignal-to-noise ratio(S/Nratio) computes

theaccuracyofthequalitycharacteristic.TheS/Nratioiscalculated

in two processes. First, mean squared deviation (MSD) between the

experimentalresultsandoptimalvaluesarecalculatedbyequation(1).

Second,computedMSDresultsareconvertedusingequation(2)[19].

Then,thecuttingparametersareanalysedbasedontheS/N.Thereare

three differentsignal-to-noiseratiosandindividualdesirability

func-tions:largerisbetter,nominalisbest,andsmallerisbetter.S/Nratio

indications can be selecteddependingon theaim ofthe experiments.

The objective of this investigation is tominimize the surface

rough-nessvalue.Therefore,the-smaller-the-betterhasbeenchosento

calcu-latetheS/Nratiosusingthefollowingformulae:

, / ) (y12 y22 y32 y2 n MSD     n (1) ), lg( 10 /N MSD S  (2)

where yisthemeasuredvalueofsurfaceroughnessandnisthe

num-ber ofexperiments intheexperiments. Ahighervalueof S/Nmeans

the signal is much higher than the random effects of noise factors.

Higher values of S/N ratios are described as control factor settings

thatminimizedtheeffectsofthenoisefactor;therefore,ahigh

signal-to-noiseratioisalwayspreferred.

The3Dresponsesurfaceplotsthatobtainedresponsesurface

meth-od by RSMmodel inMinitab16 software wereutilizedtospecify the

relationshipbetweentheWEDMparametersandsurfaceroughnessas

shown inFig.3. Responsesurface method is astatistical methodand

used todetermine the relation between various independent

parame-ters and dependent parameters. Figure 3 indicates the influence of

sparkgapvoltage,peakcurrent,andwiretensiononthemeanquality

of machined surface roughness during wire-EDM of MMC. The

ma-chinedsurfacequalitywasdecreasedwithanincreaseinthepeak

cur-rentand thebest surfaceroughnesswasobserved atlowestpeak

cur-rentandwiretension.Thiswasattributedtolowcuttingspeedat

low-estpeakcurrent.Thisiscausedbyincreaseofpeakcurrentthatleadto

a higher cutting speed and resulted the decreasing surface quality.

Normally,increasingwiretensionproducesanimprovedsurface

quali-tyofmachinedpartduetoreducingwirevibrationanddeflection[20].

On thecontrary, surface quality wasdecreasedwith increase in wire

tension inthisstudy.Thismaybeattributed toincreasingforces

act-ingonthewireelectrodeandwirebreakagewithincreaseinwire

(8)

higherwiretension.ThiscanbeascribedthattheharderB4Cparticles

causedfastwearofbrasswireathigherpeakcurrentandwiretension

dependsonincreasingcuttingtemperature.

Oneofthemostsignificantaimsofthisexperimentalstudyisto

de-termine anacceptablesurfaceroughnessusingoptimalmachining

pa-rameters.Thesignal-to-noiseratiosandresponsesurfaceoptimization

methods were performedinordertospecifythe bestcutting

parame-tersintheWEDMofMMCs.TheWEDMparameters,calculated

aver-age test results, desirability values, and the S/N ratios for surface

roughnessarelistedinTable4.Theoptimalwire-EDMparametersand

their levels were determined based on the S/N ratios (Table 4). The

higherS/N ratiosand compositedesirabilityvaluesindicatethe

opti-mum machining parameters and better quality ofsurface roughness.

The bestWEDMfactors basedontheresponseTable5forS/N inthe

machining ofAl6061/B4C,theoptimalsurfaceroughnessvalueswere

defined as factor A (Level 1, S/N 10.579), factor B (Level 2,

S/N 3.485), and factor C (Level 3, S/N 3.077). In the WEDM of

Al6061/B4C,thebestmachining parametersare determinedasapeak

currentof8A,sparkgapvoltageof68.89Vandwiretensionof10;the

optimizedsurfaceroughnessvalueisRa 2.8849mandthe

desirabil-ityvalueis0.97336asshowninFig.4.

(9)

TABLE4.Experimentalparametersandmeasuredsurfaceroughnessvalues. Trials number Wiretension (WT) Sparkgap voltage(SV) Peak current(IP) Surface roughness,Ra S/N ratio 1 10 30 8 3.06 9.714 2 10 30 10 3.3 10.370 3 10 30 13 4.01 12.063 4 10 60 8 2.89 9.218 5 10 60 10 3.43 10.706 6 10 60 13 3.78 11.550 7 10 80 8 2.85 9.097 8 10 80 10 3.4 10.630 9 10 80 13 3.92 11.866 10 13 30 8 3.3 10.370 11 13 30 10 3.68 11.317 12 13 30 13 4.02 12.085 13 13 60 8 3.21 10.130 14 13 60 10 3.44 10.731 15 13 60 13 4.16 12.382 16 13 80 8 3.15 9.966 17 13 80 10 3.78 11.550 18 13 80 13 3.96 11.954

(10)

The analysis of variance(ANOVA)and maineffect plots were

per-formed toinvestigatetheinfluencesparametersonsurfaceroughness

and contributionrate ofwire-EDM parameters onthe quality of

ma-chinedsurface.Thestatisticalsignificancelevelswereanalysedbythe

machining parametersP andFvaluesatthe95%confidencelevel.If

the P valuesare smaller than 0.05, theexperimentalmodels are

con-sidered ata significant levelof 95%. TheWEDM parameters,P

val-ues,andtheircontributionlevelforsurfaceroughnessarepresentedin

Table6.FromtheresultofANOVA,thepeakcurrentisthemost

effec-tivemachiningparameterswithan84.9%contributionoftotal

varia-tion onsurfaceroughnessintheWEDMof Al6061/B4C.The next

ef-fective WEDMparameter iswiretension with apercentage

contribu-tionof8.33%forAl6061/B4C.Itwasobservedthatthesparkgap

volt-age wasnot showed a meaningful effect onsurface roughness in the

WEDMofMMCs.

As showninmean effectplots inFigure 5, theeffect ofspark gap

voltageonsurfaceroughnesswasalmostconstant.Itcanbeseenfrom

themeaneffectplotsthatsurfacequalitywasdecreasedwith

increas-ingpeakcurrentfrom8Ato13Aandwiretensionfrom10gto13g.

At the base of the RSM and Taguchi methods, a regression analysis

equation forsurfaceroughness wasalso developed.Thefollowing

re-TABLE5.Responsetableforsignal-to-noiseratios(smallerisbetter).

Level Wiretension(WT) Sparkgapvoltage(SV) Peakcurrent(IP)

1 10.579 10.987 9.749

2 11.165 10.786 10.884

3 10.844 11.983

Delta 0.586 0.200 2.234

Rank 2 3 1

TABLE6.AnalysisofVariance(SS–sumsofsquares,MS–meansquare).

Source DF Sequential SS Adjusted SS Adjusted MS F P Significance level,% Regression 3 2.64982 2.64982 0.88327 68.562 0.000000 WT 1 0.23576 0.23576 0.23576 18.300 0.000766 8.33 V 1 0.01011 0.01011 0.01011 0.785 0.390594 0.35 IP 1 2.40395 2.40395 2.40395 186.602 0.000000 84.9 Error 14 0.18036 0.18036 0.01288 6.37 Total 17 2.83018

(11)

gressionequationswereobtainedforAl6061/B4Cmetalmatrix

compo-siteusingtheleast-squaremethodintheregressionanalysis.R2values

of the equations obtained from the regression for surface roughness

werecomputedas93.63%.

a 0.869055 0.0762963 0.00115351 0.177851 ,

R   WTVIP (3)

q 93.63%.

RS

In ordertoverify the experimentalprocess, sixconfirmation

experi-ments were carried out within the limits of predetermined WEDM

conditions.Themeasuredsurfaceroughnesseswerecontrolledforthe

precision of the predicted values calculated from models.

Experi-mental values andpredictedvalues withthe percentageofprediction

errorratesarepresentedinTable7.AsseeninTable7,theestimated

Fig.5.Effectofmachiningparametersonsurfaceroughness.

TABLE7.Confirmationexperimentsandresults.

Wire tension Sparkgap voltage Peakcurrent (IP) Surfaceroughness Ra Predictedsurface roughness Prediction error 10 8 42 3.22 3.006 6.63% 13 8 42 3.24 3.235 0.15% 13 10 42 3.51 3.591 2.31% 10 10 42 3.72 3.362 9.62% 10 13 42 4.17 3.896 6.58% 13 13 42 4.24 4.125 2.72%

(12)

valuesbasedontheregressionmodelwiththeleastresidualerrorsare

very closetotheexperimentalresultsandpredictionerrorsareinthe

acceptablerange.

4.CONCLUSIONS

In this experimentalstudy, Aluminium 6061/B4C metal matrix

com-posite wassuccessfullyproduced byapowdermetallurgy methodand

investigatedfortheeffectofwire-EDMparametersonsurface

rough-ness using brass wire electrode. The WEDM experiments were

per-formed basedontheTaguchiL18orthogonalarray.Theinvestigation

results were examined using 3D surface plots, S/N ratio results,

ANOVA, and main effect graphs. The signal-to-noise ratios, central

composite desirability of response surface method, and regression

model were used to specify the ideal WEDM parameters for surface

roughness.

The following conclusions can be drawn from the experimental

study.

The optical and SEM micrographs indicatedthat theB4C particles

distribution is fairly homogenized in all composite specimens and

achievedagoodinterfacialbondingbetweenmatrixandB4Cparticles.

Themachinedsurfacequalitywasworseningwithanincreaseinthe

peak current and the best surface roughness was observed at lowest

peakcurrentandwiretension.Surfacequalitywasdecreasedwith

in-creaseinwiretension.

Brass wire electrode was broken at higher wire tension. It can be

suggested a very low wire tension to avoid wire breakage during

WEDMofMMCswithreinforcedB4C.

TheoptimalWEDMparametersaredeterminedasapeakcurrentof

8A, spark gap voltage of 68.89V, and wire tension of 10; the

opti-mized surface roughness value is Ra 2.8849m and the desirability

valueis0.97336.

FromtheresultofANOVA,thepeakcurrentisthemostsignificant

wire-EDM parameters with an 84.9% contribution of total variation

onsurfaceroughnessintheWEDMofAl6061/B4C.

The sparkgapvoltagedidnotshowameaningfuleffect onsurface

roughnessintheWEDMofMMCs.

The estimated values basedon theregression model with the least

residual errors are very close totheexperimental results and

predic-tionerrorsareintheacceptablerange.

TheauthorswishtothankHacettepeUniversityScientificResearch

Projects Coordination Unit for the financial support of this

experi-mental research supported by the Scientific Research Projects Grant

funding number #1743 and POYRAZCNC Company forWEDM

(13)

REFERENCES

1. H. Mindivan, M. Baydogan, E. S. Kayali, and H. T. Cimenoglu, Materials

Characterization,54:263(2005).

2. A. B. Sadat, MachiningofMetalMatrixComposites (Ed. P. J. Davim) (London: Springer:2012),p.51.

3. J. Wang, W. Lin, Z. Jiang, L. Duan, and G. Yang, CeramicsInternational,40:

6793(2014).

4. A. Manna and B. Bhattacharayya, J.MaterialsProcessingTechnology,140:

711(2003).

5. U. Soy, F. Ficici, and A. Demir, J.CompositeMaterials,46: 851 (2011). 6. M.El-GallabandM.Sklad,J.MaterialsProcessingTechnology,83:151(1998). 7. Ş. Karabulut, Measurement,66: 139 (2015).

8. A.Thuault,S.Marinel,E.Savary,R.Heuguet,D.Goeuriot,andD.Agrawal,

CeramicsInternational,39: 1215 (2013).

9. A.K.SahooandS.Pradhan,Measurement,46:306(2013).

10. J. Wang, W. Lin, Z. Jiang, L. Duan, and G. Yang, CeramicsInternational,40:

6793(2013).

11. G. Amitesh and K. Jatinder, InternationalJournalofAdvancedEngineering

Technology,3:170(2012).

12. A. R. Motorcu, E. Ekici, and A. Kuş, ScienceandEngineeringofComposite

Materials,doi:10.1515/secm-2014(2015).

13. B. H. Yan, H. C. Tsai, F. Y. Huang, and L. C. Lee, InternationalJournalof

MachineToolsandManufacture,45,Iss.3:251(2005).

14. P. Shandilya, P. K. Jain, and N. K. Jain, ProcediaEngineering,64: 767 (2013). 15. A.GoswamiandJ.Kumar,EngineeringScienceandTechnology,

anInternationalJournal,17, Iss. 4: 236 (2014).

16. D.Satishkumar,M.Kanthababu,V.Vajjiravelu,R.Anburaj,

N. T. Sunda-Rajan, and H. Arul, Int.J.Adv.Manuf.Tech.,56: 975 (2011). 17. K.ChiangandF.Chang,J.Mater.Process.Technol.,180:96(2006). 18. R. K. Fard, R. A. Afza, and R. Teimouri, J.Mater.Process,15: 483 (2013). 19. R.K.Roy,SocietyofManufacturingEngineers(Dearborn,Michigan:1990). 20. F. Nourbakhsh, K. P. Rajurkar, A. P. Malshe, and J. Cao, ProcediaCIRP,5: 13

Referanslar

Benzer Belgeler

Müşavir Mühendis. Rivier Mühendis: E.N.P.C. Mösyö Wein- berg'in çıkardığı bu kitabın mevzuu be- ton Precontraint'den yapılan inşaatın etüd ve tatbikatına lüzumlu

Bu binaya al» bütün resimler Foto Sender - Ressam Veli Demir

[r]

Also in this investigation, response surface method (RSM) was used to predict and optimize the material removal rate, tool wear ratio and surface roughness during

YaklaĢık belirli sayı özelliği Türk dillerinde olduğu gibi Tuva Türkçesi ve Türkiye Türkçesinde de isimlerin yaklaĢık sayısını belirten sayı sıfatından

Basit şeylerden başlayın sonra içtiğiniz bir bardak kahve, güneşli hava gibi aslında çok da dikkate almadığınız küçük detayların sizi ne kadar mutlu ettiğini fark edin..

5.Bunu sağlamak üzere özel ligde spor kulübü düzenlemesi ve sponsorluk düzenlemesi ile diğer spor ilçe ekiplerini bir araya getiren spor kanunu veya

In this article, analyzing the test results such as rutting test, low temperature bending test, freeze-thaw splitting test and comparing stability of mixtures in high