• Sonuç bulunamadı

Çok geniş bantlı yere nüfuz eden radar için darbe üreteci tasarımı ve benzetimi

N/A
N/A
Protected

Academic year: 2021

Share "Çok geniş bantlı yere nüfuz eden radar için darbe üreteci tasarımı ve benzetimi"

Copied!
108
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

T.C.

SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇOK GENİŞ BANTLI YERE NÜFUZ EDEN RADAR İÇİN DARBE ÜRETECİ TASARIMI

VE BENZETİMİ Ahmet YILDIRIM YÜKSEK LİSANS TEZİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ Anabilim Dalı

Temmuz-2017 KONYA Her Hakkı Saklıdır

(2)
(3)
(4)

iv

2017, 98 Sayfa J

YNR

n

n temel bir kaynak

(5)

v

Ahmet YILDIRIM

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE OF VERSITY

THE DEGREE OF MASTER OF SCIENCE

IN ELECTRICAL AND ELECTRONICS ENGINEERING Advisor: Dr. Ercan YALDIZ

2017, 98 Pages Jury

Assoc.Prof.Dr. Ercan YALDIZ Asst.Prof.Dr.

Asst.Prof.Dr.

In this work, it is given information about UWB (Ultra Wide Band) GPR(Ground Penetrating Radar) system. Short pulse generator is analysed and researched for UWB GPR system. New designs are proposed and simulated. Design method is perused in the literature of generator. Literature review is classified by design method and this groups is compared with each other. Then they are analysed according to good level pulse duration and pulse amplitude. This design is recommended for future studies of UWB GPR generators. Finally this work shows basic information about UWB GPR generators.

(6)

vi .

Ahmet YILDIRIM Konya-2017

(7)

vii ... vii ... ix ... 1 1.1. Kapsam ... 1 ... 2 ... 2 ... 4 ... 4 ... 4 ... 5 ... 9 ... 10 ... 10 ... 13 ... 16 2.3.1 ... 16 ... 22 2.4.1. Verici birim ... 23 ... 25 ... 26 2.4.4. Zamanlama devresi ... 31 ... 34 ... 39 ... 39 ... 41 ... 41 ... 42 ... 50 ... 50 ... 51 ... 51 ... 53

(8)

viii ... 59 ... 59 ... 60 ... 62 ... 63 ... 64 ... 75 ... 75 5.1.1. ... 75 ... 78 ... 84 ... 84 ... 85 ... 86 ... 87 ... 88 ... 88 ... 89 KAYNAKLAR ... 91

(9)

ix

Tp :

AR : Darbede

U(t) : Birim basamak fonksiyonu

PR(t) :

PR( f ) : F

PG(t) : Gaussian darbe

PG( f ; ) : Gaussian frekans spektrum

Tw : Gaus PGD(t) : Gaussian PGD( f ) : Gaussian dB : Desibel dBm : fC : fH : st kesim fre fL : 10 dB a BWR : w : n : Nano seviyesi

(xi,yj) : Belirli bir noktadaki sinyal

b(xi,yj,t) : Bir boyutlu veri sinyali

b(x,y,t) : R : h : z : : sabiti L : a : : d : : Zin : ZoN : Wn : dn : ln : n : : T : TR : fT :

(10)

x

ABD :

ADS : Advanced Design System ASD

BJT : Bipolar Junction Transistor

CMOS : Complementary Metal Oxide Semiconductor DC : Direct Current

DDO DTA DTF

ECC : Electronic Communications Committee EM : Elektromanyetik

FCC : Federal Communication Commission FDTD : Finite-Difference Time-Domain FEM : Finite Element Method

FMCW : Frequency Modulated Continuous Wave DGY

GPR : Ground Penetrating Radar LC : Inductor-Capacitor

MoM : Method of Moment

MOSFET : Metal Oxide Semiconductor Field Effect Transistor

NMOS : n-Channel MOSFET

NTIA : The National Telecommunications and Information Administration RC : Resistor, Capacitor

RF

SDR : System Dynamic Range SGY

SRD : Step Recovery Diode TTL : Transistor-Transistor Logic UWB : Ultra Wide Band

VCDL : Voltage Controlled Delay Line YNR

(11)

1.1. Kapsam

(Ground Penetrating Radar: GPR) sistemi konusunda

(Eltesta, 2015)

(Grazzini ve ark., 2010) de (He F., 2010) YNR teknolojisi

-Ultra Wide Band : UWB) sistem teknolojisi

frekansla

algoritma

gerilim ve

(12)

1.2.

,

isteklerine

1.3.

lacak alan

rol oynayan temel bilgiler ve ikinci

sistemlerin

e

tir. A

(13)
(14)

2. TEMEL 2.1. 2.1.1. Darbe t seviyelerindeki (Blattenberger, 2016). 2.1 darbe .2 ideal

olmayan bir darbe ne dik

zamanlar 0- gerekli olan darbe

zamanlar

(15)

(Blattenberger, 2016).

2.2 darbe dalga formu

rtgen ectangular), ani darbe (i

(s (McLaughlin, 2004).

2.3

2.1.2. Gaussian darbe

Gaussian filtrelenerek modellenir(Di Benedetto, 2006).

(16)

Bir Gaussian 2 ) / ) )(( 2 / 1 ( Re 2 1 ) (t e t P (2.1)

ile verilir. Burada darbe merkezini verir. DC terimler

Gaussian darbeler zaman ve frekans

Gaussian dalga lan

Gaussian

PRe(t)

PRe(t) denkleminin

birinci derecede li Gaussian

PRe(t) denkleminin ikinc li Gaussian dalga

(17)

2.5 Gaussian

2.1.2.1. arbesi

Gaussian darben

li Gaussian PG(t) Denklem (2.2) ile

2 ) / ) )(( 2 / 1 ( 2 ] ) ( 1 [ 2 1 ) ( t G e t t P (2.2) evrimli Gaussian ve

li Gaussian frekans spektrum ifadesi PG(f; ) Denklem (2.3) ile

f j f

G f f e e

P ( ) (2 )2 (1/2)(2 )2 2 (2.3)

imli Gaussian darbesi

(18)

Gaussian

li Gaussian darbesinin zaman ve frekans

2.1.2.2. aussian darbesi

Gaussian Gaussian

Tw ile ifade edilmekte olup, Denklem (2.4 PGD(t)

Gaussian darbesinin esini vermektedir. Denklem (2.5 e PGD(

f ) Gaussian darbesinin ] [ 2 1 ) ( (1/2)((t )/ )2 (1/2)((t Tw)/ )2 GD t e e P (2.4) ] 5 . 0 ) 5 . 0 ( 2 [ ) 2 )( 2 / 1 ( 2 ) sin( 2 2 ) ( GD w f j f T Tw GD f A f T e e w P (2.5) Tw, , ve Tw=7 Tp=14 olur.

Gaussian li Gaussian ve Gaussian

darbe birbirlerine b li

Gaussian darbesinin spektral zarf minimumlara sahiptir.

minimumlar ara darbe

li Gaussian darbesi bant g Gaussian li Gaussian

darbesi

. .1

Gaussian sinyalleri frekans yerleri 10 dB bant

ifadesi Denklem 2.6 ;

B10dB = fH fL (2.6)

spek H ve fL . Normal merkez

frekans fc Denklem 2.7 ;

(19)

2.5

2.1 Gaussian

Darbe dalga formu fc B

Gaussian darbe 1/Tp 2/Tp Gaussian doublet 1/Tp 2/Tp Gaussian darbe 1.73/Tp 2.1/Tp Gaussian darbe 2/Tp 2/Tp 2.1.3. ki darbe Gaussian

g darbe Darbe tekrar

darbe alttaki

bant -4 dB ve 1 GHz merkezli darbe

spektrumu verir, o da 100

Darbe Darbe

indeki bir sinyalin spektrum inde dalga (Hamran, 2010).

(20)

2.2. 2 ans , mesafe ve R BW c l u f f f (2.8) . Burada; fu: 10 fl fc fc ise; 2 l u c f f f (2.9) uygula

(21)

engellemek veya en aza indirgemek FCC (Federal Communication Commission) nda g esi : .2 3.1 GHz -10.6 GHz YNR <960 MHz veya 3.1 GHz -10.6 GHz istemleri <960 MHz veya 1.99 GHz -10.6 GHz 1.99 GHz -10.6 GHz 24 GHz 29 GHz .3 f i Frekans (MHz) (dBm) (dBm) <960 -41.3 -41.3 960-1610 -75.3 -75.3 1610-1990 -53.3 -63.3 1990-3100 -51.3 -61.3 3100-10600 -41.3 -41.3 >10600 -51.3 -61.3

(22)

2.7 maskesi

(23)

960 .4 <960 MHz >960 MHz -49.2 dBm/MHz -41.2 dBm/MHz Limitleri -38.3 dBm/MHz -35.2 dBm/MHz -49.2 dBm/MHz -41.2 dBm/MHz potansiyeli

Bununla beraber, The National Telecommunications and Information Administration (NTIA)

Olhoeft (Olhoeft, 2002) Electronic Communications Committee (ECC)

(ECC, 2006).

2.2.2.

knolojisinin manyetik alanlar ve

it bir kavramla ifade edebilir. Bunu

.

y(t)= h(u)x(t u)du (2.10)

(24)

(Ross, 1973) (Robbins, 1972) (carrier-a , ile ilgilidir. . a - n 1 (Fontana, 2002). 2.9

(25)

2.10 a m den hareketli cismin takibini 2.10 e da nin (MobilVox, 2004). 2.11

(26)

2.3.

2.3.1. eden

, (EM) yayar

sabiti, manyetik iletkenlik gibi elektriksel parametrelere

makroskopik parametre

geri elektrik sabitine

k

r ne ( o = 4 10-7 H/m) kontrast

Dielektrik sabitindeki ( r)

ylece

(toprak) dielektrik sabit

. 04)

modelleri

mele (Kesemen, 2007)

incelenebilir.

na denklemleri ile ifade edilmektedir.

(Scheers ve ark., 2000) Lee ve ark. (2004)

emleri ile

metal olmayan cisimlerin

sinyaller a genel bir YNR blok

(27)

2.12

r

(28)

eriyle temsil edilir.

-Tarama, B-Tarama ve C- (Scheers,

2001).

2.3.1.1. A-tarama

Belirli bir noktadaki (xi,yj)

her bir dalga formu b(xi,yj,t), bir A- e ortamda EM

2.14 len dalga formu

2.3.1.2. B-tarama

x

A-tarama serileri b(xi,yj,t), 2-boyutlu B-tarama

2.15 -taramalar bir

(29)

Zaman ekseni veya ilgili derinlik

daki yans zme

- v olan

ve verici, bir hom , tek bir

(0,zo )

(x,0) da x2 zo2

b(x,t)

zaman sonra her bir A- ).

t=2 x2 zo2 /v (2.11)

Denklem(2.11) bir hiperbolu temsil e zo nokta

2.16 (Solda) (0,zo)Durumund aydedilen veri

2.3.1.3. C-tarama

ter -taramalar

topla xy

hareket ettir , C- b(x,y,t) kaydedilebilir.

Genellikle bir C-tarama, verilen bir tizaman

(30)

Son zamanlarda a -tarama

sahiptir. r

Lukyanov ve ark. (2010) enebilir.

2.17 aralel B-taramalar ile bir C-tarama

(31)

2.19

(Koppenjan, 2009).

(Hamran, 2010).

FMCW (Frequency modulated continuous wave

ise belirli bir frekanstaki sinyal

(Jol, 2008) edinilebilir.

tekrar lik

sinyallerdir. Genellikle Gaussian

bir

(32)

2.4.

YNR onu klas

cis adar sistemlerinin revi sinyalin tekrar

sinyalin analizinden ibarettir. YNR

YNR

YNR darbe YNR

YNR

uygulamalarda tercih edilirler. YNR sistemleri do bunlar; darbe (Scheers, 2001).

tetikleyen

(33)

YNR de enerji yayabilmek

2.4.1. Verici birim

Verici belli

li veya bir Gaussian Gaussian darbe veya basamak

, ). Darbe 2.4.1.1. li T li D

cisimleri tespit etmek

darbe

(34)

(Sahinkaya ve Turk, 2004).

lama sistemin

teknoloji genellikle YNR rler, SRD diyot veya bu ikisinin

SRD dar r ve SRD

diyotlar 100

edilebilir. Bu k

2.22 anahtar

transistoru iletim moduna RL

2.22

(35)

2.23 2.4.2. YNR darbe YNR i , h ve darbe Yer YNR ni darbe YNR bant Darbe

ercih edilir. YNR menzil ani darbe

EM horn antenler tercih

(36)

ani darbe YNR

dielektrik

celenen ve sinyal analizi bulunabilir (Rial ve ark., 2009).

2.4.3.

YNR d (DGY), rnekleme ve tutma ( )

devresi ve tutma devresinde ge 2.24 (Xu ve ark., 2013) .

(37)

F veya Sigma

200 . YNR

sinyaller GHz mertebesinde frekanslara sahiptir, standart ASD

veya

zamanlama kontrol devresi iki rampa a.

e ASD veya ir.

2.25 ASD

a bir

A-taramada a DTF

-taramada

darbe -tarama ve DTF

iye ba -taramalar -taramalar

sahiptir veya hatta k

T T

Ts p (2.12)

(38)

(Scheers, 2001).

2.4.3.2. leme ve tutma devresi

(Scheers, 2001) s

s

(39)

2.26 s ngeli (Integrated Circuit) iki diyot (Scheers, 2001). n (Xu ve ark., 2013). 2.4.3.3. (DGY)

(40)

Zamanla (Robens ve ark., 2009) edinilebilir. 2.4.3.4. Verici a R R-2 aranan 2.27 e z (Scheers, 2001). 2.27 Zaman f -taramada A -n

(41)

RF sinyalinin geri ki uyumsuz faz senkronizasyon ani darbe ramp ZDKY n karakterize .28

ile belli ps giri

2.28

r dikkat gerekmektedir. Thumb

(Scheers, 2001).

20 ps) sinyali elde etmeye engel

Ba arametreleri;

(42)

ileyen parametreler: nesnenin boyutu, istenen ile dengeli v Merkez frekans ve darbe 2 . , maksimum derinlik (Scheers, 2001).

2.5 Merkez frekans ve darbe

Merkez Frekans Darbe r=4 r=15 500 MHz 2 ns 15 cm 7.7 cm 1 GHz 1 ns 7.5 cm 3.9 cm 2 GHz 0.5 ns 3.75 cm 1.9 cm 3 GHz 0.33 ns 2.5 cm 1.3 cm 1 GHz frek n yerlerde (toprak) dalga boyu,

(43)

-tarama 2.29 a veya 2.29 (0 cm ile 20 cm derinlik ) (Tg) en (Smax) ile . 2 . m ax g T v S (2.13) 2 Tg Smax c/5

2.6 Maksimum derinlik incelemesi smax (cm) Tg (ns) 18 6 30 10 60 20 resi yeterlidir.

(44)

2.4.4.3.

2.4.4.4. Darbe (DTA)

DTA hedef tespitinde en uzak menzil darbe y

YNR Yer

bunun sonucunda DTA az. Pratikte DTA, verici

DTA bir

A-ktir. DTA 00 1000

-t 512 nokta gerekiyorsa, bir

A-2.5. B stemi

Normal darbe r nderilen darbe

Ani darbe darbe

(45)

0 ani darbe iki ksek 0 a ASD i strobosko 2.31

nderilen darbe tetikle

(46)

1 ani darbe radar

Y , ani

darbe ASD 2.32 bu tip bir ani

darbe Pratikte b

ek bit ASD her bir

(Complementary Metal Oxide Semiconductor)

sinyal

Yukarda

T

(PSD:Power Spectral Density) T R

); B PSD T T P P R T (2.14)

(47)

range,SDR), i , T0 ,kB Boltzmann sabiti, F ) ( 2 SNR F T k G B PSB SDR o B i (2.15) p np adet darbeleri SDR: ) ( 2 SNR F T k n G B PSB SDR o B p i (2.16) olur. gerekli ise, nb =212 Bu durumda SDR; ) ( 2 SNR F T k n G B PSB SDR o B b i (2.17)

(48)

2.32 Ani darbe

B tarama, Hamran (2010) 0.5

m ile 3

(49)

3.1. retimi benzer Yeap (2005) kul 3.1. Tipi Ad En iyi Gerilimi

Mercury anahtar 70 ps 300 V Max DTF=200 Hz

transistor Darbe 150 ps 12 V 25 ps 100 ps 0.25 V 1.0 V SRD 60 ps 100 ps 200 ps 20 V 50 V 200 V Ani darbe 400 ps 125 V

(50)

dir. Zhang ve ark. (Zhang ve ark., 2011) ve Luo ve ark. (Luo ve ark., 2012)

edinilebilir.

SRD diyod

S

darbe

(51)

. er ve l daki kaynaklara Moncunill-Geniz Liu Wei ve ark., (2013) 3.2.1. gelmektedir (Oppermann ve ark., 2005). Kim ve ark. (20 Paulino ve ark. sahiptir. ik

Dhieb ve ark. (2010) t Gaussian

(52)

sonucu 244 Strackx ve ark. (2013) . Mahanty 3.2.2. 3.2.2.1. Yan ve ark. (2005) , kHz darbe tekrarlama a resi 76 Yan ve ark. (2006) a kHz darbe ve 50 ikte alan Ai-min reteci

Zhang ve ark. (2011) yeni bir

-9.096 V genlikte, Gaussian darbe olarak rapor

(53)

gen Tang ve ark. (2012) -bir darbe -4.47 V Shi ve ark. (2015)

Erwin Otto Marx) devre

Li ve ark. (2015

. Omurzakov ve ark. (20

(Omurzakov ve ark., 2016). Zhou ve ark. (2016)

(54)

3.2.2.2. Di leri Han ve ark. (2002) Gaussian Barrett Liu ve ark. (2 Han ve Nguyen Zhang Han -.

(55)

Choi Oh verici ta Li ve Ye ve a Xia Xu ve ark Xiao

(56)

Kamal an darbe 130 ps Valizade ve ark. (2016) 3.2.2.3. Diyot ve transis Prokhorenko (1997)

ns darb resine sahip sinyal

Jianming ve ark

(57)

Ren reteci Zhu ve ark. ( Protiva ir yap -Ameri ve ark Pongsoon ve ar Orlenko

(58)

-Xia

Testin fark

Xia kleri yeni nanosaniye

ve -15 Liu

Zhou ve ark.

(59)
(60)

4. 4.1. O ve Bilgisayar ben on CMOS seviyesinde yapabilmek 4 (ADS, 2015). il 4.1

(61)

4.2.

Darb

anahtarlama) ve depolama enerjis

(Jeong ve ark., 2005)

4.2.1. Transist r ile anahtarlama y

4.2.1.1. Anahtarlama devresi

ilir. 4

(Kit, 2005).

(62)

dunda

Ic = 0A ve (2) VCE = VCC

durumda (1) VCE = 0V ve (2) IC= VCC / Rc.

bir anahtar olarak modellenebilir.

4.2.1.2.

atikte bu belli bir

4.3 , yukarda verilen devrenin transistor

zaman tr t2 -t1

tf t4 -t3

(63)

fT 1/5 fT ir.. ) terimiyle ifade edilebilir: ) /( fT 1 2 (4.1) = tr tf (4.2) Denklem (4

4.2.2. Diyot ile anahtarlama

PN

(64)

4.4 Ters-toparlanma an lir: 0 r R d V V V (4.3) Denklemde, VR=Ir.Rr ters-kutuplama Ir r r d r R V V I (4.4)

elde edilir. Anaht

ters-ilir. r d V V r r r R V I (4.5) - enklem (4.5) on kapasitesi Ir

-kutuplama gerilimi, ters-kutuplama

(65)

Geri- Ir, 0+ s ts

-tutma storage time -tutma

-4 . 4.5 - ts - P+N jonksiyonun -r f f po s I I I t erf (4.6)

denklemi ile belirlenir, burada erf(x) hata fonksiyonu (Error Function) olarak bilinir. -biriktirme zama r f po s I I t ln 1 (4.7)

denklemi ile de elde edilebilir .

sonraki, t ts toparlanma (recovery -hal

(66)

geri-geri- Decay time) t2, f r po po po I I t t t erf exp 1 0.1 2 2 2 (4.8) turn-off time) ts ve t2 . 4.3. Darbe nten 4.3.1. iletim olarak kil 4 iletim hatt r, dielektrik .

(67)

4.6 . Liu ve ark. (2005) 4 4 4.7a

(68)

4.7b devrenin (Protiva ve ark., 2008) 4 4 4.8a 4.8b

(69)

ge

Zhu ve ark. (2010) rimli sinyal simetrik

4.3.3. Mi devresi Xiao ve ark. (2013) 4 Gaussian li li 4 ssian 4.9a

(70)

4.9b T

4.3.4.

Serres ve ark. (2006) ile Ha

4 4

(71)

4.10b T

4

schottky diyot, s

4

(72)

4.11b T 4.4. 4 R gerilimi 0 R s t IR s

(73)

4.12a PN diyot 4.12b SRD 4.4.1. at Protiva ve ark. (2008) dalga

(74)

Orlenko (2012) Ameri ve ark. (2011) Xia ve ark. (2013) 4.4.2. (Han ve Nguyen, 2005) 4 4 pa n 4.13a 4.13b 4.4.2.1. Devreye seri SRD

(75)

if keskin bir darbe

4.14 SRD)

4

(76)

4.4.2.2.

muna

Serres ve ark. (2006) 4 devre

Serres ve ark. (2006)

4 (Serres

ve ark., 2006).

(77)

4.17 Gaussian darbe

4

(Li ve ark., 2011).

(78)

Han ve ark. (2002) 4 . 4.19 Gaussian 4.4.2.3. Devreye Zhu ve ark. (2010) 4 4

(79)

4.21 Paralel SRD ile Gaussian

4 -VDC

4 (Zhu

ve ark., 2010).

(80)

4.23 Paralel SRD ile Gaussian schotky diyot, i 4 4.24 Gaussian Protiva ve ark. 4

(81)

4.25 Paralel schottky, iletim hat Gaussian

(Ameri ve ark., 2011) ve (Xia ve ark., 2013) Ameri ve ark. (2011)

4

ygulanan devrede

(82)

4.26

4.27

Xia ve ark. (2013)

(83)

4.28

4

4.29

lim r.

(84)
(85)

tir. ler ile ve diyot ile da k k halin o kadar derin sinyalin (Lee ve Nguyen, 2001). 5.1.

5.1.1. Transist r ile darbe

Bipolar t

lir (Li ve ark., 2016).

Li ve ark., (2016) Omurzakov ve ark., (2016)

VCC (besleme gerilimi) VCEO VCBO

B = IB1 . Sabit 1

tif darbe tetiklemesi ile IB B2 1

(86)

-C ikincil

delinme C

mekte (Li ve ark.,

2016) 5.1 e

5.1

VCBO = 40 V, VCEO

VCC

5.2

(87)

erden elde edilebilmektedir. Devre baz 1PS76SB21

schottky diyot ile

ttky diyot sayesinde birden fazla 5 5.4

5.3

(88)

5.4b devresi darbesi 5.1.2. Diyot ile darbe

(Yilmaz ve Tekin, 2006) . dielektrik sabiti r -(Pengju ve ark., 2012). Denklem 5.1 e H hedeflenen derinlik,

L

2

H

L (5.1)

(89)

dielektrik sabiti r (13.5) Denklem 5.2 e 1.5 GHz band 2.7 cm olarak hesaplanabilir (Demet S. . r H c BW 2 (5.2) (Yeap, 2005) Tt 5.3 e fout out t f T 1 (5.3) Tt (Junction capacitance) cj 5.4 xc cj kapasitans c out j x f c 2 1 (5.4) Diyot ters seviyesindeki gerilime direnme

(90)

in f 10 (5.5) cj0 Vbr -edilebilir). (Yeap, 2005). 5.1.2.1. SRD ve gecikme

Han ve Nguyen, (Han ve Nguyen, 2006)

5.5 5.6 a

(91)

5.5

5.6 si

(92)

5.7b

5.1.2.2.

Protiva ve ark., (2008) Protiva

ve ark., (2010) ar sonucu belirlenen SRD rbe ile -5.8 5. 5.10 a de 5.8

(93)

5.9

5.10a

(94)

5.2.

5.1 de

0.244 ns darbe sahip 0.48 V darbe Gaussian sinyal

(2010) sinyal darbe ge , 0.38- 8 ereceden an 5.1. Darbe (ns) Darbe (V) (Gaussian) Darbe Tekrarlama (MHz) (Kim ve ark., 2006) 0.38-0.4 1.8 li 10 (Paulino ve ark., 2008) 0.7-3.5 0.7 5 (Joo ve ark., 2009) 3.36-4.56 0,3 3-10 (Dhieb ve ark., 2010) 0.244 0.48 400

(Strackx ve ark., 2013) 0.67 1.24 evrimli 100

(Mahanty, 2014) 0.97 0.2

-Kim ve ark. (2006 da

devrede voltaj denetiml -Voltage Controlled Delay Line)

tek erde uygulanabili

Dhieb ve ark. (2010) 0. kullanar Gaussian 5 V (n-Channel MOSFET) teknolojisine sahip 5.3. seviyelerinin

(95)

halinde , darbe gen 5.1.1. En y akat 5.2 (2015) V gerilime sahip, 6 Gaussian . 5.2. Darbe (ns) Darbe (V) (Gaussian) Darbe Tekrarlama (kHz)

(Yan ve ark., 2005) 5 76 Gaussian 400

(Paulino ve ark., 2008) 10 50 Tek 300

(Ai-min ve ark., 2010) 3.4 666 10

(Zhang ve ark., 2011) 0.243 9.096 20x103

(Pengju ve ark., 2012) 1.14 13.2 Gaussian 10x103

(Luo ve ark., 2012) 1.2 14

-(Mandalanka, 2013) 11 4.47 Gaussian 3

(Shi ve ark., 2015) 2 400

-(Li ve ark., 2015) 6 2.5x103 Gaussian 10

(Zhou ve ark., 2016b) 0.9 25.2

(Omurzakov ve ark., 2016) 1.5 150 100

(96)

5.1.2. 5 5.3. Diyotlu a Darbe (ns) Darbe (V) (Gaussian) Darbe Tekrarlama (MHz) (Han ve Nguyen, 2002) 0.3 0.2 10

(Rulikowski ve Barrett, 2004) 0.5 1.6 Gaussian 6

(Liu ve ark., 2005) 0.3 0.17 Gaussian 0.1

(Han ve Nguyen, 2005) 0.3 6 Gaussian 12

(Zhang ve Fathy, 2006) 0.3 1.6 li 10

(Han ve Nguyen, 2006) 0.4-1.2 6-9 Tek evrimli 10

(Yilmaz ve Tekin, 2006) 0.5-2.4 0.3 20

(Serres ve ark., 2006) 0.27 1.7 100

(Choi ve ark., 2011) 0.33 8.6 12,2

(Oh ve Wentzloff, 2011) 0.21 1.6 Gaussian 10

(Li ve ark., 2011) 0.37 1.3 li 10

(Ye ve ark., 2012) 1 8 li 2

(Xia ve ark., 2012) 1 4 li 10

(Xu ve ark., 2012) 0.6 1.8 li 1x10-3 ile 10

(Xiao ve ark., 2013) 0.8 1.2 li

-(Venkatachalam ve ark., 2014) 0.4 0.6 Te li 1-100

(Valizade ve ark., 2016) 0.51 0.47 Gaussian 10

(Valizade ve ark., 2016) 0.66 0.43 10

(Zhou ve ark., 2016a) 0.13 3.3 Gaussian

-0.7 36 Gaussian 10

0.5 40 Gaussian 10

Devrede bir

(97)

5.1.1. 5 Protiva ve ark. (2010) . 5.4. Darbe (ns) Darbe (V) (Gaussian) Darbe Tekrarlama (Prokhorenko, 1997) 12 500 20x10-3 (Jianming ve ark., 2006) 0.4 15 5

(Wu ve Tian, 2007) 1.81 53.6 Gaussian 300x10-3

(Protiva ve ark., 2008) 0.5 25 20

(Ren ve ark., 2010) 1-2 30-58 500x10-3

(Zhu ve ark., 2010) 0.6 5 500x10-3

(Protiva ve ark., 2010) 0.11 7.5 Gaussian 5

(Ameri ve ark., 2011) 0.14 25 Gaussian 10x10-3

(Pongsoon ve ark., 2012) 1.87 2.16 Gaussian 1

(Orlenko, 2012) 2 140 Gaussian 0,5

(Xia ve ark., 2013) 0.33 47.2 Gaussian 0,5

(Xia ve ark., 2014) 3.2 76 li 1 - 10

(Guo ve Zhu, 2014) 0.35 3.1 Gaussian 1

(Liu ve ark., 2015) 0.4 8.3 Gaussian 1x10-3ile 1

(Zhou ve ark., 2015) 0.3 1.88 10

(Zhou ve ark., 2016a) 0.13 3.3

(98)

6 6.1. irim YNR sistemlerinde . n . elde edilen , . . (2010) .11 ns e ve 7. . Bu devre (SRD) ve ( ) ilebilir. (2015) ns olup

(99)

k isteniyor ise SRD ile 6.2. benzetim faydalanabilirler. .11 imlerin tepiti 2500 sunda benzetimleri rilebilir. ir. Benzetimi edilmelidir. RF PCB teflon pcb lme

(100)

(Han ve Nguyen, 2006) devreleri

(101)

ADS, 2015, Advanced Design System 2011, http://www.keysight.com/en/pd-1835794/ads-2011-product-release?cc=US&lc=eng:

Ai-min, Z., Hui-bo, W., Yan-zhang, W. ve De-fu, C., 2010, Nanosecond Pulser Based on Serial Connection of Avalanche Transistors, 2010 International Conference

on Measuring Technology and Mechatronics Automation.

URSI Asia-Pacific Radio Science Conference.

Ameri, A. A. H., Kompa, G. ve Bangert, A., 2011, Balanced pulse generator for UWB radar application, Radar Conference (EuRAD), 2011 European, 198-201.

Choi, G. W., Choi, J. J. ve Han, S. H., 2011, Note: Picosecond impulse generator driven by cascaded step recovery diode pulse shaping circuit, Review of Scientific

Instruments, 82 (1), 016106.

URSI 2. Ulusal Kongresi.

Dhieb, M., Lahiani, M. ve Ghariani, H., 2010, Pulse generator monocycle Gaussian for UWB applications, Wseas Trans Circ Syst, 9 (12), 756.

Di Benedetto, M.-G., 2006, UWB communication systems: a comprehensive overview, Hindawi Publishing Corporation,

ECC, 2006, ECC Decision of 1 December 2006 on the conditions for use of the radio spectrum by Ground- and Wall- Probing Radar (GPR/WPR) imaging systems,

Ekectronic Communications Committe.

Eltesta, U., 2015, Ground Penetrating Radars.

Principles, Applications and Design, http://www.eltesta.com/resources/application-notes/index.htm:

Fontana, R. J., 2002, Recent applications of ultra wideband radar and communications systems, In: Ultra-Wideband, Short-Pulse Electromagnetics 5, Eds: Springer, p. 225-234.

Grazzini, G., Pieraccini, M., Parrini, F., Spinetti, A., Macaluso, G., Dei, D. ve Atzeni, C., 2010, An ultra-wideband high-dynamic range GPR for detecting buried people after collapse of buildings, 2010 13th International Conference on,

Ground Penetrating Radar (GPR), 1-6.

Guo, Y. ve Zhu, G., 2014, Novel design and implementation of ultra-wideband pulse generator based on avalanche transistor, Session 1P0, 329.

.

ik

Bilkent, Ankara.

Hamran, S.-E., 2010, Radar performance of ultra wideband waveforms, INTECH Open Access Publisher.

Han, J. ve Nguyen, C., 2002, A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing, IEEE Microwave and wireless components

(102)

Han, J. ve Nguyen, C., 2005, Coupled-slotline-hybrid sampling mixer integrated with step-recovery-diode pulse generator for UWB applications, IEEE transactions

on microwave theory and techniques, 53 (6), 1875-1882.

Han, J. ve Nguyen, C., 2006, On the development of a compact sub-nanosecond tunable monocycle pulse transmitter for UWB applications, IEEE transactions on

microwave theory and techniques, 54 (1), 285-293.

He F., Z. G., Huang X., Mou M., Zhou Z., and Fan C, 2010, Preliminary Results of Ultra-Wideband Through-thewall Life-detecting Radar, School of Electronic

Science and Engineering, NUDT, Changsha, Hunan 410073, P.R. China.

Immoreev, I. I. ve Fedotov, D., 2002, Ultra wideband radar systems: advantages and disadvantages, IEEE Conference on Ultra Wideband Systems and Technologies, 201-205.

Jeong, Y. K., Lee, M. Q., Park, Y. J., Kim, K. H., Youn, D. G. ve Rhee, Y. C., 2005, Development of ground penetration radar using impulse technology, 2005

Asia-Pacific Microwave Conference Proceedings, Vols 1-5, 127-130.

Jianming, Z., Xiaowei, G. ve Yuanchun, F., 2006, A new CAD model of step recovery diode and generation of UWB signals, IEICE Electronics Express, 3 (24), 534-539.

Jol, H. M., 2008, Ground penetrating radar theory and applications, elsevier, p. Joo, Y., Kim, H. ve Jung, S., 2009, A tunable pulse generator for Sub-GHz UWB

systems, 2009 52nd IEEE International Midwest Symposium on Circuits and

Systems, 292-296.

Kesemen, O., 2007, Doktora Tezi,

.

Kim, H., Joo, Y. ve Jung, S., 2006, A tunable CMOS UWB pulse generator, 2006 IEEE

International Conference on Ultra-Wideband, 109-112. Istanbul Technical University.

Kit, H. C., 2005, Ultra-wideband pulse generator, The Chinese University of Hong

Kong.

Koppenjan, S., 2009, Ground penetrating radar systems and design, Ground Penetrating

Radar Theory and Applications, 73-97.

Lee, J. S. ve Nguyen, C., 2001, Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate, IEEE Microwave and wireless components

letters, 11 (5), 208-210.

Li, J., Zhong, X., Li, J., Liang, Z., Chen, W., Li, Z. ve Li, T., 2015, Theoretical analysis and experimental study on an avalanche transistor-based Marx generator, IEEE

Transactions on Plasma Science, 43 (10), 3399-3405.

Li, Z., Lv, X.-X., Long, Y.-F. ve Qin, T., 2011, An ultra-wideband monocycle pulse generator with good performance, 2011 International Conference on,

Computational Problem-Solving (ICCP), 253-254.

Li, Z., Li, P., Rao, J., Jiang, S. ve Sakugawa, T., 2016, Theoretical Analysis and Improvement on Pulse Generator Using BJTs as Switches, IEEE Transactions

on Plasma Science, 44 (10), 2053-2059.

Liu, J.-C., Wu, C.-Y., Lou, D.-C. ve Liu, C.-Y., 2005, Picosecond Pulse Shaping Circuits with Inverse Gaussian Monocycle Waveform, Jnl of CCIT, 34 (1), 1-9.

(103)

Luo, S., Tang, P. ve Li, C., 2012, A circuit design of UWB GPR transient source based on avalanche transistor, 2012 IEEE International Workshop on,

Electromagnetics; Applications and Student Innovation (iWEM), 1-2.

Mahanty, J. K., 2014, Design of Pulse Generator in 180nm Technology for GPR Applications, National Institute of Technology Rourkela.

Mandalanka, A. K., 2013, UWB pulse generation for GPR applications, National

Institute of Technology, Rourkela (Deemed University).

McLaughlin, B., 2004, A guide to using Picosecond Pulse Labs Pulse Generators in UWB applications, application note, www. picosecond. com.

MobilVox, I., 2004, Ultra Wideband Technology Overview, White Paper.

Oh, S. ve Wentzloff, D. D., 2011, A step recovery diode based UWB transmitter for low-cost impulse generation, Ultra-Wideband (ICUWB), 2011 IEEE

International Conference on, 63-67.

Olhoeft, G. R., 2002, The new ground-penetrating radar regulatory environment, Ninth

International Conference on Ground Penetrating Radar (GPR2002), 115-120.

Omurzakov, A., Keskin, A. K. ve Turk, A. S., 2016, Avalanche transistor short pulse generator trials for GPR, Ultrawideband and Ultrashort Impulse Signals

(UWBUSIS), 2016 8th International Conference on, 201-204.

heory and applications, John Wiley & Sons, p.

Orlenko, O., 2012, UWB pulse generators, 2012 6th International Conference on

Ultrawideband and Ultrashort Impulse Signals.

Radiant Powers, Pamukkale Univ Muh Bilim Derg, 10 (2), 221-226.

Paulino, N. F., Goes, J. ve Steiger-

-pulse generator circuit for UWB RADAR applications, ISCAS, 2713-2716. Pengju, T., Shangbang, L., Chao, L. ve Peng, G., 2012, An UWB GPR transient source

based on avalanche transistor, 2012 5th Global Symposium on, Millimeter

Waves (GSMM), 326-329.

Pongsoon, P., Kaemarungsi, K. ve Bunnjaweht, D., 2012, Edge-triggered driver circuit for ultra-wideband pulse generator with cascode impulse shaping, 2012 9th

International Conference on, Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1-4.

Prokhorenko, V., 1997, An impulse generator for the ground penetrating radar, Kyiv,

Ukraine.

Protiva, P., Mrkvica, J. ve Machac, J., 2008, Universal generator of ultra-wideband pulses, Radioengineering, 17 (4), 74-79.

subnanosecond pulse generator, Microwave and optical technology letters, 52 (2), 438-440.

Ren, W., Wang, H. ve Liu, R., 2010, High power variable nanosecond differential pulses generator design for GPR system, 2010 13th International Conference

(104)

Rial, F. I., Lorenzo, H., Pereira, M. ve Armesto, J., 2009, Waveform analysis of UWB GPR antennas, Sensors, 9 (3), 1454-1470.

Robbins, K. W., 1972, Short base-band pulse receiver. U.S.A., Sperry Rand Corporation, New York.

Robens, M., Wunderlich, R. ve Heinen, S., 2009, UWB LNAs for Ground Penetrating Radar, Iscas: 2009 IEEE International Symposium on Circuits and Systems,

Vols 1-5, 229-232.

Ross, G., 1968, A time domain criterion for the design of wideband radiation elements,

IEEE Transactions on Antennas and Propagation, 16 (3), 355-356.

Ross, G., 1973, Transmission and reception system for generating and receiving base-band pulse duration pulse signals without distortion for short base-base-band communication system, Google Patents.

Rulikowski, P. ve Barrett, J., 2004, Truly balanced step recovery diode pulse generator with single power supply, Radio and Wireless Conference, 2004 IEEE, 347-350. Sahinkaya, D. S. A. ve Turk, A. S., 2004, UWB GPR for detection and identification of

buried small objects, Radar Sensor Technology Viii and Passive

Millimeter-Wave Imaging Technology Vii, 5410, 174-184.

Scheers, B., Acheroy, M. P. ve Vander Vorst, A., 2000, Time-domain modeling of UWB GPR and its application to land mine detection, AeroSense 2000, 1452-1460.

Scheers, B., 2001, Ultra-wideband ground penetrating radar, with application to the detection of anti personnel landmines, TU Delft.

Serres, A., Duroc, Y., Vuong, T.-P., de Farias, J. E. P. ve Fontgalland, G., 2006, A new simple UWB monocycle pulse generator, 2006 13th IEEE International

Conference on Electronics, Circuits and Systems, 1212-1215.

Shi, J., Liu, B. ve Gou, Y., 2015, The design of nanosecond high-voltage ultra wide band bipolar pulse generator, Applied Optics and Photonics China (AOPC2015), 967427-967427-967426.

Strackx, M., Faes, B., D'Agostino, E., Leroux, P. ve Reynaert, P., 2013, FPGA based flexible UWB pulse transmitter using EM subtraction, Electronics Letters, 49 (19), 1243-1244.

Valizade, A., Rezaei, P. ve Orouji, A. A., 2016, A compact reconfigurable

sub-nanosecond pulse generator with pulse-shape modulation, International Journal

of Microwave and Wireless Technologies, 1-5.

Venkatachalam, A. S., Xu, X., Huston, D. ve Xia, T., 2014, Development of a new high speed dual-channel impulse ground penetrating radar, IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, 7 (3), 753-760.

Wei, X., Min, L. ve Chunlin, H., 2013, Design of receiver with wide dynamic range for deep ground penetrating radar, 2013 7th International Workshop on, Advanced

Ground Penetrating Radar (IWAGPR), 1-7.

Wu, J.-B. ve Tian, M., 2007, A new short pulse generator for ground penetrating radar,

2007 International Conference on Wireless Communications, Networking and Mobile Computing, 1127-1130.

Wu, Q. ve Tian, W., 2010, Design of electronic circuits of nanosecond impulser based on avalanche transistor, 2010 11th International Conference on, Electronic

Packaging Technology & High Density Packaging (ICEPT-HDP), 774-777.

Xia, T., Venkatachalam, A. S. ve Huston, D., 2012, A high-performance low-ringing ultrawideband monocycle pulse generator, IEEE Transactions on

(105)

pulse generator for UWB radar applications, Journal of Sensors, 2014. Xiao, Y., Wang, Z.-Y., Li, J. ve Yuan, Z.-L., 2013, Design of a Second-Derivative

Gaussian pulse generator, 2013 IEEE International Conference on, Signal

Processing, Communication and Computing (ICSPCC), 1-4.

Xu, W., Lu, M. ve Huang, C. L., 2013, Design of Receiver with Wide Dynamic Range for Deep Ground Penetrating Radar, 2013 7th International Workshop on

Advanced Ground Penetrating Radar (Iwagpr), 147-152.

Xu, X., Xia, T., Venkatachalam, A. ve Huston, D., 2012, Development of high-speed ultrawideband ground-penetrating radar for rebar detection, Journal of

Engineering Mechanics, 139 (3), 272-285.

Yan, M., Tian, M., Zhu, Q. P. ve Zhao, M. T., 2005, Design and realization of a compact, low-cost, ultra wideband ground penetrating radar system, 2005

International Conference on Wireless Communications, Networking and Mobile Computing Proceedings, Vols 1 and 2, 364-367.

Ye, S., Chen, J., Liu, L., Zhang, C. ve Fang, G., 2012, A novel compact UWB ground penetrating radar system, 2012 14th International Conference on, Ground

Penetrating Radar (GPR), 71-75.

Yeap, Y. W., 2005, Ultra wideband signal generation, Microwave Journal, 48 (9), 172-179.

Yilmaz, S. ve Tekin, I., 2006, An N bit digitally variable ultra wideband pulse

generator for GPR and UWB applications, Microwave and Optical Technology

Letters, 48 (7), 1334-1339.

Zhang, C. ve Fathy, A. E., 2006, Reconfigurable pico-pulse generator for UWB applications, 2006 IEEE MTT-S International Microwave Symposium Digest, 407-410.

Zhang, H., Liu, X., Li, N. ve Gulliver, T. A., 2011, A novel UWB pulse generator, 2011

IEEE Pacific Rim Conference on, Communications, Computers and Signal Processing (PacRim), 691-695.

Zhou, J., Yang, X., Lu, Q. ve Liu, F., 2015, A Novel Low-Ringing Monocycle

Picosecond Pulse Generator Based on Step Recovery Diode, PloS one, 10 (8), e0136287.

Zhou, J., Lu, Q., Liu, F. ve Li, Y., 2016a, A Novel Picosecond Pulse Generation Circuit Based on SRD and NLTL, PloS one, 11 (2), e0149645.

Zhou, K., Huang, C. ve Lu, M., 2016b, A nanosecond pulse generator based on avalanche transistor, 2016 16th International Conference on, Ground

Penetrating Radar (GPR), 1-5.

Zhu, A., Sheng, F. ve Zhang, A., 2010, An implementation of step recovery diode-based UWB pulse generator, 2010 IEEE International Conference on Ultra-Wideband, 1-4.

(106)

: Ahmet YILDIRIM : : Ankara 1987 Telefon : 05553456139 Linkedin : https://www.linkedin.com/in/ahmet-yildirim-6446a874 e-mail : ahmet-yildirim@hotmail.com Derece Lise : 2004 : 2008 : , Konya Kurum 2007-2009 Rehber 2011(6 ay) emleri 2011-2013 2013-2015 BIYOMOD Biyomedikal UZMANLIK ALANI Kontrol Sistemi (PIC16F serisi mikrodenetleyici)

Hasta Takip Sistemi

Python

(STM32 F1 serisi mikrodenetleyici ARM cortex M3)

Hasta Takibi ve temi

(107)

cihaz (STM3 -Bluetooth / USB / GPRS / TCP-GPS modulu 3 Boyutlu sensor ECSS-Q-ST-70-Okuma (iyi) Yazma (iyi) Dinleme (iyi)

Hasta takibi, vital bulgu takibi

Kablo

ECSS-Q-ST-70-Programmable Logic Controllers (PLC) --

--2006 Mikro --2006 ----EMO

--University of California, Berkeley San Francisco/USA 2013

(108)

YAYINLAR

A. E.

Elektrik -1

Ekim 2011.

A. E.

Elektrik Elektronik Bilgisayar ve Biyomedikal Sempozyumu ELECO'2014, s.417-420,27

Referanslar

Benzer Belgeler

2.Tablo incelendiğinde; 5.sınıf Türkçe ders kitabı ve Türkçe Dersi Öğretim Programı’nda dijital okuryazarlıkla ilgili, dinleme/izleme becerisine ait herhangi

Müzik, Panayot Abacı’nın ya­ şamında, sözü geçen çeviriler öl­ çüsünde, belki daha da fazla yer tutuyor: Keman çalmaya beş, al­ tı yaşlarında özel dersler

TR Tde ko­ ro şefliği ve Müli Saraylar Da­ iresi Başkanlığfnda sanat da­ nışmanlığı da yapan Toker’in en ünlü besteleri şöyle:.. “Kadına Kanma”, “Çıksam

Baytursunov'un &#34;Jığan-Tergen&#34; (Yığan-Toplayan) şiirim incelemeye çalışacağız. Abay'ın &#34;Segiz Ayaq&#34;ı dönemindeki hayatın gerçeğini, halkın

The designed antenna is used to transmit a second derivative Gaussian pulse and the received third order Gaussian like signal is as shown in Figure

A diyafram yayı çalışmasında olduğu gibi bu çalışmada da diyafram yaya ait CAD datası hazırlandıktan sonra, analiz ön işlemlerinin tanımlanması ve çözüm için

Accordingly, we (i) design possible linearly combined pulses that conform to the standard requirements, (ii) consider coherent and noncoherent receiver structures that can be

Coronary computed tomography angiography with a multiplanar reconstruction image shows a bronchial-coronary artery fistula between the hypertrophied bronchial artery and the