• Sonuç bulunamadı

View of Hybrid Fuzzy Bi-Ideals In Near-Rings

N/A
N/A
Protected

Academic year: 2021

Share "View of Hybrid Fuzzy Bi-Ideals In Near-Rings"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Hybrid Fuzzy Bi-Ideals In Near-Rings

Dr. M. Himaya Jaleela Begum

1

, G.Rama

2

Reg.

No:18221192092015

1Assistant Professor,2Research Scholar. 1,2 Department Of Mathematics,

Sadakathullah Appa College (Autonomous),Tirunelveli-627 011. Affiliated to Manonmaniam Sundaranar University,

Abishekapatti, Tirunelveli - 627012.Tamilnadu, India.

Article History: Received: 11 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 16 April 2021

ABSTRACT: In this paper, we introduce the concept of hybrid fuzzy bi-ideals in near rings and give some

characterizations of hybrid fuzzy bi-ideals in near rings.

Key words: near-ring, hybrid fuzzy bi-ideal, hybrid structures. AMS subject classification(2010):16Y30,20M17,06D72.

1.

Introduction

In 1965, researcher L.A. Zadeh invented the innovative idea the fuzzy set [4]. M.Himaya Jaleela Begum and S. Jeya lakshmi [1] presented the concept of anti fuzzy bi-ideals in near-ring .The Hybrid structures and applications are introduced Young Baejun. Seok-Zunsong, G.Muhiuddin[5].Young Bae Jun, Madad Khan,Saima Anis [2] presented the concept of hybrid ideals in Semigroups. B.Elavarasam,K.Porselvi YoungBae Jin discussed hybrid generalized bi-ideals in Semi groups[3].In this research paper, we introduce the notion of hybrid fuzzy bi-ideals of Near –rings and illustrated with examples.

2.Preliminaries

Definition:2.1 [3] Let N be a near-ring with two binary operations as ‘+’ and ′ ∙ ′ which satisfy the following conditions:

(i) (N,+) be a group (ii) (N, ∙) be a semi-group. (iii) (x+y) ∙ z= x∙z+y∙z∀ x,y,z ∈N.

Precisely because it satisfies the right distributive law, it is a right near-ring. We would instead use the term “near-ring” of near ring right”. We denote xy instead of x∙y. Note that0 (x)=0 and(-x) y=-xy but in general x (0)≠0 for some x ∈N.

Definition:2.2 [3] Let N be a near-ring and let I be the non-empty subset of near- ring N that is called as an ideal of N which satisfies the following conditions:

(iv) (I,+) be a normal subgroup of (N,+), (v) IN⊆ 𝐼,

(vi) y(i+x)-yx ∈ 𝐼∀𝑖 ∈ 𝐼; 𝑥, 𝑦 ∈ 𝑁.

Definition:2.3 [1] Let N be a near-ring. A fuzzy set 𝜇 of N is called as an anti fuzzy bi-ideal of N if for all 𝑥, 𝑦, 𝑧 ∈ 𝑁.

(i) 𝜇(𝑥 − 𝑦) ≤ max{𝜇(𝑥), 𝜇(𝑦)}. (ii) 𝜇(𝑥𝑦𝑧) ≤ max{𝜇(𝑥), 𝜇(𝑧)}. Note: 2.4

Jun et al presented the basic representation of hybrid structure and associated outcome as result [4]. Let 𝒫(𝑈) said to be the power set of an initial universal set U and let I be the unit interval.

Definition: 2.5[5] Let 𝑓̃ be a hybrid structure in N over U is defined as a mapping 𝜆

𝑓̃ :=(𝑓̃, 𝜆): 𝑁 → 𝒫(𝑈) × 𝐼 X ↦ (𝑓̃(𝑥), 𝜆(𝑥)) 𝜆

Where 𝑓̃: 𝑁 → 𝒫(𝑈) and 𝜆: 𝑁 → 𝐼 are mapping. The set of all hybrid structures in N over U is denoted by ℍ(𝑁). Define a relation ‘≪’ on as follows:

𝑓̃ ≪ 𝑔̃ ⇔ 𝑓̃ ⊆̃ 𝑔̃ λ≽ 𝜇∀𝑓̃,𝑔̃ ∈ ℍ(𝑁) where 𝑓̃ ⊆̃ 𝑔̃ means that 𝑓̃(𝑥) ⊆ 𝑔̃(𝑥) and λ≽ 𝜇 means that λ(x)≽ 𝜇(𝑥)∀𝑥 ∈N.then (ℍ(𝑁), ≪) is a partially ordered set

Definition:2.6[5] Let 𝑓̃ be a hybrid structure in N over U. Then sets 𝜆

(2)

𝑓̃ (𝛼, 𝑡] ≔ {𝑥 ∈ 𝑋|𝑓̃(𝑥) ⊋ 𝛼, 𝜆(𝑥) ≤ 𝑡} 𝜆

𝑓̃ [𝛼, 𝑡) ≔ {𝑥 ∈ 𝑋|𝑓̃(𝑥) ⊇ 𝛼, 𝜆(𝑥) < 𝑡} 𝜆

𝑓̃ (𝛼, 𝑡) ≔ {𝑥 ∈ 𝑋|𝑓̃(𝑥) ⊋ 𝛼, 𝜆(𝑥) < 𝑡} 𝜆

are called the [𝛼, 𝑡]- hybrid cut, (𝛼, 𝑡] -hybrid cut [𝛼, 𝑡) - hybrid cut (𝛼, 𝑡)- the hybrid cut of 𝑓̃ respectively 𝜆

where 𝛼 ∈ ℘(𝑈) and t ∈ 𝐼

Obviously, 𝑓̃ (𝛼, 𝑡) ⊆ 𝑓𝜆 ̃ (𝛼, 𝑡] ⊆ 𝑓𝜆 ̃ [𝛼, 𝑡] and 𝑓𝜆 ̃ (𝛼, 𝑡) ⊆ 𝑓𝜆 ̃ [𝛼, 𝑡) ⊆ 𝑓𝜆 ̃ [𝛼, 𝑡] 𝜆

Definition: 2.7[3] Let 𝑓̃ ∈ ℍ(𝑁).For 𝜙 ≠ 𝐴 ⊆ 𝑁 ,the characteristic hybrid structure in N over U is denoted by 𝜆

𝜒𝐴(𝑓̃ ) =( 𝜒𝜆 𝐴(𝑓̃), 𝜒𝐴(𝜆)) and it is defined by 𝜒𝐴(𝑓̃): 𝑁 → 𝒫(𝑈)𝑥 ↦ { 𝑈 𝑥 ∈ 𝐴 𝜙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 and 𝜒𝐴(𝜆): 𝑁 → 𝐼𝑥 ↦ {1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 𝑥 ∈ 𝐴

Definition:2.8 [5] Let𝑓̃ , 𝑔̃𝜆 𝜇∈ ℍ(𝑁), the hybrid intersection of 𝑓̃ and 𝑔̃𝜆 𝜇 is denoted by

𝑓̃ ⋒ 𝑔̃ and is describes to be a hybrid structure

𝑓̃ ⋒ 𝑔̃𝜆 𝜇: 𝑁 → 𝒫(𝑈) × 𝐼 X ↦ ((𝑓̃ ∩̃ 𝑔̃)(𝑥), (𝜆 ∨ 𝜇)(𝑥)) Where

𝑓̃ ∩̃ 𝑔̃: 𝑁 → 𝒫(𝑈) X ↦ 𝑓̃(𝑥) ∩ 𝑔̃(𝑥) 𝜆 ∨ 𝜇 : 𝑁 → 𝐼 X ↦ 𝜆(𝑥) ∨ 𝜇(𝑥)

2.

Hybrid Fuzzy Bi-ideals

Definition: 3.1 Let 𝑓̃ ∈ ℍ(𝑁), 𝑓𝜆 ̃ is called a hybrid fuzzy bi-ideal of N over U which satisfies the following 𝜆

conditions:

(HB1): 𝑓̃(𝑥 + 𝑦) ⊇ ⋂{𝑓̃(𝑥), 𝑓̃(𝑦)} (HB2): 𝜆(𝑥 + 𝑦) ≤∨ {𝜆(𝑥), 𝜆(𝑦)}

(HB3):𝑓̃(𝑥𝑦𝑧) ⊇ ⋂{𝑓̃(𝑥), 𝑓̃(𝑧)}∀ 𝑥, 𝑦, 𝑧 ∈ 𝑁 (HB4): 𝜆(𝑥𝑦𝑧) ≤∨ {𝜆(𝑥), 𝜆(𝑧)}

Example:3.2 The universal set U is given by U=[0,1]

Let N={0,x,y,z} is a near-ring with the binary operation ‘+’ and ′ ∙ ′ defined by

Respectively.

Let 𝑓̃ be a hybrid structure in 𝜆

N over U which is given in the table N 𝑓̃ 0 [0,0.6] x [0,0.2] y {0} z {0}

𝜆 be any constant mapping from N to 𝐼 . Then we say that 𝑓̃ is a hybrid fuzzy bi-ideal of N over U. 𝜆

Theorem:3.3 Let A be a non-empty subset of N and A is a hybrid fuzzy bi-ideal of N over U. Show that

𝜒𝐴(𝑓̃ ) is a hybrid fuzzy bi-ideal of N. 𝜆

Proof:

Let A be a hybrid fuzzy bi-ideal of N and Let x, y ∈ 𝑁

Case (i) If 𝑥 ∉ 𝐴, 𝑦 ∉ 𝐴 then 𝑥 + 𝑦 ∉ 𝐴

∴ 𝜒𝐴(𝑓̃)( 𝑥 + 𝑦) ⊇ 𝜙 = ⋂{𝜒𝐴(𝑓̃)(𝑥), 𝜒𝐴(𝑓̃)(𝑦)} and

𝜒𝐴(𝜆)( 𝑥 + 𝑦) ≤ 1 =∨ {𝜒𝐴(𝜆)(𝑥), 𝜒𝐴(𝜆)(𝑦)}

Let x, y, z ∈ 𝑁 If 𝑥 ∉ 𝐴, 𝑦 ∉ 𝐴 𝑎𝑛𝑑 𝑧 ∉ 𝐴 then 𝑥𝑦𝑧 ∉ 𝐴 𝜒𝐴(𝑓̃)( 𝑥𝑦𝑧) ⊇ 𝜙 = ⋂{𝜒𝐴(𝑓̃)(𝑥), 𝜒𝐴(𝑓̃)(𝑧)} and

𝜒𝐴(𝜆)( 𝑥𝑦𝑧) ≤ 1 =∨ {𝜒𝐴(𝜆)(𝑥), 𝜒𝐴(𝜆)(𝑧)}

Case (ii) Let x, y ∈ 𝑁 Case (ii) If 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 then 𝑥 + 𝑦 ∈ 𝐴 ∴ 𝜒𝐴(𝑓̃)( 𝑥 + 𝑦) ⊇ 𝑈 = ⋂{𝜒𝐴(𝑓̃)(𝑥), 𝜒𝐴(𝑓̃)(𝑦)} and 𝜒𝐴(𝜆)( 𝑥 + 𝑦) ≤ 0 =∨ {𝜒𝐴(𝜆)(𝑥), 𝜒𝐴(𝜆)(𝑦)} Let x, y, z ∈ 𝑁 If 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 𝑎𝑛𝑑 𝑧 ∈ 𝐴 then 𝑥𝑦𝑧 ∈ 𝐴 ∙ 0 x y z 0 0 0 0 0 x 0 0 0 0 y 0 0 0 x z 0 0 0 x + 0 x y z 0 0 x y z x x 0 z y y y z x 0 z z y 0 x

(3)

𝜒𝐴(𝑓̃)( 𝑥𝑦𝑧) ⊇ 𝑈 = ⋂{𝜒𝐴(𝑓̃)(𝑥), 𝜒𝐴(𝑓̃)(𝑧)} and

𝜒𝐴(𝜆)( 𝑥𝑦𝑧) ≤ 1 =∨ {𝜒𝐴(𝜆)(𝑥), 𝜒𝐴(𝜆)(𝑧)}

∴ 𝜒𝐴(𝑓̃ ) is a hybrid fuzzy bi-ideal of N. 𝜆

Proposition:3.4 Let 𝑓̃ and 𝑔̃𝜆 𝜇 are the two hybrid structures in N over U. For any 𝛽, 𝛿 ∈ 𝒫(𝑈) and 𝑎, 𝑏 ∈ 𝐼, we

have the following properties:

(i) If 𝛽 ⊆ 𝛿 and 𝑏 ≤ 𝑎, then 𝑓̃ [𝛿, 𝑏] ⊆ 𝑓𝜆 ̃ [𝛽, 𝑎] 𝜆

(ii) If 𝑓̃ ≪ 𝑔̃𝜆 𝜇,then 𝑓̃ [𝛽, 𝑏] ⊆ 𝑔̃𝜆 𝜇[𝛽, 𝑏]

(iii) If (𝑓̃ ⋒ 𝑔̃𝜆 𝜇)[𝛽, 𝑏] = 𝑓̃ [𝛽, 𝑏]⋂𝑔̃𝜆 𝜇[𝛽, 𝑏]

Proof: (i) Let 𝛽 ⊆ 𝛿 and 𝑏 ≤ 𝑎 and let 𝑥 ∈ 𝑓̃ [𝛿, 𝑏]. Then 𝑓̃(𝑥) ⊇ 𝛿 ⊇ 𝛽 and 𝜆(𝑥) ≤ 𝑏 ≤ 𝑎, which implies 𝜆

that 𝑥 ∈ 𝑓̃ [𝛽, 𝑎]Thus 𝑓𝜆 ̃ [𝛿, 𝑏] ⊆ 𝑓𝜆 ̃ [𝛽, 𝑎] 𝜆

(ii) Assume that 𝑓̃ ≪ 𝑔̃𝜆 𝜇, and let 𝑥 ∈ 𝑓̃ [𝛽, 𝑏] 𝜆

Then 𝑔̃ (𝑥) ⊇ 𝑓̃(𝑥) ⊇ 𝛽 and 𝜇 (𝑥) ≤ 𝜆(𝑥) ⊇ 𝑏 Hence 𝑥 ∈ 𝑔̃𝜇[𝛽, 𝑏] andso 𝑓̃ [𝛽, 𝑏] ⊆ 𝑔̃𝜆 𝜇𝛽, 𝑏]

(iii) Let 𝑥 ∈ 𝑁 we have 𝑥 ∈ 𝑓̃ ⋒ 𝑔̃𝜆 𝜇)[𝛽, 𝑏] ⇔ (𝑓̃⋂̃ 𝑔̃)(𝑥) ⊇ 𝛽, (𝜆 ∨ 𝜇)(𝑥) ≤ 𝑏

⇔ 𝑓̃(𝑥) ∩ 𝑔̃(𝑥)) ⊇ 𝛽 , ∨ { 𝜆(𝑥), 𝜇(𝑥)} ≤ 𝑏 ⇔ 𝑓̃(𝑥) ⊇ 𝛽, 𝑔̃(𝑥)) ⊇ 𝛽, 𝜆(𝑥) ≤ 𝑏, 𝜇(𝑥) ≤ 𝑏

⇔ 𝑥 ∈ 𝑓̃ [𝛽, 𝑏], 𝑥 ∈ 𝑔̃𝜆 𝜇[𝛽, 𝑏]

⇔ 𝑥 ∈ 𝑓̃ [𝛽, 𝑏] ∩ 𝑔̃𝜆 𝜇[𝛽, 𝑏].

Theorem:3.5 If (𝐴1,𝐴2,𝐴3, … 𝐴𝑛) are hybrid fuzzy bi-ideal of N ,then 𝐴 = ⋂𝑛𝑖=1𝐴𝑖 is also a hybrid fuzzy

bi-ideal of N.

Proof: Let 𝐴𝑖 ={(

f

Ai

~

,𝜆𝐴𝑖): 𝑖 ∈ 𝐼} be a non-empty family of hybrid fuzzy bi-ideal of N

Let x, y, z ∈ 𝑁 we have (i) (

I i Ai

f

~

) (𝑥 + 𝑦) =

I i Ai

f

~

(

(x+y)) ⊇

I i

( )

x

f

i A

~

{

(

,

~

f

( )

y

})

i A =

{

I i Ai

f

~

(

(x),

I i Ai

f

~

(

(y)} 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 (

I i Ai

f

~

(

) (𝑥 + 𝑦) ⊇

{

I i Ai

f

~

(

(x),

I i Ai

f

~

(

(y)} (ii)

I i 𝜆𝐴𝑖(𝑥 + 𝑦) =

I i (𝜆𝐴𝑖(𝑥 + 𝑦)) ≤

I i (

{

(x

)

i A

,

(

y

)

i A

}) ≤

{

I i

)

(x

i A

,

I i

)

( y

i A

} Therefore

I i 𝜆𝐴𝑖(𝑥 + 𝑦) ≤

{

I i

)

(x

i A

,

I i

)

( y

i A

} (iii) (

I i Ai

f

~

) (𝑥𝑦𝑧) =

I i Ai

f

~

(

(xyz)) ⊇

I i

( )

x

f

i A

~

{

(

,

~

f

( )

z

})

i A =

{

I i Ai

f

~

(

(x),

I i Ai

f

~

(

(z)} 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 (

I i Ai

f

~

(

) (𝑥𝑦𝑧) ⊇

{

I i Ai

f

~

(

(x),

I i Ai

f

~

(

(z)} (iv)

I i 𝜆𝐴𝑖(𝑥𝑦𝑧) =

I i (𝜆𝐴𝑖(𝑥𝑦𝑧)) ≤

I i (

{

(x

)

i A

,

(z

)

i A

}) ≤

{

I i

)

(x

i A

,

I i

)

(z

i A

} Therefore

I i 𝜆𝐴𝑖(𝑥𝑦𝑧) ≤

{

I i

)

(x

i A

,

I i

)

(z

i A

}

Hence intersection of a non-empty collection of hybrid fuzzy bi-ideal is also a hybrid fuzzy bi-ideal of N.

4. Homomorphism of a hybrid structure

Definition:4.1[3]Let 𝑔: 𝐿 → 𝑀 be a mapping from a set L to set an M for a hybrid structure 𝑓̃ in M over U. 𝜆

(4)

𝑔−1( 𝑓 𝜆

̃ ) ≔ (𝑔−1(𝑓̃ ),𝑔−1(𝜆)) in L over U. Where 𝑔−1(𝑓̃(𝑥)) = 𝑔̃(𝑓(𝑥)) and

𝑔−1(𝜆)(𝑥)) = 𝜆(𝑔(𝑥))∀ 𝑥 ∈ 𝐿. Say that 𝑔−1(𝑓 𝜆

̃ ) is the hybrid pre-image of 𝑓̃ under 𝑔 𝜆

For a hybrid structure 𝑓̃ in L over U. The hybrid image of 𝑓𝜆 ̃ under 𝑔 is defined in M over U where for every 𝜆

k ∈ 𝑀 𝑔 (𝑓̃(𝑘)) = {𝑥∈𝑔⋃−1(𝑘)𝑓̃(𝑥) , 𝑖𝑓 𝑔−1(𝑘) ≠ 𝜙 𝜙, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑔(𝜆(𝑘)) = {𝑥∈𝑔⋀ 𝜆(𝑥)−1(𝑘 , 𝑖𝑓 𝑔−1(𝑘) ≠ 𝜙 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition:4.2[3]Let N1and N2 be two near-rings. Let 𝑔: N1→ N2 is called a near- ring homomorphism if

𝑔(𝑥 + 𝑦) = 𝑔(𝑥) + 𝑔(𝑦) and 𝑔(𝑥𝑦) = 𝑔(𝑥)𝑔(𝑦) for any 𝑥, 𝑦 ∈ N1

Theorem:4.3

Every Homomorphic hybrid pre-image of a hybrid fuzzy bi-ideal is also a hybrid fuzzy bi-ideal in N1

Proof:

Let 𝑔: N1→ N2 be a near- ring homomorphism and 𝑓̃ be a hybrid fuzzy bi-ideal of N𝜆 2 over U and let 𝑥, 𝑦, 𝑧 ∈

N1 then (𝑖)𝑔−1(𝑓̃)(𝑥 + 𝑦) = 𝑓̃(𝑔(𝑥 + 𝑦))= 𝑓̃(𝑔(𝑥) + 𝑔(𝑦)) ⊇∩ {𝑓̃(𝑔(𝑥)), 𝑓̃(𝑔(𝑦))} Therefore 𝑔−1(𝑓̃)(𝑥 + 𝑦) ⊇∩{𝑔−1(𝑓̃(𝑥)) , 𝑔−1(𝑓̃(𝑦))} (𝑖𝑖)𝑔−1(𝜆)(𝑥 + 𝑦)= 𝜆(𝑔(𝑥 + 𝑦)) = 𝜆(𝑔(𝑥) + 𝑔(𝑦)) ≤∨ {𝜆(𝑔(𝑥)), 𝜆(𝑔(𝑦))} Therefore 𝑔−1(𝜆)(𝑥 + 𝑦) ≤∨{𝑔−1(𝜆(𝑥)), 𝑔−1(𝜆(𝑦))} (𝑖𝑖𝑖)𝑔−1(𝑓̃)(𝑥𝑦𝑧) = 𝑓̃ (𝑔(𝑥𝑦𝑧)) = 𝑓̃(𝑔(𝑥)𝑔(𝑦)𝑔(𝑧)) ⊇∩ {𝑓̃(𝑔(𝑥)), 𝑓̃(𝑔(𝑧))} Therefore 𝑔−1(𝑓̃)(𝑥𝑦𝑧) ⊇∩{𝑔−1(𝑓̃(𝑥)) , 𝑔−1(𝑓̃(𝑧))} (𝑖𝑣)𝑔−1(𝜆)(𝑥𝑦𝑧)= 𝜆(𝑔(𝑥𝑦𝑧)) = 𝜆(𝑔(𝑥)𝑔(𝑦)𝑔(𝑧)) ≤∨ {𝜆(𝑔(𝑥)), 𝜆(𝑔(𝑧))} Therefore 𝑔−1(𝜆)(𝑥𝑦𝑧) ≤∨{𝑔−1(𝜆(𝑥)), 𝑔−1(𝜆(𝑧))} Therefore 𝑔−1(𝑓 𝜆

̃ ) is a hybrid fuzzy bi-ideal in N1

Theorem:4.4

Let 𝑔: N1→ N2 be an onto homomorphism of near-rings let 𝑔−1(𝑓̃ ) = (𝑔𝜆 −1(𝑓̃), 𝑔−1(𝜆)) be a hybrid fuzzy

bi-ideal of N1over U where 𝑓̃ is a hybrid structure in N𝜆 2 over U.

Proof:

Let 𝑥1, 𝑦1, 𝑧1∈ N2 then 𝑔(𝑥2) =𝑥1 , 𝑔(𝑦2) = 𝑦1, 𝑔(𝑧2) = 𝑦1 for some 𝑥2, 𝑦2, 𝑧2∈ N1

Now,(𝑖)𝑓̃ (𝑥1+ 𝑦1) = 𝑓̃(𝑔(𝑥2) + 𝑔(𝑦2)) = 𝑓̃(𝑔(𝑥2+ 𝑦2)) =𝑔−1(𝑓̃)(𝑥2+ 𝑦2) ⊇∩ {𝑔−1(𝑓̃)(𝑥 2), 𝑔−1(𝑓̃)(𝑦2) Therefore 𝑓̃ (𝑥1+ 𝑦1) ⊇ ∩ { 𝑓̃ (𝑥1), 𝑓̃ (𝑦1)} (ii) 𝜆(𝑥1+ 𝑦1) = 𝜆(𝑔(𝑥2) + 𝑔(𝑦2)) = 𝜆(𝑔(𝑥2+ 𝑦2)) =𝑔−1(𝜆)(𝑥2+ 𝑦2) ≤∨ {𝑔−1(𝜆)(𝑥 2), 𝑔−1(𝜆)(𝑦2) Therefore 𝜆(𝑥1+ 𝑦1) =∨ {𝜆(𝑥), 𝜆(𝑦)} (iii) 𝑓̃(𝑥1𝑦1𝑧1) = 𝑓̃(𝑔(𝑥2)𝑔(𝑦2)𝑔(𝑧2)) = 𝑓̃ (𝑔(𝑥2𝑦2𝑧2) ⊇∩ {𝑓̃(𝑔(𝑥2)), 𝑓̃(𝑔(𝑧2)) Therefore 𝑓̃(𝑥1𝑦1𝑧1) =∩ {𝑓̃(𝑥1), 𝑓̃(𝑧1)} (iv) 𝜆(𝑥1𝑦1𝑧1) = 𝜆(𝑔(𝑥2)𝑔(𝑦2)𝑔(𝑧2)) = 𝜆(𝑔(𝑥2𝑦2𝑧2)) ≤∨ {𝜆(𝑔(𝑥2)), 𝜆(𝑔(𝑧2)) Therefore 𝜆(𝑥1𝑦1𝑧1) ≤∨ {𝜆(𝑥1), 𝜆(𝑧1)} REFERENCES

1. M.Himaya Jaleela Begum , S.Jeya lakshmi : On anti fuzzy bi-ideals in near-rings International Journal

of Mathematics and Soft Computing vol.5,No.2. (2015),75-82.

2. Saima Anis, Madad Khan&Young Bae Jun: Hybrid ideals in Semi Groups Cogent Mathematics 4,(2017).

3. ]B.Elavarasam,K.Porselvi, Young Bae Jun:Hybrid generalized bi-ideals in Semi Groups International Journal of Mathematics and computer science,14(2019),No.3 601-612.

(5)

5. Young Bae Jun,Seok-ZunSong, G.Muhiuddin: Hybrid Structures and Applications Ann Commun Math 1(1):11-25(2017).

Referanslar

Benzer Belgeler

Genital herpes, prepubertal dönemde cinsel istismar bulgusu olabileceğinden mutlaka değer- lendirilmesi gereken; değerlendirilirken de HSV-1 enfeksiyonu prevalansındaki

sorusuna verilen cevaplar incelendiğinde, doğaya zararlı olduğu için toplanıyor cevabını verenlerin toplamı 61 kişi, geri dönüşüm için diyen öğrencilerin

Bedii Şehsuvaroğlu’nun açık­ ladığına göre, Feneryolunda oturan devrin Sadrazamı Ah­ met Muhtar Paşa bir gün çevrede dolaşırken köşkü gör­ müş ve

Bilim ve teknolojinin hızla geliştiği çağımızda alçılı vitray, yerini giderek yeni tekniklere bırakmakta, Selçuklu ve Osmanlı Dönemi'nde olduğu gibi yaygın

G azetede hazla okumuş ola­ caksınız: Dokuzuncu asırda ölen tbni Sina ile on altıncı asır­ da ölen Fuzulî ve on yedinci asır başında ölen Bağdatlı

Fransa’ daki gösteriler daha çok Türkiye'nin Avrupa ile arasını açma hedefine yöneltilirken, Atina'daki miting doğrudan doğruya Türkiye ile Yunanistan

Oktaş Hazır Beton bugüne kadar Uşak Belediyesi, UDAŞ Uşak Doğalgaz Dağıtım A.Ş, Bereket Enerji Üretim A.Ş, Sönmez Elektrik Üretim San.. A.Ş., Uşak

In[4], Smith and Vedadi characterized modules which satisfy DCC (respectively, ACC) condition on non-essential submodules are uniform or Artinian (respectively,