• Sonuç bulunamadı

Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution

N/A
N/A
Protected

Academic year: 2021

Share "Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Hazardous

Materials

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j h a z m a t

Surface

modification

of

electrospun

polyester

nanofibers

with

cyclodextrin

polymer

for

the

removal

of

phenanthrene

from

aqueous

solution

Fatma

Kayaci,

Zeynep

Aytac,

Tamer

Uyar

UNAM-InstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara06800,Turkey

h

i

g

h

l

i

g

h

t

s

•Electrospun PET nanofibers were

surface modified with cyclodextrin

polymer(CDP).

•ThreedifferenttypesofnativeCD

(␣-CD, ␤-CD and ␥-CD)were used to

formCDP.

•Nanofibrous structure of PET mats

was preserved after CDP surface

modification.

•PET/CDP nanofibers have shown

enhanced mechanical and thermal

properties.

•PET/CDP nanofibers efficiently

remove PAH (e.g. phenanthrene)

fromaqueoussolution.

g

r

a

p

h

i

c

a

l

a

b

s

t

r

a

c

t

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4March2013

Receivedinrevisedform5July2013 Accepted18July2013

Available online 25 July 2013 Keywords: Electrospinning Cyclodextrinpolymer Nanofibers Polyester Phenathrene

a

b

s

t

r

a

c

t

Surfacemodifiedelectrospunpolyester(PET)nanofiberswithcyclodextrinpolymer(CDP)wereproduced

(PET/CDP).CDPformationontoelectrospunPETnanofiberswasachievedbypolymerizationbetween

citricacid(CTR,crosslinkingagent)andcyclodextrin(CD).ThreedifferenttypesofnativeCD(␣-CD,

␤-CDand␥-CD)wereusedtoformCDP.Water-insolublecrosslinkedCDPcoatingwaspermanently

adheredontothePETnanofibers.SEMimagingindicatedthatthenanofibrousstructureofPETmatswas

preservedafterCDPsurfacemodificationprocess.PET/CDPnanofibershaveshownrougher/irregular

surfaceandlargerfiberdiameterwhencomparedtountreatedPETnanofibers.Thesurfaceanalysesof

PET/CDPnanofibersbyXPSelucidatedthatCDPwaspresentonthefibersurface.DMAanalysesrevealed

theenhancedmechanicalpropertiesforPET/CDPwherePET/CDPnanofibershaveshownhigherstorage

modulusandhigherglasstransitiontemperaturecomparedtountreatedPETnanofibers.Thesurface

areaofthePET/CDPnanofibersinvestigatedbyBETmeasurementsshowedslightdecreaseduetothe

presenceofCDPcoatingcomparedtopristinePETnanofibers.Yet,itwasobservedthatPET/CDPnanofibers

weremoreefficientfortheremovalofphenanthreneasamodelpolycyclicaromatichydrocarbon(PAH)

fromaqueoussolutionwhencomparedtopristinePETnanofibers.OurfindingssuggestedthatPET/CDP

nanofiberscanbeaverygoodcandidateasafiltermaterialforwaterpurificationandwastetreatment

owingtotheirverylargesurfaceareaaswellasinclusioncomplexationcapabilityofsurfaceassociated

CDP.

© 2013 Elsevier B.V. All rights reserved.

∗ Correspondingauthor.Tel.:+903122903571;fax:+903122664365. E-mailaddresses:tamer@unam.bilkent.edu.tr,uyar@unam.bilkent.edu.tr,

tameruyar@gmail.com(T.Uyar).

1. Introduction

Electrospun nanofibers and their nanofibrous mats have demonstratedhugepotentialforfiltrationapplicationsduetotheir

0304-3894/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

highsurface-to-volumeratioand nanoporousstructure[1–3].It hasbeenreported that electrospunnanofibrousmats are quite effective for particulate separation [2,3], liquid filtration [1–3], wastevaportreatment[4,5]aswellasdesalination[6]. Electro-spinninghasadvantageoverconventionalmembraneproduction techniques,sincevarietyoffunctionalnanofibrousmaterialscan beeasilyobtainedintheformofnonwovenmembraneswhichcan bereadilyusedasafilteringmaterial[1–3].Inaddition,thedesign flexibilityofelectrospunnanofibersforspecificsurface function-alitycanyieldbetteradsorptivecapacityandselectiveseparation performance[7,8].

Cyclodextrins(CD)haveanoutstandingcapabilitytoform inclu-sioncomplexeswithvarietyofmoleculesthroughnon-covalent host–guestinteractionsduetotheirtoroid-shapedmolecular struc-ture[9].CD arequite applicablein pharmacy, cosmetics, food, textiles, since CD might enhance the solubility, stability, and bioavailabilityoftheguestmolecules[9–11].Inaddition,CDhave alsopotentialtobeusedasafilteringmaterialduetotheirabilityto selectivelyforminclusioncomplexeswithorganicwastemolecules [12,13].CDarenontoxicandnaturalcyclicoligosaccharidesderived fromstarch.ThemostcommonCDtypesarenamedas␣-CD,␤-CD and␥-CDhavingsix,sevenandeightglucopyranoseunits, respec-tively.TheseCDhavethesamecavitydepthwhichis∼7.8 ˚A,while thediameterofthecavityfor␣-CD,␤-CD,␥-CDare∼6,8,and10 ˚A, respectively[9].Hence,␣-CD,␤-CDand␥-CDshowdifferent capa-bilitiesfortheinclusioncomplexformationwiththesameguest molecule,becausetheformationofinclusion complexprimarily dependsonthesizematchandbindingforcesbetweenCDcavity andguestmolecule[14].

CDarewatersoluble,therefore,theycannotbeuseddirectly asafilteringmaterialfortheremovaloforganicpollutantsfrom water and wastewater. So, crosslinked and water-insoluble CD basedpolymersweresynthesizedforcapturingorganicpollutants fromthesurroundings[13].Alternatively,CDmoleculescouldbe permanentlyimmobilizedbychemicallygraftingontopolymeric fibers[15–18],orthesurfaceofthefiberscouldbemodifiedby crosslinkedCDpolymer[19–21]forfiltrationpurposesordelivery ofadditives.Moreover,inordertocombinethecomplex forma-tion capability of CD along with very highsurface areaof the electrospunnanofibrousmat,surfacefunctionalizationof electro-spunnanofiberswithCDwouldbequiteinterestingfordesigning efficientfilteringmaterials.Infact,inourrecentstudieswehave incorporatedCDintonanofibersbyelectrospinningofphysical mix-tureofpolymer/CDsolution[4,22,23].AlthoughmostoftheCD moleculeswereburiedinsidethefibermatrix,weobservedthat someCDmoleculeswerepresentonthefibersurface,andthese surfaceassociated CD moleculeswereeffectivefor theremoval oforganicmoleculesfromliquidmedia[22,23]andvaporphase [4].However,CDmoleculeswerephysicallyattachedtothefiber surface;so,theleaching ofCDmoleculesfromthefibersurface duringfiltrationespeciallyintheliquidmediawasinevitable. Con-sequently,permanentCDmodificationontoelectrospunnanofibers wouldbeidealfor designing novelfilteringmaterialsfor water purificationandwastewatertreatment.Eventhoughsurface mod-ificationsoffibersandnonwovenfabricsbyCDgrafting[15–17] orcoatingwithcrosslinkedCDpolymer[19–21,24]werereported, tothebestofourknowledge,thesurfacemodificationof electro-spunpolymericnanofiberswithcrosslinkedCDpolymerwasnot reportedpreviously.

In this study, we have achieved thesurface modification of theelectrospunpolyester(PET)nanofiberswithcyclodextrin poly-mer(CDP).Water-insolubleandcrosslinkedCDPcoatingontoPET nanofiberswasformedbythepolymerizationreaction between CDandcrosslinkingagent(citricacid).Foracomparativestudy, threetypesofCD(␣-CD,␤-CDand␥-CD)wereusedinorderto formCDPcoatingontoPETnanofibers.Themorphological,surface,

thermalandmechanicalpropertiesofsurfacemodifiedelectrospun PETnanofiberswithCDP(PET/CDP)wereexamined.Thefiltration performance ofthePET/CDPnanofibrousmatswasinvestigated byremovalofamodelpolycyclicaromatichydrocarbon (phenan-threne)fromaqueoussolution.

2. Materialsandmethods 2.1. Materials

Polyethyleneterephthalate(PET)chipsweregiftsfromKorteks (Bursa, Turkey). Dichloromethane (DCM, Sigma Aldrich, extra pure),trifluoroaceticacid(TFA,AlfaAesar,99%),acetonitrile chro-masol V (Sigma Aldrich, 99.9%), citric acid monohydrate-gritty puriss(CTR,SigmaAldrich,99.5–100.5%),sodiumhypophosphite hydrate(SHPI,SigmaAldrich),phenanthrene(SigmaAldrich,98%), andcyclodextrins(␣-CD,␤-CDand␥-CD,WackerChemieAG)were purchasedandusedas-receivedwithoutanypurification.Distilled waterwasfromMilliporeMilli-Qultrapurewatersystem. 2.2. Preparationofpolymersolutionandelectrospinningof nanofibers

First,differentpolymerconcentrationswereusedforthe elec-trospinningofPETsolutioninordertoobtainuniformandbead-free PETnanofibers,and22.5%(w/v)polymerconcentrationwasfound tobe theoptimal. Therefore, 22.5% (w/v)PET wasdissolvedin TFA/DCM(50/50,v/v),andtheresultingsolutionwasloadedinto 5mLsyringefittedwithametallicneedlehavinganinnerdiameter of0.8mm.Then,thesyringewasplacedhorizontallyonthesyringe pump(KDScientific,KDS101).Thepolymersolutionwaspumped with1mL/hflowrateduringtheelectrospinning,andthedistance wassetto12cmbetweenneedletipandgroundedstationary cylin-dricalmetalcollector(height:15cm,diameter:9cm)coveredwith apieceofaluminumfoil.Avoltageof15kVwasappliedforthe electrospinningbyusinghighvoltagepowersupply(Matsusada, AUSeries).Theelectrospinningprocesswascarriedoutat24.5◦C and17%relativehumidityinanenclosedPlexiglasbox.

2.3. Formationofcyclodextrinpolymer(CDP)ontoPETnanofibers 10%(w/v)of␣-CD,␤-CDand␥-CDwasmixedindividuallyin 150mLaqueoussolutionat50◦C, andthen,10%(w/v)CTRasa crosslinkingagentand1.2%(w/v)SHPIasacatalystwereaddedto eachCDsolutionseparately,andstirredfor30minat50◦C.After allreactantsweredissolvedinaqueoussolution,threerectangular shaped(about12cm×11cm,0.4g)electrospunPETnanofibrous matswereimmersedintotheeachresultingsolutionandkeptfor 3hat50◦C.Thenthesenanofibrousmatsweredriedat105◦Cfor 10min,andthencuredat180◦Cfor7minfortheCDPformation ontoPETnanofibers.Finallytheresultingnanofibrousmatswere washedtwotimeswithwarmwater(40◦C)fortheremovalof unre-actedCDandCTRifanypresent,andthendriedat105◦Cfor7min. Inordertomakeclearidentification,CDPmodifiedPETnanofibers arenamedasPET/␣-CDP,PET/␤-CDPandPET/␥-CDPaccordingthe typeofCDused(␣-CD,␤-CDand␥-CD).

2.4. Characterizationsandmeasurements

The morphology and the diameter of the PET and PET/CDP nanofiberswereexaminedbyusingscanningelectronmicroscope (SEM,FEI-Quanta200FEG).Thenanofiberswerecoatedwith5nm Au/PdpriortoSEManalysis.Toreporttheaveragefiberdiameter (AFD)ofthenanofibers,around100fibersofeachsample were measured.

(3)

The chemical surface analyses of the PET and PET/CDP nanofiberswerecarriedoutbymeansofhigh-performanceX-ray photoelectronspectroscopy(XPS,ThermoScientific).XPSdatawere takenbyafloodgunchargeneutralizersystemequippedwitha monochromatedAlK-␣X-raysource(hv=1486.6eV).Inorderto determinethesurfaceelementalcompositionswideenergysurvey scansofthenanofiberswereacquiredoverthe0–1360eVbinding energyrange,atpassenergyof150eVwithenergystepsizeof1eV from400␮mdiametercircularspotinnanofibers.Thehigh resolu-tionspectrawererecordedforO1sregionatpassenergyof30eV andwithenergystepsof0.1eVinordertoanalyzethebonding states.

Thethermalanalysesofthesampleswereinvestigatedbyusing thermogravimetricanalyzer(TGA,TAQ500).TGAmeasurements werecarriedout underthenitrogenatmosphere, andthe sam-pleswereheatedfromroomtemperatureto600◦C(nanofibers) or500◦C(CTRandCD)ataconstantheatingrateof20◦C/min.

Thedynamicthermo mechanical performanceof the nanofi-brousmatswasdeterminedusingadynamicmechanicalanalyzer (DMA, TA Q800) in tension film clamp at a constant fre-quencyof1Hz.Thesampleshavingsizeof10mm(gap)×∼3mm (width)×∼0.12mm(thickness)weremeasured.Theamplitudeof 20␮mwasapplied.Thestoragemodulusandlosstangent(tanı) ofthenanofibrousmatswererecordedintherangeof50–150◦Cat aheatingrateof3◦C/min.

Thesurfacearea,averageporediameter(mesopore)and cumu-lativeporevolumeoftheelectrospunPETandPET/CDPnanofibers were examined using Brunauer–Emmett–Teller (BET) surface areaanalyzer(Quantachrome,IQ-Cmodel)withlow-temperature (77.35K) nitrogenadsorption isotherms measured over a wide rangeofrelativepressuresfrom0.00to1.00.Priortomeasurement, theeachsamplewasplacedina9mmcellanddegassedat323.15K for12hinthedegaspotoftheadsorptionanalyzer.Thesurfacearea ofthesampleswasdeterminedwithmultipointBETmethod.Onthe otherhand,densityfunctionaltheory(DFT)wasusedtodetermine cumulativeporevolume.

Themolecularfiltrationperformanceoftheresulting nanofi-brousmatsforwaterpurificationwastestedusingphenanthrene asamodelpolycyclicaromatichydrocarbon(PAH).First, phenan-threnewasdissolvedinacetonitrile,andthen10␮Lofthissolution was dropped in 50mL pure water in order to obtain 1.8ppm phenanthreneaqueoussolution.SquareshapedofPET,PET/␣-CDP, PET/␤-CDPand PET/␥-CDPnanofibrousmats(6cm×6cm)were immersedindividuallyinthe1.8ppmphenanthreneaqueous solu-tion(50mL).Wekeptthesizeofthematsidentical;however,the weightofeachPET/CDPmatwasabout0.38g,whilethatofPET nanofibrousmatwasabout0.63gduetodifferenceinthethickness ofthemats,sincethenanofiberswerecollectedindifferenttimes foreachsample.Itisquitedifficulttokeepthethicknessofthe electrospunmatsevenidenticaltime.Forfiltrationmeasurements, 0.5mLofeachsolutionwaswithdrawntomeasurephenanthrene concentrationinthesolutionandreplenishedwithsameamount ofwateratpre-determinedtimeintervals.Thephenanthrene fil-trationperformancefromaqueoussolutionbyPETandPET/CDP nanofibrousmats was investigated by highperformance liquid chromatography(HPLC,Agilient1200series)equippedwithVWD UVdetector.ThecolumnwasAgilientC18,150mm×4.6mm(5␮m pores) and thedetection was accomplished at 254nm. Mobile phase,flowrate,injectionvolumeandtotal runtimewere ace-tonitrile(100%), 0.6mL/min,10␮Land5min,respectively. Asa result,theamountofphenanthreneremaininginthesolutionwas determinedfromtheareaofphenanthrenepeakobservedinHPLC chromatograms.Thenthecalibrationcurvewaspreparedbyusing phenanthrene solutions (1.8ppm, 0.9ppm, 0.45ppm, 0.23ppm, 0.12ppm)and R2 wascalculatedas0.985.Thepeakareaunder

curves wasconverted toconcentration (ppm)according tothe

calibrationcurve.Thisexperiment wasrepeatedthreetimesfor eachsample.Theresultswerereportedastheaverage±standard deviationofphenanthreneconcentrationremaininginthesolution. 3. Resultsanddiscussion

3.1. TheCDPformationontoelectrospunPETnanofibers

In this study, polyester (PET) nanofibers were obtained by electrospinningof22.5% (w/v)PETsolutionin TFA/DCM(50/50, v/v), as it is schematicallygiven in Fig. 1a. The chemical reac-tioncannotoccurbetweencyclodextrin(CD)/citricacid(CTR)and PETnanofibers directly,since PET, a polymerbased on tereph-talic acid and ethylene glycol, does not contain free reactive groups.Therefore,wemodifiedthesurfaceoftheelectrospunPET nanofibersthroughthepolymerizationreactionbetweenCTRand CD[21,24,25].Water-insoluble cyclodextrinpolymer (CDP) net-workwasformedbythecrosslinkingreactionbetweenCD and CTR[26].ThreedifferenttypesofnativeCD(␣-CD,␤-CDand␥-CD) wereusedtoform␣-CDP,␤-CDPand␥-CDP.Initially,electrospun PETnanofibrousmatswereimpregnatedinasolutionofCD,CTR, andsodiumhypophosphite(SHPI, catalyst),and thendried, fol-lowedbycuringat180◦Cfor7min.CTRturnintoacyclicanhydride intermediatebythermaldehydrationatelevatedtemperature,and thenhydroxylgroupsofCDreactedwiththecarboxylgroupsof citricacid[25].ThemechanismoftheCDPformationis schemati-callydescribedinFig.1b.CDPwasformedasathree-dimensional networkstructureontoPETnanofibers.Duetocrosslinked struc-ture,theCDPisstableandwater-insoluble[27,28].Thereby,surface modificationof CDPonto PETnanofibersis permanent andcan resisttoleachingorwashingprocess[21,24,25,29].Theresulting CDPhavingtheessentialstructuralcharacteristicsofCDwasnot covalentlyfixedtothePETnanofibers,butitwasphysicallyadhered orwasentangledontoPETfibermatrix[21,24].CDPmodifiedPET nanofibersarecalledasPET/CDP.Therepresentativephotograph oftheeasilyhandledfree-standingPET/CDPnanofibrousmatand theschematicrepresentationofPET/CDPnanofibersaregivenin Fig.1c.

3.2. Morphologicalcharacterizationofthenanofibers

Scanningelectronmicroscope(SEM)analysiswasperformedto investigateanymorphologicalchangesafterthesurface modifica-tionofPETnanofiberswithCDP.Fig.2showstherepresentative SEM images and average fiber diameter (AFD) of unmodified PET,PET/␣-CDP,PET/␤-CDPandPET/␥-CDPnanofibers.Asclearly seen from SEM images, the surface morphologies of all three PET/CDPnanofiberswereobviously differentfromthe unmodi-fiedPETnanofibers.ThesurfaceoftheunmodifiedPETnanofibers wassmooth anduniform, whereas thesurfacesofthePET/CDP nanofibersappearroughpossiblyduetoCDPlayerontonanofibers. The rough surface has also been reported for cotton fabrics graftedwithglycidylmethacrylate/␤-CD[17]and hydroxypropyl-CD grafted woven PET vascular prosthesis [20,21]. Moreover, surface irregularities at certain points were also observed in the SEM images of PET/CDP nanofibers. Similar morphological observations were also reported for cotton fabricgrafted with monochlorotriazinyl-␤-CD/butylacrylate [30].Inbrief,therough andirregularsurfaceofmodifiedPETnanofiberssuggestedthe suc-cessfulattachmentofCDPontoPETnanofibers.Moreimportantly, CDPsurfacemodificationprocessdidnotdeformthefibrous struc-tureofPETasclearlyseenfromtheSEMimages.Theunmodified PETnanofibershave870±260nmofAFD,whiletheAFDofPET/ ␣-CDP, PET/␤-CDP and PET/␥-CDP weremeasured as 1200±350, 1290±490and950±270nm,respectively.TheincreaseintheAFD

(4)

Fig.1. Schematicrepresentationsof(a)electrospinningofPETnanofibers,(b)formationmechanismofCDPand(c)therepresentativephotographofPET/CDPnanofibrous matanditsSEMimageandschematicrepresentationofPET/CDPnanofibers.

of PET/CDPnanofiberscompared to unmodified PETnanofibers could be due to the coating of the CDP onto PET nanofibers. Additionally,slightswellingofnanofibersduringthemodification processmightalsohaveresultedinfiberdiameterincrease. 3.3. Surfacechemicalcharacterizationofthenanofibers

Thesurface chemicalcharacterization ofPET/CDPnanofibers wasperformedbyusingX-rayphotoelectronspectroscopy(XPS) in order to further demonstrate the coating of CDP onto PET nanofibers. Table 1 shows elementary compositions based on wideenergysurveyspectraoftheunmodifiedPETnanofibersand PET/CDPnanofibers.Thesurveyspectracomprisingtwopeaks:C

Table1

AtomicconcentrationsgeneratedfromXPSwideenergysurveyscans.

Samples C(%) O(%)

PET 72.21 27.79

PET/␣-CDP 64.92 35.08 PET/␤-CDP 61.29 38.71 PET/␥-CDP 67.89 34.31

1sandO1sareconsistentwiththemolecularstructureofPETand

CDP.TheXPSdatashowedthattheunmodifiedPETnanofibershave

C1s:O1s=72.21:27.79(%)whichisinfullagreementwiththe

lit-erature[31].Oxygencontentonthesurfaceofthesampleswas

increasedwiththemodificationofCDPontoPETnanofibers.Thus, theappearanceofhigheroxygencontentprovidesanevidenceof thepresenceofCDPonthePETfibersurfaces.

High-energyresolutionO1sXPSspectrawerealsorecordedto getmoredetailedchemicalstateinformationaboutsurface chem-istryofthePET/CDPnanofibers.Fig.3showsthenormalizedO1s spectraofPETandPET/␥-CDPnanofibers.Theassigneddifferent componentswithinthesespectraandtheirindividualizedfitting parameters(peakbindingenergyand%arearatio)arealsogiven inTable2.SincetheO1sspectraofallPET/CDPnanofibers(PET/ ␣-CDP,PET/␤-CDPandPET/␥-CDP)aresimilartoeachother,those XPSdataacquiredforPET/␣-CDPandPET/␤-CDPnanofiberswere notgiven.TheO1sspectrumofunmodifiedPETnanofibersclearly representthetwotypesofoxygenatomswithintheestergroups; ␲-bondedoxygen(C O*)and␴-bondedoxygen(C O*)atbinding

energiesof531.54and533.12eV,respectively[32–35].Theratioof thesepeaksis56.2:42.1,whichisinreasonableagreementwiththe theoreticalratioof50:50[36].InadditiontotheseexpectedO1s

(5)

Fig.2. RepresentativeSEMimagesandAFDof(a)PET,(b)PET/␣-CDP,(c)PET/␤-CDPand(d)PET/␥-CDPnanofibers.Theinsetsshowhighermagnificationimages.

peaks,PETnanofibershaveaverysmallpeaksituatedat534.52eV assignedtoadsorbedwater[32].AftertheCDPmodificationonthe surfaceofPETnanofibers,thecontributionofadditionalO1s fit-tingpeakat532.35relatedtoaliphaticC O*Hcameintoview.The

appearanceofC O*Hcomponentbelongstohydroxylgroupsand

carboxylgroupsofCDPelucidatedthesuccessfulsurface modifica-tionofPETnanofiberswithCDP.Moreover,asitwasexpected,CDP

modificationontoPETnanofibersresultedinsignificantincreaseof relativeXPSsignalintensityintheO1speaksituatedat533.06eV assigned to␴-bonded oxygen(C O*)compared with␲-bonded

oxygen(C O*)locatedat532.35eV.Inbrief,therearethree

differ-entcomponents(C O*,C O*andC O*H)forO1shigh-resolution

spectraofthePET/CDPnanofibers.Theincreaseinoxygencontent ofPET/CDPnanofiberscomparedtounmodifiedPETnanofiberswas

(6)

Fig.4.(a)TGAthermogramsofCTRandthreeCDtypes(␣-CD,␤-CDand␥-CD),(b)TGAandderivativeTGA(inset)thermogramsofnanofibers.

especiallyduetotheappearanceofC O*Hforthesamples.The

presenceofCDPonthefibersurfaceisquiteimportantintermsof thefiltrationapplicationofPET/CDPnanofibrousmats[4,22,23]. 3.4. Thermalcharacterizationofthenanofibers

ThethermalcharacteristicsofthePET/CDPsampleswere inves-tigatedbyusingthermogravimetricanalyzer(TGA).InFig.4,the TGAthermogramsofCTRandCD(␣-CD,␤-CDand␥-CD)(Fig.4a), andunmodifiedPETandPET/CDPnanofibers(Fig.4b)aregiven. Moreover,thederivativeTGAthermogramsofnanofibersarealso shownasinsetinFig.4b.TheweightlossforCTRstartedataround 130◦C,andCTRcompletelydegradedbefore250◦C.TGA thermo-gramsofCD(␣-CD,␤-CDand␥-CD)presentedaninitialweight lossbelow100◦Candamajorweightlossbetween300and350◦C whichcorrespondtothewaterlossandmaindegradationofCD, respectively[37].ThemaindegradationofPETnanofibersoccurred between375and475◦C. ForthePET/CDPnanofiberstwomajor weightlosseswererecordedbetween200–350◦Cand375–475◦C whichcorrespondtomainthermaldegradationofCDPandPET, respectively. The% weightloss between200and 350◦C corre-spondingtoCDPinthePET/CDPnanofiberswas23%,44%and32% forPET/␣-CDP,PET/␤-CDPandPET/␥-CDPnanofibers,respectively, suggestingthattheamountofCDPcoatingontoPETnanofiberswas ontheorderof␤-CDP>␥-CDP>␣-CDP.Whenthederivativeweight %losswasanalyzed(Fig.4b),itwasobservedthatthepeakpoint fortheunmodifiedPET(∼437◦C)shiftedslightlytohigher

temper-ature(∼445◦C)forthePET/CDPnanofibers.Thisindicatedthatthe

modificationofPETnanofiberswithCDPresultedinslightlyhigher thermalstabilityduetomoreenergyrequirementfor decomposi-tionofthesesampleshavingcrosslinkedstructure.Theincreased thermalstabilityhasbeenalsoobservedforCDgraftedpolyamide 6fabrics[38].Moreover,thecharyieldwashigherforPET/CDP nanofiberswhencomparedtounmodifiedPETnanofiberspossibly owingtothecrosslinkedCDPstructure providinghighercarbon residueuponburning.

Table2

FittingparametersoftheO1sXPSspectraofPETandPET/␥-CDPnanofibers. Samples Fittingpeaks Bonds Peakbinding

energy Arearatio (%) PET O1s#1 C O* 533.12 56.2 O1s#2 C O* 531.54 42.1 O1s#3 AdsorbedH2O 534.52 1.7 PET/␥-CDP O1s#1 C O* 533.06 42.5 O1s#2 C O* 531.5 27.7 O1s#3 C O*H 532.35 29.8

3.5. Mechanicalcharacterizationofthenanofibers

Dynamicmechanicalanalyzer(DMA)wasusedtoinvestigate

theeffectofCDPmodificationonthethermomechanical

proper-tiesofthePETnanofibers.Thestoragemodulusandlosstangent

(tanı)oftheunmodifiedPETandPET/CDPnanofibrousmatswere

recordedupto150◦C(Fig.5).Thestoragemodulusofthe

sam-plesdecreasedwithincreasingtemperatureduetothetransition fromglassystatetorubbery state.Itwasobservedthatstorage modulusofthePET/CDPnanofibrousmatswasmuchhigherthan theunmodified PET nanofiberspossibly dueto stiffeningeffect of crosslinkedCDP coating. Sincethe transferredstress forPET nanofiberswas sharedby CDP coating,the storagemodulus of PET nanofibersenhanced withCDP modification. Moreover,for CDPmodifiednanofibers,tanıpeakshiftedtothehigher tempera-tureregionindicatingthattheglasstransitiontemperature(Tg)for

thesenanofiberswashigherwhencomparedtounmodifiedPET nanofibers.TheTgvalueofPETnanofiberswas92◦C,whiletheTg

valuesofPET/CDPnanofiberswererecordedas109,112and113◦C forPET/␣-CDP,PET/␤-CDPandPET/␥-CDPnanofibers,respectively. ThisresultsuggestedthatthemobilizationofPETmacromolecular chainswereaffectedandthesegmentalmotionofPETchainswere hinderedbyCDPmodification.Furthermore,broadertan␦peaks observedforPET/CDPnanofiberswhichcanbeoriginatedfromtwo TgvaluescorrespondtonotonlyPET,butalsoCDP[39].

3.6. Surfaceareaofthenanofibers

Thesurfacearea,averageporediameterandcumulativepore volumeofthePETandPET/CDPnanofiberswereinvestigatedby BET measurementsandthedatais summarized inTable3.The resultsindicatedthatthemultipointBETsurfaceareaof electro-spunPETnanofibersis6.03m2/g.Thesurfaceareadecreased to

1.56,0.57and0.72m2/gforPET/␣-CDP,PET/␤-CDPandPET/␥-CDP

nanofibers,respectively.AsmentionedinSEMcharacterization,the surfacemodificationofthePETnanofiberswithCDPresultedinthe irregularitiesonthefibersurfacesandAFDforthesesampleswere

Table3

Surfacearea,averageporediameterandcumulative porevolumedataofthe nanofibers.

Samples MultipointBET surfacearea(m2/g) Averagepore diameter(nm) DFTcumulative porevolume(cc/g) PET 6.03 15.3 1.03×10−2 PET/␣-CDP 1.56 12.4 3.22×10−3 PET/␤-CDP 0.57 13.6 1.28×10−3 PET/␥-CDP 0.72 14.0 1.05×10−3

(7)

Fig.5.DMAthermogramsofnanofibrousmats(a)storagemodulusand(b)losstangent(tanı).

increasedaswell,andtherefore,thesurfaceareaofthePET/CDP

nanofibersweredecreased.Thesurfaceirregularitiesofnanofibers

suchascrosslinkedCDP coating areclearly observed especially

intheSEMimagesof thePET/␤-CDPandPET/␥-CDPnanofibers

(Fig.2candd).Hence,thesurfaceareaofPET/␤-CDPandPET/ ␥-CDPnanofiberswaslessthanthatofPET/␣-CDP.Moreover,since PET/␤-CDPhasthelargestAFDamongthesamples(Fig.2c),the sur-faceareaofPET/␤-CDPnanofiberswasslightlylessthanPET/␥-CDP nanofibers.ItiswellknownthattheAFDhavegreateffectonthe surfaceareaoffibers[40].Wehavealsocalculatedthemesopore structure(averageporediameterandcumulativeporevolume)of thePETandPET/CDPnanofibers.Itwasobservedthat,theaverage porediameterandcumulativeporevolumedeterminedbydensity functionaltheory(DFT)alsodecreasedaftersurfacemodificationof thePETnanofiberspossiblyduetothecrosslinkedCDPcoatingonto nanofibersurfacewhichresultedinsurfaceirregularities.Inshort, thesurfaceareaofthePET/CDPnanofiberswasdecreasedduetothe presenceofCDPcoatingcomparedtopristinePETnanofibers, nev-ertheless,asdiscussedinthefollowingsection,PET/CDPnanofibers weremore efficientfor the removalof the phenanthrenefrom aqueoussolutionwhencomparedtopristinePETnanofibers. 3.7. Molecularfiltrationperformanceofthenanofibersforwater purification

ThemolecularfiltrationcapabilityofPETandPET/CDP nanofi-brous mats has been tested using a phenanthrene as a model polycyclicaromatichydrocarbon(PAH).Phenanthreneisacommon

pollutantandcanforminclusioncomplexeswithCD[12,41,42]. Fig.6summarizesthecumulative%decreaseofphenanthrene con-centrationovertimewhenPETandPET/CDPmatshavebeenkeptin aqueoussolutionofphenanthrene.AsseeninFig.6,the concentra-tionofphenanthreneintheaqueoussolutiondecreasedwithinthe contacttime.TheadsorptionofphenanthrenebyPETnanofibersfor thefirst2hwasobserved,andthentheconcentrationof phenan-threneslightlydecreasedovertime.Ontheotherhand,thedecrease ofphenanthreneconcentrationforPET/CDPmatswasmore sig-nificant.AlthoughlessamountofPET/CDPnanofiberswereused comparedtoPETnanofibersfor filtrationtest, theremoval effi-ciencyofthephenanthrenefromitsaqueoussolutionwasbetter whenPET/CDPnanofiberswereused.Water-insolubleCDPcanbe veryeffectiveinremovalofmanyorganicpollutantsfromaqueous media,sinceCDcavityiscapableofforminginclusioncomplexes withawidevarietyoforganicmolecules[9–11,13,18,22,28]. There-fore,thesurfacemodificationofelectrospunPETnanofiberswith CDPincreasedtheefficiencyoffiltrationbyfacilitatingcomplex formationwithphenanthrenecompounds.Here,allthreePET/CDP nanofibersdemonstratedtheabilitytofunctionasamolecularfilter forwaterpurificationthroughcomplexationofthephenanthrene withCDP.Asit mentioned in theprevioussection itis notable thatthesurfacearea,averageporediameterandcumulativepore volumeofnanofibersweredecreasedafterCDPmodification. How-ever,themolecularfiltrationefficiencywasstillfurtherimproved forPET/CDPnanofiberscomparedtopristinePETnanofibersdue totheCDPstructure ontonanofibers,whichplaysa crucialrole inmolecularcapturingofphenanthrene.WhentheCDtypeswere

(8)

Fig.7.RepresentativeSEMimagesof(a)PET,(b)PET/␣-CDP,(c)PET/␤-CDPand(d)PET/␥-CDPnanofibersafterthefiltrationtest.Theinsetsshowhighermagnification images.

compared,allthreePET/CDPsamplesshowedapproximatelysame filtrationefficiencyfortheremovalofphenanthreneattheendof filtrationtest.AlthoughTGAsuggestedthattheamountofCDP coat-ingontoPETnanofiberswasontheorderof␤-CDP>␥-CDP>␣-CDP, itislikelythatnotalltheCDmoleculesareavailablefor complexa-tion.So,thethreePET/CDPsamplesmayhavecomparableamount ofCDcavityavailableforcomplexation.Evenso,theaverage per-centageremovalofphenanthrenewithrespecttoinitialtimewas slightlybetterforPET/␣-CDPand thisispossiblybecauseofthe highersurfaceareaofPET/␣-CDPnanowebcomparedtoPET/␤-CDP and PET/␥-CDP nanowebs. We have alsoinspected the dimen-sionstabilityofthePETandPET/CDPnanofibers,andweobserved thatthematskepttheirnanofibrousstructureafterthefiltration test(Fig.7).Inshort,thesurfacemodificationofelectrospunPET nanofiberswithCDPenhancedtheefficiencyofitsfiltration perfor-mancebyfacilitatingcomplexformationwithorganiccompounds suchasphenanthrene.

4. Conclusion

In this study, we have achieved thesurface modification of electrospunPETnanofiberswithCDP.First,PETnanofiberswere obtained via electrospinning, then, water-insoluble crosslinked CDPcoatingwasformedontoPETnanofibersbypolymerization reaction betweenCD and crosslinking agent (citric acid).For a

comparativestudy,threedifferenttypesofCD:␣-CD,␤-CDand ␥-CDwereusedtoformCDPontoelectrospunPETnanofibers.The imaging analysisbySEMrevealedthat nanofibrousstructureof thePETnanofiberswaspreservedaftersurfacemodificationwith CDP.Yet,thesurfaceofthePET/CDPnanofiberswasrough/irregular, whereasthatofunmodifiedPETnanofiberswassmooth.Moreover thediameterofthePETnanofibersincreasedafterCDPmodification possiblyduetothepresenceofCDPlayerontonanofibersand/or swellingofthenanofibersduringmodificationprocess.BET mea-surementsindicatedthatthesurfaceareaofthePET/CDPnanofibers wasdecreasedduetothepresenceofCDPcoatingcomparedto pris-tinePETnanofibers.ThepresenceofCDPcoatingonthesurfaceof PETnanofiberswassupportedbyXPSanalyses.Thethermal anal-ysisofPET/CDPnanofiberscarriedoutbyTGAshowedtwomain thermaldegradationstepscorrespondingtoCDPandPET degra-dation.ThemodificationofPETnanofiberswithCDPresultedin slightlyhigherthermalstability,andthecharyieldwashigherfor PET/CDPnanofiberscomparedtounmodifiedPETnanofibers.The TGAdataalsoindicatedthattheamountofCDPcoatingontoPET nanofiberswasontheorderof␤-CDP>␥-CDP>␣-CDP.DMAresults elucidatedtheimprovementofmechanicalpropertiesforPET/CDP nanofibers,thatis,PET/CDPnanofibershaveshownhigher stor-agemodulusand higherglasstransitiontemperaturecompared tounmodifiedPETnanofibers.Thefiltrationperformance ofthe CDPsurfacemodifiedPETnanofiberswastestedbyremovalofthe

(9)

polycyclicaromatichydrocarbonwastemolecule(phenanthrene) fromitsaqueoussolution.AlthoughthesurfaceareaofthePET/CDP wereless,weobservedthatPET/CDPnanofibershaveshownbetter filtrationefficiencywhencomparedtothepristinePETnanofibers due to the inclusion complexation capability of CDP onto PET nanofibers.Initially,theaveragepercentageremovalof phenan-threnewithrespecttotimewasslightlybetterforPET/␣-CDP,but attheendoffiltrationtesttheallPET/CDPsamplesshowedmoreor lesssamefiltrationefficiencyfortheremovalofphenanthrenefrom theaqueoussolution.ItwasalsoobservedthatPET/CDPmatshave kepttheirnanofibrousstructureafterthefiltrationtest.Inbrief,our resultsindicatedthatPET/CDPnanofibershaveshownthe poten-tialstobeusedasafilter/membraneforwaterpurificationowing toveryhighsurfaceareaofelectrospunnanofibersand surface associatedCDP,sinceCDmoleculeshaveinclusioncomplexation capabilitywithpolycyclicaromatichydrocarbonsandothertypes oforganicwastemolecules.

Acknowledgements

StatePlanningOrganization(DPT)ofTurkeyisacknowledged forthesupportofUNAM-InstituteofMaterialsScience& Nano-technology.Dr.T.UyaracknowledgesTUBITAK-TheScientificand Technological Research Council of Turkey for funding project #110M612andEUFP7-PEOPLE-2009-RGMarieCurie-IRGfor fund-ingNANOWEB(PIRG06-GA-2009-256428).F.Kayaciacknowledges TUBITAK-BIDEBforthenationalPh.D.studyscholarship.

References

[1]Y.Dai,J.Niu,L.Yin,J.Xu,Y.Xi,Sorptionofpolycyclicaromatichydrocarbons onelectrospunnanofibrousmembranes:sorptionkineticsandmechanism, JournalofHazardousMaterials192(2011)1409–1417.

[2]R.S.Barhate,S.Ramakrishna,Nanofibrousfilteringmedia:filtrationproblems andsolutionsfromtinymaterials,JournalofMembraneScience296(2007) 1–8.

[3]K.Yoon,B.S.Hsiao,B.Chu,Functionalnanofibersforenvironmental applica-tions,JournalofMaterialsChemistry18(2008)5326–5334.

[4]T.Uyar,R.Havelund,Y.Nur,A.Balan,J.Hacaloglu,L.Toppare,F.Besenbacher, P.Kingshott,Cyclodextrinfunctionalizedpoly(methylmethacrylate)(PMMA) electrospunnanofibersfororganicvaporswastetreatment,Journalof Mem-braneScience365(2010)409–417.

[5]E.Scholten,L.Bromberg,G.C.Rutledge,T.A.Hatton,Electrospunpolyurethane fibersforabsorptionofvolatileorganiccompoundsfromair,ACSApplied Mate-rials&Interfaces3(2011)3902–3909.

[6]S.Subramanian,S.Ramakrishna,Newdirectionsinnanofiltrationapplications– arenanofiberstherightmaterialsasmembranesindesalination?Desalination 308(2013)198–208.

[7]P.K. Neghlani, M. Rafizadeh, F.A. Taromi, Preparation of aminated-polyacrylonitrile nanofiber membranes forthe adsorptionofmetal ions: comparison withmicrofibers,Journal ofHazardousMaterials 186 (2011) 182–189.

[8]J.Niu,J.Xu,Y.Dai,J.Xu,H.Guo,K.Sun,R.Liu,Immobilizationofhorseradish peroxidasebyelectrospunfibrousmembranesforadsorptionanddegradation ofpentachlorophenolinwater,JournalofHazardousMaterials246/247(2013) 119–125.

[9]J.Szejtli,Introductionandgeneraloverviewofcyclodextrinchemistry, Chem-icalReviews98(1998)1743–1754.

[10]A.Hedges,Industrialapplicationsofcyclodextrins,ChemicalReviews98(1998) 2035–2044.

[11]E.M.DelValle,Cyclodextrinsandtheiruses:areview,ProcessBiochemistry39 (2004)1033–1046.

[12]T.Badr,K.Hanna,C.DeBrauer,Enhancedsolubilizationandremovalof naph-thalene andphenanthrenebycyclodextrins fromtwocontaminatedsoils, JournalofHazardousMaterials112(2004)215–223.

[13]N.Morin-Crini,G.Crini,Environmentalapplicationsofwater-insoluble ␤-cyclodextrin–epichlorohydrinpolymers,ProgressinPolymerScience38(2013) 344–368.

[14]M.V.Rekharsky,Y.Inoue,Complexationthermodynamicsofcyclodextrins, ChemicalReviews98(1998)1875–1918.

[15]R.Romi,P.L.Nostro,E.Bocci,F.Ridi,P.Baglioni,Bioengineeringofacellulosic fabricforinsecticidedeliveryviagraftedcyclodextrin,BiotechnologyProgress 21(2008)1724–1730.

[16]P.L.Nostro,L.Fratoni,F.Ridi,P.Baglioni,SurfacetreatmentsonTencelfabric: graftingwith␤-cyclodextrin,JournalofAppliedPolymerScience88(2003) 706–715.

[17]E.S.Abdel-Halim,M.M.G.Fouda,I.Hamdy,F.A.Abdel-Mohdy,S.M.El-Sawy, Incorporationofchlorohexidindiacetateintocottonfabricsgraftedwith gly-cidylmethacrylateandcyclodextrin,CarbohydratePolymers79(2010)47–55, 3.

[18]B.Martel,P.LeThuaut,S.Bertini,G.Crini,M.Bacquet,G.Torri,M.Morcellet, Graftingofcyclodextrinsontopolypropylenenonwovenfabricsforthe manu-factureofreactivefilters.III.Studyofthesorptionproperties,JournalofApplied PolymerScience85(2002)1771–1778.

[19]L.Ducoroy,B.Martel,B.Bacquet,M.Morcellet,Ionexchangetextilesfromthe finishingofPETfabricswithcyclodextrinsandcitricacidforthesorptionof metalliccationsinwater,JournalofInclusionPhenomenaandMacrocyclic Chemistry57(2007)271–277.

[20]N.Blanchemain,T.Laurent,S.Haulon,M.Traisnel,C.Neut,J.Kirkpatrick,M. Morcellet,H.F.Hildebrand,B.Martel,InvitrostudyofaHPgamma-cyclodextrin graftedPETvascularprosthesisforapplicationasanti-infectiousdrugdelivery system,JournalofInclusionPhenomenaandMacrocyclicChemistry57(2007) 675–681.

[21]N.Blanchemain,S.Haulon,E.Marcon-Bachari,M.Traisnel,C.Neut,J. Kirk-patrick, M.Morcellet, H.Hildebrand,B. Martel,Vascularprostheses with controlledreleaseofantibiotics.Part1.Surfacemodificationwithcyclodextrins ofPETprostheses,BiomolecularEngineering24(2007)149–153.

[22]T.Uyar,R.Havelund,J.Hacaloglu,F.Besenbacher,P.Kingshott,Functional electrospunpolystyrenenanofibersincorporating␣-,␤-,and␥-cyclodextrins: comparisonofmolecularfilterperformance,ACSNano4(2010)5121–5130.

[23]T.Uyar,R.Havelund,Y.Nur,J.Hacaloglu,F.Besenbacher,P.Kingshott, Molec-ularfiltersbasedoncyclodextrinfunctionalizedelectrospunfibers,Journalof MembraneScience332(2009)129–137.

[24]B.Martel,M.Morcellet,D.Ruffin,L.Ducoroy,M.Weltrowski,Finishingof polyesterfabricswithcyclodextrinsandpolycarboxylicacidsascrosslinking agents,JournalofInclusionPhenomenaandMacrocyclicChemistry44(2002) 443–446.

[25]B.Martel,D.Ruffin,M.Weltrowski,Y.Lekchiri,M.Morcellet,Water-soluble polymersandgelsfromthepolycondensationbetweencyclodextrinsandpoly (carboxylicacid)s:astudyofthepreparationparameters,JournalofApplied PolymerScience97(2005)433–442.

[26]S.Bednarz,M.Lukasiewicz,W.Mazela,M.Pajda,W.Kasprzyk,Chemical struc-tureofpoly(␤-cyclodextrin-co-citricacid),JournalofAppliedPolymerScience 119(2011)3511–3520.

[27]D.Zhao,L.Zhao,C.Zhu,Z.Tian,X.Shen,Synthesisandpropertiesof water-insoluble␤-cyclodextrinpolymercrosslinkedbycitricacidwithPEG-400as modifier,CarbohydratePolymers78(2009)125–130.

[28]D. Zhao, L. Zhao, C.-S. Zhu, W.-Q. Huang, J.-L. Hu, Water-insoluble ␤-cyclodextrin polymercrosslinkedby citricacid: synthesisand adsorption propertiestowardphenolandmethyleneblue,JournalofInclusionPhenomena andMacrocyclicChemistry63(2009)195–201.

[29]Y. El Ghoul, B. Martel, A. El Achari, C. Campagne, L. Razafimahefa, I. Vroman, Improved dyeability of polypropylene fabrics finished with ␤-cyclodextrin–citricacidpolymer,PolymerJournal42(2010)804–811.

[30]A. Hebeish, A. ElShafei, S.Shaarawy, Synthesis and characterization of multifunctional cottoncontainingcyclodextrinandbutylacrylatemoieties, Polymer-PlasticsTechnologyandEngineering48(2009)839–850.

[31]N.Hayes,G.Beamson,D.Clark,D.L.Law,R.Raval,CrystallisationofPETfrom theamorphousstate:observationofdifferentratesforsurfaceandbulkusing XPSandFTIR,SurfaceandInterfaceAnalysis24(1998)723–728.

[32]S.B.Amor,M.Jacquet,P.Fioux,M.Nardin,AZnO/PETassemblystudy: optimiza-tionandinvestigationoftheinterfaceregion,MaterialsChemistryandPhysics 119(2010)158–168.

[33]S.B.Amor,M.Jacquet,P.Fioux,M.Nardin,XPScharacterisationofplasma treated and zincoxide coated PET, Applied SurfaceScience 255 (2009) 5052–5061.

[34]M.Bou,J.Martin,T.LeMogne,L.Vovelle,Chemistryoftheinterfacebetween aluminiumandpolyethyleneterephthalatebyXPS,AppliedSurfaceScience47 (1991)149–161.

[35]A.Ektessabi,K.Yamaguchi,ChangesinchemicalstatesofPETfilmsduetolow andhighenergyoxygenionbeam,ThinSolidFilms377(2000)793–797.

[36]E.Uchida,H.Iwata,Y.Ikada,Surfacestructureofpoly(ethyleneterephthalate) filmgraftedwithpoly(methacrylicacid),Polymer41(2000)3609–3614.

[37]F.Kayaci,T.Uyar,Electrospinningofzeinnanofibersincorporating cyclodex-trins,CarbohydratePolymers90(2012)558–568.

[38]S.Gawish,A.Ramadan,S.Mosleh,M.Morcellet,B.Martel,Synthesisand char-acterizationofnovelbiocidalcyclodextrininclusioncomplexesgraftedonto polyamide-6fabricbyaredoxmethod,JournalofAppliedPolymerScience99 (2005)2586–2593.

[39]I.Shown,C.Murthy,Graftingofcottonfiberbywater-soluble cyclodextrin-basedpolymer,JournalofAppliedPolymerScience111(2009)2056–2061.

[40]F.Huang,Q.Wei,Y.Cai,N.Wu,Surfacestructuresandcontactanglesof elec-trospunpoly(vinylidenefluoride)nanofibermembranes,InternationalJournal ofPolymerAnalysisandCharacterization13(2008)292–301.

[41]G. Chalumot,C. Yao,V. Pino,J.L.Anderson, Determiningthe stoichiome-tryandbindingconstantsofinclusioncomplexesformedbetweenaromatic compoundsand␤-cyclodextrinbysolid-phasemicroextractioncoupledto high-performanceliquidchromatography,JournalofChromatographyA1216 (2009)5242–5248.

[42]J.Gomez,M.T.Alcantara,M.Pazos,M.A.Sanroman,Soilwashingusing cyclodex-trinsandtheirrecoverybyapplicationofelectrochemicaltechnology,Chemical EngineeringJournal159(2010)53–57.

Referanslar

Benzer Belgeler

Araştırmamızda, Kütahya Vahîd Paşa Yazma Eser Kütüphanesi’nde bulunan üçbinaltıyüz adet yazma eserin cilt özellikleri bakımından taraması yapılmıştır..

Bu çalışmada şirket içi kurumsal yönetim meka- nizmaları olan yönetim kurulu ve mülkiyet yapısı- na ilişkin değişkenler kullanılarak kurumsal yöne- tim ve

Lagrange Yöntemi ile problem çözüldüğünde optimum çözüm için termik santrallerin sırasıyla, 435,1 MW, 300 MW ve 130,7 MW aktif güç değerlerini üretecek

Ondan sonra iki kardeşi beslemek vazifesi küçük Hasan'a düşüyordu Biri iki, öteki beş yaşında olan bu sıska çocukların bütün işleri, basık tavanlı bir damdan ibaret

As can be seen the figure, the device has been shown that the measure capacitance decreases with increasing frequency and capacitance decreases with decreasing voltage at

Gene chip expression analyses revealed that the suppression of ATAD2 in breast cancer cells indicated a role in the regulation of microtubule organization, cell growth, cell

Thus, to substantiate the claim that the political resource curse reaches beyond democratic processes and representation, it is also crucial that I show that oil wealth

As we have mentioned, functions of U L f cannot coincide almost every­ where with a continuous function in any interval, so they have extremely bad