• Sonuç bulunamadı

View of A Search For Integral Solutions To The Ternary Bi-Quadratic Equation

N/A
N/A
Protected

Academic year: 2021

Share "View of A Search For Integral Solutions To The Ternary Bi-Quadratic Equation"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

484

A Search For Integral Solutions To The Ternary Bi-Quadratic Equation

(

)

2 2 4 3 2 2 3 4

x

y

x

y

xy

y

x

y

1

z

x

+

+

+

+

=

+

+

+

S. Vidhyalakshmi1, T. Mahalakshmi2, M. A. Gopalan3

1Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan

University, Trichy, Tamil Nadu, India

2Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan

University, Trichy, Tamil Nadu, India

3Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,

Trichy, Tamil Nadu, India

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 16 April 2021

ABSTRACT :This paper deals with the problem of obtaining non-zero distinct integer solutions to the ternary bi-quadratic

equation

x

4

+

x

3

y

+

x

2

y

2

+

xy

3

+

y

4

=

(

x

+

y

)

2

+

1 z

+

2. A few interesting relations among the solution are presented. Given on integer solution of the equation under consideration, integer solutions for various choices of hyperbola and parabolas are exhibited. The formulation of second order Ramanujan Numbers with base numbers as real integers and Gaussian integers is illustrated and also the sequence of Diophantine 3-tuples are exhibited.

Keywords: Ternary bi-quadratic, integer solutions, parabolas, hyperbolas, Second order Ramanujan numbers, sequence of

Diophantine 3-tuples.

INTRODUCTION

In number theory, Diophantine equations play a significant role and have a marvellous effects on credulous people. They occupy a remarkable position due to unquestioned historical importance. The subject of Diophantine equation is quite difficult. Every century has seen the solution of more mathematical problem than the century before and yet many mathematical problem, both major and minor still remains unsolved. It is hard to tell whether a given equation has solution or not and when it does, there may be no method to find all of them. It is difficult to tell which are early solvable and which require advanced techniques. There is no well unified body of knowledge concerning general methods. A Diophantine problem is considered as solved if a method is available to decide whether the problem is solvable or not and in case of its solvability, to exhibit all integers satisfying the requirements set forth in the problem. Many researchers in the subjects of Diophantine equation exhibit great interest in homogeneous and non-homogeneous bi-quadratic Diophantine equations. In this context, are may refer [1-12]. This communication concerns yet another interesting ternary bi-quadratic equation given by

x

4

+

x

3

y

+

x

2

y

2

+

xy

3

+

y

4

=

(

x

+

y

)

2

+

1

+

z

2and is studied for its non-zero distinct integer solution. A few interesting relations among the solution are presented. Given an integer solution of the equation under consideration, integer solutions for various choices of hyperbola and parabolas are exhibited. The formulation of second order Ramanujan Numbers with base numbers as real integers and Gaussian integers is illustrated and also the sequence of Diophantine 3-tuples are exhibited.

METHOD OF ANALYSIS

The ternary bi-quadratic equation under consideration is

(

)

2 2 4 3 2 2 3 4

x

y

x

y

xy

y

x

y

1

z

x

+

+

+

+

=

+

+

+

(1) Introduction of the transformations

0

v

u

,

uv

4

z

,

v

u

y

,

v

u

x

=

+

=

=

(2) in (1) leads to

0

1

u

4

u

5

v

u

6

v

4

2 2

+

4

2

=

(3) Treating (3) as a quadratic in

v

2 and solving for

v

2, we’ve

1

u

5

v

2

=

2

+

(4) which is the well known pellian equation whose general solution given by,

(2)

485 n n n n

g

5

2

1

u

f

2

1

v

=

=

(5) where

...

3

,

2

,

1

,

0

n

,

)

5

4

9

(

)

5

4

9

(

g

)

5

4

9

(

)

5

4

9

(

f

1 n 1 n n 1 n 1 n n

=

+

=

+

+

=

+ + + +

In view of (2), the sequence of values of x , y and z satisfying (1) are represented by

n n n

u

v

x

=

+

n n

f

2

1

g

5

2

1

+

=

n n n

g

5

f

x

5

2

=

+

(6) n n n

u

v

y

=

n n

f

2

1

g

5

2

1

=

n n n

g

5

f

y

5

2

=

(7)

5

g

f

z

n

=

n n

n

=

1

,

0

,

1

,

2

,...

2 n 2 n n

x

y

z

=

(8) Replacing

n

by

n +

1

in (6) , we get

(

) (

)

n n 1 n n n n n 1 n 1 n 1 n

f

2

13

g

5

2

29

x

g

5

4

f

9

2

1

f

5

4

g

9

5

2

1

f

2

1

g

5

2

1

x

+

=

+

+

+

=

+

=

+ + + + n n 1 n

29

g

13

5

f

x

5

2

+

=

+

(9) Replacing

n

by

n +

1

in (9) , we get

(

) (

)

n n 2 n n n n n 1 n 1 n 2 n

f

2

233

g

5

2

521

x

g

5

4

f

9

2

13

f

5

4

g

9

5

2

29

f

2

13

g

5

2

29

x

+

=

+

+

+

=

+

=

+ + + + n n 2 n

521

g

233

5

f

x

5

2

+

=

+

(10) Eliminating

f

n and

g

n between (6) , (9) and (10) , we have

,...

3

,

2

,

1

n

,

0

x

x

18

x

n

n+1

+

n+2

=

=

(11) In a similar manner, from (7) one obtains

n n 1 n

11

g

5

5

f

y

5

2

+

=

(12) n n 2 n

199

g

89

5

f

y

5

2

+

=

(13)

(3)

486

Eliminating

f

n and

g

n between (7) , (11) and (12) , we have

,...

3

,

2

,

1

n

,

0

y

y

18

y

n

n+1

+

n+2

=

=

(14) Thus (11) and (14) represent recurrence relations satisfied by the values of

x

and

y

respectively . A few numerical examples of

x

n ,

y

n and

z

n satisfying (1) are given in the Table 1.1 below

Table: 1.1 Numerical Examples

n

x

n

y

n

z

n

-1 1 -1 0 0 13 -5 144 1 233 -89 46368 2 4181 -1597 14930352 3 75025 -28657 4807526976

From then above table, we observe some interesting relations among the solutions which are presented below: ➢ Both

x

n ,

y

n values are odd and

z

n values are even.

➢ One can generate second order Ramanujan numbers with base integers as real integers by choosing

x

,

y

and z values suitably.

For illustrations, consider

( )

2 2 2 2 2 2 2 2 0

5

13

9

15

16

20

35

37

18

*

8

24

*

6

36

*

4

72

*

2

144

z

=

=

=

=

=

=

=

=

=

Now,

250

9

13

5

15

5

13

9

15

425

16

13

5

20

5

13

16

20

481

16

15

9

20

9

15

16

20

1394

35

13

5

37

5

13

35

37

1450

35

15

9

37

9

15

35

37

1625

35

20

16

37

16

20

35

37

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

=

+

=

+

=

=

+

=

+

=

=

+

=

+

=

=

+

=

+

=

=

+

=

+

=

=

+

=

+

=

Note: 1

(4)

487

(

) (

) (

) (

)

(

) (

)

(

) (

) (

) (

)

(

) (

)

(

) (

) (

) (

)

(

) (

)

(

) (

) (

) (

)

(

) (

)

(

) (

) (

) (

)

(

) (

)

(

) (

) (

) (

)

(

10

) (

18

)

26

1000

30

18

8

24

6

18

8

24

6

18

8

24

6

1700

26

32

10

40

18

8

36

4

18

8

36

4

18

8

36

4

1924

30

32

18

40

24

6

36

4

24

6

36

4

24

6

36

4

5576

26

70

10

74

18

8

72

2

18

8

72

2

18

8

72

2

5800

30

70

18

74

24

6

72

2

24

6

72

2

24

6

72

2

6500

40

70

32

74

36

4

72

2

36

4

72

2

36

4

72

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

=

+

=

+

+

+

=

+

+

=

=

+

=

+

+

+

=

+

+

=

=

+

=

+

+

+

=

+

+

=

=

+

=

+

+

+

=

+

+

=

=

+

=

+

+

+

=

+

+

=

=

+

=

+

+

+

=

+

+

=

Thus , 1625 , 1450 , 1394 , 481 , 425 , 250 , 6500, 5800, 5576, 1924, 1700, 1000 are second order Ramanujan numbers with base integers as real integers.

➢ Considering suitable values of

x

n and

y

n, one generates second order Ramanujan numbers with base integers as Gaussian integers.

For illustrations, consider again

z

0 represented by (*) •

(

2

i

72

) (

4

i

36

) (

2

i

72

) (

4

i

36

)

6460

36

4

72

2

2 2 2 2

+

=

+

+

=

+

=

and

(

72

i

2

) (

36

i

4

) (

72

i

2

) (

36

i

4

)

6460

36

4

72

2

2 2 2 2

+

=

+

+

=

+

=

(

4

i

36

) (

6

i

24

) (

4

i

36

) (

6

i

24

)

1820

24

6

36

4

2 2 2 2

+

=

+

+

=

+

=

and

(

36

i

4

) (

24

i

6

) (

36

i

4

) (

24

i

6

)

1820

24

6

36

4

2 2 2 2

+

=

+

+

=

+

=

(

6

i

24

) (

8

i

18

) (

6

i

24

) (

8

i

18

)

800

18

8

24

6

2 2 2 2

+

=

+

+

=

+

=

and

(

24

i

6

) (

18

i

8

) (

24

i

6

) (

18

i

8

)

800

18

8

24

6

2 2 2 2

+

=

+

+

=

+

=

(5)

488

Note that -6460, 6460, -1820, 1820, -800, 800 represent second order Ramanujan numbers with base integers as Gaussian integers.

In a similar manner, other second order Ramanujan numbers are obtained. ➢ Formulation of sequence of Diophantine 3-tuples:

Consider the solution to (1) given by

( )

say

c

13

x

,

5

y

0

=

0

=

=

0 It is observed that 2 2 0 0

x

k

65

k

y

+

+

=

,a perfect square

The pair

(

y

0

,

x

0

)

represents Diophantine 2-tuple with property

D

(

k

2

+

65

)

If

c

1 is the

3

rd tuple, then it is given by

8

k

2

k

2

x

y

c

1

=

0

+

0

+

=

+

Note that

(

5

,

13

,

2

k

+

8

)

represents diophantine 3-tuple with property

D

(

k

2

+

65

)

The process of obtaining sequence of diophantine 3-tuple with property

D

(

k

2

+

65

)

is illustrated below: Let M be a

3 

3

square matrix given by

M=

2

1

0

1

0

0

2

0

1

Now,

(

5

,

13

,

2

k

+

8

)

M

=

(

5

,

2

k

+

8

,

4

k

7

)

Note that

(

)

(

)

(

)

(

)

(

2

k

8

) (

4

k

7

)

k

65

(

3

k

3

)

perfect

square

square

perfect

5

k

65

k

8

k

2

5

square

perfect

10

k

65

k

7

k

4

5

2 2 2 2 2 2

=

+

=

+

+

+

=

=

+

+

+

=

=

+

+

Therefore the triple

(

5

,

2

k

+

8

,

4

k

7

)

represents diophantine 3-tuple with property

D

(

k

2

+

65

)

. The repetition of the above process leads to sequences of diophantine 3-tuple whose general form

(

5

,

c

s−1

,

c

s

)

is given by

(

)

(

5

,

5

s

2

+

2

k

+

10

s

2

k

+

8

,

5

s

2

+

2

ks

+

13

)

,

s

=

1

,

2

,

3

...

A few numerical illustrations are given in Table below:

Table: Numerical illustrations

k

(

)

1 0

,

c

c

,

5

(

5

,

c

1

,

c

2

)

(

5

,

c

2

,

c

3

)

D

(

k

2

+

65

)

0

(

5

,

13

,

8

)

(

5

,

8

,

7

)

(

5

,

7

,

32

)

D

( )

65

1

(

5

,

13

,

10

)

(

5

,

10

,

3

)

(

5

,

3

,

26

)

D

( )

66

2

(

5

,

13

,

12

)

(

5

,

12

,

1

)

(

5

,

1

,

20

)

D

( )

69

It is note that the triple

(

c

s1

,

c

s

5

,

c

s+1

)

,

s

=

1

,

2

,

3

...

...

forms an arithmetic progression. In a similar way one may generate sequences of diophantine 3-tuples with suitable property through the other solutions to (1).

1. Relations among the solutions are given below.

x

n+2

18

x

n+1

+

x

n

=

0

8

y

n

x

n+1

+

21

x

n

=

0

8

y

n+1

+

3

x

n+1

+

x

n

=

0

8

y

n+2

55

x

n+1

3

x

n

=

0

144

y

n

x

n+2

+

377

x

n

=

0

48

y

n+1

+

x

n+2

+

7

x

n

=

0

(6)

489 ❖

8

y

n

21

x

n+2

+

377

x

n+1

=

0

8

y

n+1

x

n+2

+

21

x

n+1

=

0

8

y

n+2

+

3

x

n+2

+

x

n+1

=

0

21

y

n+1

+

8

x

n+1

y

n

=

0

y

n+2

+

8

x

n+1

+

3

y

n+1

=

0

377

y

n+1

+

8

x

n+2

21

y

n

=

0

377

y

n+2

+

144

x

n+2

y

n

=

0

21

y

n+2

+

8

x

n+2

y

n+1

=

0

y

n

18

y

n+1

+

y

n+2

=

0

144

y

n+2

+

55

x

n+2

+

x

n

=

0

y

n+1

+

8

x

n

+

y

n

=

0

y

n+2

+

144

x

n

+

5

x

n

=

0

x

n+1

7

y

n+1

48

x

n

=

0

2. Each of the following expressions is a nasty number:

Solving (6) and (9) , we get

n n 1

n

29

x

x

8

1

f

=

+ (15)

n 1 n

n

x

13

x

8

5

g

=

+

(16) Replacing

n

by

2 +

n

1

in (15) we get

2n 1 2n 2

1 n 2

29

x

x

8

1

f

+

=

+

+ Now ,

f

2n+1

+

2

=

f

n2

2 n 2 n 2 1 n 2

x

16

6

f

x

29

4

3

+

=

+ + , a nasty number (16a)

For simplicity and clear understanding the other choices of nasty numbers are presented below: ❖

29

x

x

16

4

3

2 n 2 1 n 2 +

+

+

521

x

x

288

24

1

3 n 2 1 n 2 +

+

+

6

x

2n+1

y

2n+1

+

2

6

22

x

2n+1

+

2

y

2n+2

+

12

199

x

y

110

55

6

3 n 2 2 n 2 +

+

+

+

521

x

29

x

16

4

3

3 n 2 2 n 2 +

+

+

x

29

y

4

7

2

1 n 2 2 n 2 +

+

+

6

11

x

2n+2

29

y

2n+1

+

2

2

199

x

2n+2

+

29

y

2n+3

+

6

5

x

521

y

754

377

6

1 n 2 3 n 2 +

+

+

(7)

490 ❖

11

x

521

y

42

7

2

2 n 2 3 n 2

+

+ +

6

199

x

2n+3

521

y

2n+3

+

2

11

y

y

16

4

3

2 n 2 1 n 2

+

+ +

199

y

y

288

24

1

3 n 2 1 n 2

+

+ +

11

y

199

y

16

4

3

2 n 2 3 n 2 +

+

+

3. Each of the following expressions is a cubical integer:

Replacing

n

by

3 +

n

2

in (15) we get

3n 2 3n 3

2 n 3

29

x

x

8

1

f

+

=

+

+ Now,

f

3n+2

=

f

n3

3

f

n 3 n n 2 n 3

3

f

f

f

+

+

=

3 n 1 n n 3 n 3 2 n 3

x

87

x

3

x

f

x

29

8

1

+

=

+ + + , a cubical integer.

For simplicity and clear understanding the other choices of cubical integers are presented below: ❖

29

x

3n 2

x

3n 3

87

x

n

3

x

n 1

8

1

+ + +

+

521

x

3n 2

x

3n 4

1563

x

n

3

x

n 2

144

1

+ + +

+

x

3n+2

y

3n+2

+

3

x

n

3

y

n

11

x

3n 2

y

3n 3

33

x

n

3

y

n 2

3

1

+ + +

+

+

+

199

x

3n 2

y

3n 4

597

x

n

3

y

n 1

55

1

+ + +

+

+

+

521

x

3n 3

29

x

3n 4

1563

x

n 1

87

x

n 2

8

1

+ + + +

+

x

3n 3

29

x

3n 2

3

x

n 1

87

y

n

21

1

+

+ + + ❖

11

x

3n+3

29

y

3n+3

33

x

n+1

87

y

n+1

199

x

3n 3

29

y

3n 4

597

x

n 1

87

y

n 2

3

1

+ + + +

+

+

+

x

3n 4

521

y

3n 2

3

x

n 2

1563

y

n

377

1

+

+ + + ❖

11

x

3n 4

521

y

3n 3

33

x

n 2

1563

y

n 1

21

1

+ + + +

199

x

3n+4

521

y

3n+4

597

x

n+2

1563

y

n+2

11

y

3n 2

y

3n 2

33

y

n

3

y

n 1

8

1

+ + +

199

y

3n 2

y

3n 4

597

y

n

3

y

n 2

144

1

+ + +

(8)

491 ❖

11

y

3n 4

199

y

3n 3

33

y

n 2

597

y

n 1

8

1

+ + + +

+

4. Each of the following expressions is a bi-quadratic integer.

Replacing

n

by

4 +

n

3

in (15) we get

4n 3 4n 4

3 n 4

29

x

x

8

1

f

+

=

+

+ Now,

f

4n+3

+

4

f

n2

2

=

f

n4

4 n 2 n 2 1 n 2 4 n 4 3 n 4

x

116

x

4

x

48

f

x

29

8

1

+

+

=

+ + + + , a bi-quadratic integer.

For simplicity and clear understanding the other choices of bi-quadratic integers are presented below:

29

x

x

116

x

4

x

48

8

1

2 n 2 1 n 2 4 n 4 3 n 4 +

+

+

+

+

+

521

x

x

2084

x

4

x

864

144

1

3 n 2 1 n 2 5 n 4 3 n 4 +

+

+

+

+

+

x

4n+3

y

4n+3

+

4

x

2n+1

4

y

2n+1

+

6

11

x

y

44

x

4

x

18

3

1

2 n 2 1 n 2 4 n 4 3 n 4 +

+

+

+

+

+

+

+

199

x

y

796

x

4

y

330

55

1

3 n 2 1 n 2 3 n 2 3 n 4 +

+

+

+

+

+

+

+

521

x

29

x

2084

x

116

x

48

8

1

3 n 2 2 n 2 5 n 4 4 n 4 +

+

+

+

+

+

x

29

y

4

x

116

y

126

21

1

1 n 2 2 n 2 3 n 4 4 n 4 +

+

+

+

+

+

11

x

4n+4

29

y

4n+4

44

x

2n+2

116

y

2n+2

+

6

199

x

29

y

796

x

116

y

18

3

1

3 n 2 2 n 2 4 n 4 4 n 4 +

+

+

+

+

+

+

+

x

521

y

4

x

2084

y

2262

377

1

1 n 2 3 n 2 4 n 4 5 n 4 +

+

+

+

+

+

11

x

521

y

44

x

2084

y

126

21

1

2 n 2 3 n 2 4 n 4 5 n 4

+

+ + + +

199

x

4n+5

521

y

4n+5

796

x

2n+3

2084

y

2n+3

+

6

11

y

y

44

y

4

y

48

8

1

2 n 2 1 n 2 4 n 4 3 n 4

+

+ + + +

199

y

y

796

y

4

y

864

144

1

3 n 2 1 n 2 5 n 4 3 n 4

+

+ + + +

11

y

199

y

44

y

796

y

48

8

1

2 n 2 3 n 2 4 n 4 5 n 4 +

+

+

+

+

+

5. Each of the following expressions is a quintic integer:

Replacing

n

by

5 +

n

4

in (15) we get

5n 4 5n 5

4 n 5

29

x

x

8

1

f

+

=

+

+ Now,

f

5n+4

=

f

n5

5

f

n3

+

5

f

n

(9)

492 n 3 n 4 n 5 5 n

f

5

f

5

f

f

=

+

+

5 n 1 n n 3 n 3 2 n 3 5 n 5 4 n 5

x

145

x

5

x

290

x

10

x

f

x

29

8

1

=

+

+

+ + + + + , a quintic integer.

For simplicity and clear understanding the other choices of quintic integers are presented below: ❖

x

5n+4

y

5n+4

+

5

x

3n+2

5

y

3n+2

+

10

x

n

10

y

n

x

5n 5

29

y

5n 4

5

x

3n 3

145

y

3n 2

10

x

n

290

y

n

21

1

+

+

+ + + + ❖

x

5n 6

521

y

5n 4

5

x

3n 4

2605

y

3n 2

10

x

n 1

5210

y

n

377

1

+

+

+ + + + + ❖

11

y

5n 4

y

5n 5

55

y

3n 2

5

y

3n 3

110

y

n

10

y

n 1

8

1

+ + + + +

521

x

5n 4

x

5n 6

2605

x

3n 2

5

x

3n 4

5210

x

n

10

x

n 2

144

1

+ + + + +

+

+

199

x

5n+6

521

y

5n+6

995

x

3n+4

2605

y

3n+4

1990

x

n+2

5210

y

n+2

x

5n 6

521

y

5n 4

5

x

3n 4

2605

y

3n 2

10

x

n

5210

y

n 1

377

1

+ + + + +

+

+

11

x

5n 6

521

y

5n 5

55

x

3n 4

2605

y

3n 3

110

x

n 2

5210

y

n 1

21

1

+ + + + + +

199

y

5n 4

y

5n 4

995

y

3n 2

5

y

3n 4

1990

y

n

10

y

n 2

144

1

+ + + + +

11

y

5n 6

199

y

5n 5

55

y

3n 4

99

y

3n 3

110

y

n 2

1990

y

n 1

8

1

+ + + + + +

+

+

11

x

5n 4

y

5n 5

55

x

3n 2

5

y

3n 3

110

x

n

10

y

n 1

3

1

+ + + + +

+

+

+

+

+

199

x

5n 4

y

5n 6

995

x

3n 2

5

y

3n 4

1990

x

n

10

y

n 2

55

1

+ + + + +

+

+

+

+

+

521

x

5n 5

29

x

5n 6

2605

x

3n 3

145

x

3n 4

5210

x

n 1

290

x

n 2

8

1

+ + + + + +

+

+

x

5n 5

29

y

5n 4

5

x

3n 3

145

y

3n 2

10

x

n

290

y

n

21

1

+

+

+ + + + ❖

11

x

5n+5

29

y

5n+5

55

x

3n+3

145

y

3n+3

110

x

n+1

290

y

n+1

199

x

5n 5

29

y

5n 6

995

x

3n 3

145

y

3n 4

1990

x

n 1

290

y

n 2

3

1

+ + + + + +

+

+

+

+

+

REMARKABLE OBSERVATIONS

I. Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbola which are presented in the Table 2 below:

Illustration Let 1 n n n n 1 n n

x

x

29

Y

x

13

x

X

+ +

=

=

8

Y

f

n

=

n (17) n n

X

8

5

g =

(18) W.K.T

(10)

493

4

g

f

n2

2n

=

(19) Substituting (17) and (18) in (19) we have

4

X

64

5

Y

64

1

2 n 2 n

=

256

X

5

Y

n2

2n

=

which represents a hyperbola.

For simplicity and clear understanding, the other choices of hyperbola are presented in the table 1.2 below:

Table:1. 2 Hyperbola S. NO Hyperbola (X,Y) 1

Y

2

5

X

2

=

256

(

x

n+1

13

x

n

,

29

x

n

x

n+1

)

2

Y

2

5

X

2

=

82944

(

x

n+2

233

x

n

,

521

x

n

x

n+2

)

3

Y

2

5

X

2

=

16

(

2

x

n

+

2

y

n

,

2

x

n

2

y

n

)

4

Y

2

5

X

2

=

144

(

2

y

n+1

+

10

x

n

,

22

x

n

+

2

y

n

)

5

Y

2

5

X

2

=

48400

(

2

y

n+2

+

178

x

n

,

398

x

n+2

+

2

y

n+2

)

6

Y

2

5

X

2

=

256

(

1

x

n+2

233

x

n+1

,

521

x

n+1

29

x

n+2

)

7

Y

2

5

X

2

=

1764

(

x

n+1

+

13

y

n

,

x

n+1

29

y

n

)

8

Y

2

5

X

2

=

16

(

10

x

n+1

+

26

y

n+1

,

22

x

n+1

58

y

n+1

)

9

Y

2

5

X

2

=

324

(

89

x

n+1

13

y

n+2

,

199

x

n+1

+

29

y

n+2

)

10

Y

2

5

X

2

=

568516

(

x

n+2

+

233

y

n

,

521

y

n

x

n+2

)

11

Y

2

5

X

2

=

1764

(

5

x

n+2

233

y

n+1

,

11

x

n

521

y

n+1

)

12

Y

2

5

X

2

=

16

(

178

x

n+2

+

466

y

n+2

,

398

x

n+2

1042

y

n+2

)

13

Y

2

5

X

2

=

256

(

5

y

n

y

n+1

,

11

y

n

y

n+1

)

14

Y

2

5

X

2

=

82944

(

89

y

n

y

n+2

,

199

y

n

n+2

)

15

Y

2

5

X

2

=

256

(

89

y

n+1

5

y

n+2

,

11

y

n+2

199

y

n+2

)

II. Employing linear combinations among the solutions of (1), one may generate integer solutions for

other choices of parabola which are presented in Table1. 3 below:

Illustration Let

16

x

x

29

Y

n

=

2n+1

2n+2

+

From (16a), n 2 n

Y

8

1

f

=

In view of (19), one has

256

X

5

Y

8

4

X

64

5

Y

8

1

2 n n 2 n n

=

=

which represents a parabola.

For simplicity and clear understanding the other choices of parabola are presented below in Table 1.3

Table:1. 3 parabola

(11)

494 1

8

Y

5

X

2

=

256





+

+ + +

16

x

x

29

,

x

13

x

2 n 2 1 n 2 n 1 n 2

144

Y

5

X

2

=

82944





+

+ + +

288

x

x

521

,

x

233

x

3 n 2 1 n 2 n 2 n 3

2

Y

5

X

2

=

16





+

+

+ +

2

y

4

x

2

,

y

2

x

2

1 n 2 1 n 2 n n 4

6

Y

5

X

2

=

144





+

+

+

+ + +

12

y

2

x

22

,

x

10

y

2

2 n 2 1 n 2 n 1 n 5

110

Y

5

X

2

=

48400





+

+

+

+ + +

220

y

2

x

398

,

x

178

y

2

3 n 2 1 n 2 n 2 n 6

8

Y

5

X

2

=

256





+

+ + + +

16

x

29

x

521

,

x

233

x

13

3 n 2 2 n 2 1 n 2 n 7

21

Y

5

X

2

=

1764





+

+

+ + +

42

y

29

x

,

y

13

x

1 n 2 2 n 2 n 1 n 8

2

Y

5

X

2

=

16





+

+

+ + + +

4

y

58

x

22

,

y

26

x

10

2 n 2 2 n 2 1 n 1 n 9

3

Y

5

X

2

=

36





+

+

+ + + +

6

y

29

x

199

,

y

13

x

89

3 n 2 2 n 2 2 n 1 n 10

377

Y

5

X

2

=

568516





+

+

+ = +

754

y

521

x

,

y

233

x

1 n 2 3 n 2 n 2 n 11

21

Y

5

X

2

=

1764





+

+ + + +

42

y

521

x

11

,

y

233

x

5

2 n 2 3 n 2 1 n 2 n 12

2

Y

5

X

2

=

16





+

+

+ + + +

4

y

1042

x

398

,

y

466

x

178

3 n 2 3 n 2 2 n 2 n 13

8

Y

5

X

2

=

256





+

+ + +

16

y

y

11

,

y

y

5

2 n 2 1 n 2 1 n n 14

144

Y

5

X

2

=

82944





+

+ + +

288

y

y

199

,

y

y

89

3 n 2 1 n 2 2 n n 15

8

Y

5

X

2

=

256





+

+ + + +

16

y

199

y

11

,

y

5

y

89

2 n 2 3 n 2 2 n 1 n CONCLUSION

In this paper an attempt has been made to obtained integer solutions to the ternary bi-quadratic equations. Since these equations are rich in verity, one may search for integer solutions to other choices of bi-quadratic equations with multiple variables.

(12)

495

REFERENCES

1. Gopalan.M.A., Vidhyalakshmi.S., Thiruniraiselvi.N., On the Biquadratic equation with three unknowns

(

2 2

)

4

z

220

xy

10

y

x

7

+

=

, Proceeding of the National Conference (UGC Sponsored). On Recent Developments on Emerging Fields in Pure and Applied Mathematics ReDeEM, (2015, March) 125-131.

2. Gopalan.M.A., Sumathi.G., and Vidhyalakshmi.S., Integral solutions of ternary Biquadratic

non-homogeneous equation

(

k

+

1

)

(

x

2

+

y

2

)

(

2

k

+

1

)

xy

=

z

4, Archimedes J.Math, 3(1), (2013) 67-71.

3. Gopalan.M.A., Vidhyalakshmi.S., and Sumathi.G., Integral solutions of ternary Biquadratic

non-homogeneous equation

(

+

1

)

(

x

2

+

y

2

)

+

(

2

+

1

)

xy

=

z

4, JARCE, 6(2), (2012, July-Dec) 97-98.

4. Gopalan.M.A., Vidhyalakshmi.S., and Sumathi.G., Integral solutions of ternary Biquadratic

non-homogeneous equation

(

2

k

+

1

)

(

x

2

+

y

2

+

xy

)

=

z

4, Indian Journal of Engineering, 11(1), (2012) 37-40.

5. Gopalan.M.A., Vidhyalakshmi.S., Shanthi.J., and Bhuvaneshwari.M, On biquadratic equation with three

unknowns

10

(

x

2

+

y

2

)

16

xy

=

65

z

4, International Journal of Research and Current Development, 1(2), (2015, June), 48-52.

6. Gopalan.M.A., Vidhyalakshmi.S, and Kavitha.A., Observation on

3

(

x

2

+

y

2

)

5

xy

=

15

z

4, Cayley J.Math., 3(1), (2014), 1-5.

7. Vidhyalakshmi.S., Kavitha.A., and Presenna.R., On Ternary bi-quadratic equation

(

x

2

y

2

)

3

xy

23

z

4

2

+

=

, Paper Presented at the International conference on Mathematical Methods and computations, (Jamal Mohammed college, Trichy) Jamal Academic Research Journal, (2015,January), 283-286.

8. Dr. Jayakumar. P., Venkatraman. R., on Non-Homogeneous Biquadratic Diophantine Equation

(

x

2

y

2

)

15

xy

40

z

4

8

+

=

, IJSRD,4(9), (2016), 181-183.

9. Venkatraman. R., and Dr. Jayakumar. P., On Non-Homogeneous Bi-Quadratic Diophantine Equation

(

x

2

y

2

)

5

xy

20

z

4

3

+

=

, IJPAM, 114(6), (2017), 1185-1192.

10. Gopalan, M.A., Vidhyalakshmi, S., Thiruniraiselvi, N. On the bi-quadratic equation with three unknowns 4 2 2

220

10

)

(

7

x

+

y

xy

=

z

“Proceeding of the National Conference (UGC Sponsored) on Recent Developments on Emerging Fields in pure and Applied Mathematics ReDeEM March 2015, 125-131.

11. Gopalan, M.A., Vidhyalakshmi, S., Thiruniraiselvi, N. On the bi-quadratic equation with three unknowns

))

(

3

(

)

(

x

+

y

+

z

3

=

z

2

xy

x

2

+

y

2 Paper presented on the International Conference on Mathematical models and computation, (Jamal Mohammed College,Trichy) Jamal Academic Research journal,Pp:232-235 ,Feb-2014

12. Shreemathi Adiga, Anusheela N. and Gopalan M.A., Non-Homogeneous Bi-quadratic equation with three

Referanslar

Benzer Belgeler

Ama takviye için gelen bir manga, olay ye­ rini taramaya başlayınca Şamdan Mehmet, Deviş Mehmet ile Sütçü Mehmet delik-deşik olur, dördüncü Mehmet ise

Hastaların artroskopik debridman öncesi Lysholm diz skoru ortalamasına göre artroskopik debridman sonrası Lysholm diz skoru ortalamasında görülen artış istatistik- sel

To provide evidence of a nondistributive effect, we use a panel of 153 countries for each year from 1972 to 2000 to examine the relationship between extent of democratic

For φ > n +1 1 , the Hilbert space spanned by the discretized wave functions is smaller than the corresponding LL, which makes it impossible to use the Chern numbers and

show that a Nearest- Neighbor (NN) based classifier which computes direct image-to-class distances without any quantization step achieves performance rates among the top lead-

Sonuçlar cinsiyete göre değerlendirildiğinde durumluk ve süreklik anksiyete puanları kadınlarda erkeklerden yüksek bulunmuştur Bu sonuçlar Türk toplumunda

Bu arada, gerek ta­ rih, gerek eski eserler ve gerek tabiat ve yerleşme bakımından son derece ilgi çekici olan bu kasaba, tarih, sanat ve tabiat de­ ğerlerine