• Sonuç bulunamadı

Analytic approximate solutions of diffusion equations arising in oil pollution

N/A
N/A
Protected

Academic year: 2021

Share "Analytic approximate solutions of diffusion equations arising in oil pollution"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

JournalofOceanEngineeringandSciencexxx(xxxx)xxx

www.elsevier.com/locate/joes

Analytic

approximate

solutions

of

diffusion

equations

arising

in

oil

pollution

Hijaz

Ahmad

a,∗

,

Tufail

A.

Khan

a

,

Hülya

Durur

b

,

G.M.

Ismail

c,e

,

Asıf

Yokus

d aDepartmentofBasicSciences,UniversityofEngineeringandTechnology,Peshawar,25000,Pakistan

bDepartmentofComputerEngineering,FacultyofEngineering,ArdahanUniversity,Ardahan,75000,Turkey cDepartmentofMathematics,FacultyofScience,SohagUniversity,Sohag,82524,Egypt

dDepartmentofActuary,FacultyofScience,FiratUniversity,Elazig,23200,Turkey

eDepartmentofMathematics,FacultyofScience,IslamicUniversityofMadinah,170,Madinah,SaudiArabia

Received 18 March 2020; received in revised form 26 April 2020; accepted 5 May 2020 Available online xxx

Abstract

In this article, modified versions of variational iteration algorithms are presented for the numerical simulation of the diffusion of oil pollutions.Threenumericalexamplesaregiventodemonstratetheapplicabilityandvalidityoftheproposedalgorithms.Theobtainedresults are compared withthe existing solutions, which reveal that the proposed methodsare very effective and can be usedfor othernonlinear initial valueproblemsarisingin scienceandengineering.

© 2020Shanghai JiaotongUniversity.Publishedby ElsevierB.V.

Thisisanopenaccess articleunderthe CCBY-NC-NDlicense.(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Modified variational iteration algorithm-II; Diffusion equation; Allen-Cahn equation; Parabolic equation; MVIA-I.

1. Introduction

Partial differential equations (PDEs) are studied in vari-ous fields such as astrophysics, fluid mechanics, solid-state physics, ocean engineering, plasma physics, optical fibre, wave motion, ocean ecology, and metrology and have been studied by manyscientists for manyyears.

Oil pollutionis the release of afluid oilhydrocarbon into the ocean environment because of human activities such as releases of unrefined petroleum from tankers, drilling rigs, offshore platforms as well as piping and may cause serious damage to the marine ecological environment. Therefore, a precise guess of behaviours of these oils is extremely note-worthytokeeptheseasidenaturalenvironmentalsystem.The zone of oil spreading can be anticipated numerically by the solution of properequations governing theflow fieldandthe

Corresponding author.

E-mail addresses: hijaz555@gmail.com (H. Ahmad),

tufailmarwat@uetpeshawar.edu.pk (T.A. Khan), hulyadurur@ardahan.edu.tr

(H. Durur).

diffusion phenomenon. The most reasonable choice is prob-ablythe diffusionequations where the information aboutthe quantityofoil,whichreachedtheoceanoutletcanbetakenas initialandboundaryconditions formodellingof oildiffusion andalteration inthe waters.

To describe oil pollution, consider the general nonlinear diffusionequation of the form:

∂v ∂t =D 2v ∂x2 +αv+βv n, (1) Where v is concentration, D is diffusion coefficient,

α andβ arerealconstants.Eq. (1) becomesAllen-Cahn equa-tionwhen n=3, α =1and β =−1,whichhasvarious ap-plicationsinquantummechanics,biologyandplasmaphysics

[1] .

There are various analytical and numerical methods for the solution of nonlinear equations i.e. the finite difference method [2 ,3] , Modified Kudryashov method [4] , Sumudu transform method [5] , (1/G)-expansion method [6] , expan-sionmethods[7 ,8] ,finite element method[9] , Hirota’s bilin-ear method [10 ,11] , Decomposition methods [12–15] , varia-tional iteration algorithm-I [16–20] , function transformation

https://doi.org/10.1016/j.joes.2020.05.002

2468-0133/© 2020 Shanghai Jiaotong University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

sub-equation function method [45] , studied nonlınear stabil-ityoftheImplicit-ExplicitmethodsforACequation[46] ,Gui andZhao[47] studiedthe existenceandqualitative properties of travellingwave solutionsof the AC equation andso on.

Thisresearchpaperaimstoachievenumericalsolutionsof thediffusionandAllen–Cahn (AC)equationsbyusing modi-fiedversionsofvariationaliterationalgorithms,whicharethe advancementsofthevariationaliterationmethodproposedby Ji-Huan He [48] . The organization of the rest of the paper is as follows; in Section 2 , modified versions of variational iteration algorithms are described. In Section 3 , some prob-lems are investigated toshow the accuracy and applicability ofthesuggestedtechniqueandinthelastSection 4 ,adetailed conclusionis discussed.

2. Modified versions of variationaliterationalgorithms

Consider the followingnonlinear differential equation

L[v(ς)]+N[v(ς)]=a(ς), (2)

Where theL[v(ς)]and N[v(ς)] are linear and nonlinear terms respectively, while a(ς) is the source term. For

Eq. (2) correctionfunctioncan bewritten as below:

vn+1(ς)=vn(ς)+  ς 0 λ( s)  L{vn(s)}+N{vn(s)}− a(s)  ds, (3) Which is an iterative scheme for variational iteration algorithm-I, where λ is known as the Lagrange multiplier

[49] , its values can be obtained by using optimality condi-tions. where vn(s) is a restricted term which in turn gives δvn(s) =0. Thus

δvn+1(ς)=δv0(ς)+δ

 ς

0 λ(

s)[N{vn(s)}− a(s)]ds, (4)

This givesan exact solution after someiterations

v(ς)=Lim

n→∞vn(ς). (5)

Summarizing the iterative algorithmfor Eq. (1) is, ⎧

⎨ ⎩

v0(ς)isan init ial approximat ion, vn+1(ς)=v0(ς)+ ς 0 λ(s)[N{vn(s)}− a(s)]ds n=0, 1, 2, 3,... (6) (7) Thisiterativealgorithmisnamedas MVIA-II.Weemploy this adapted process for the solution of Allen-Cahn and dif-fusion equations.

3. Numerical applications

This section is devoted to the numerical implementation of modified versions of the variational iteration algorithms for different types of Allen-Cahn equations and a diffusion equation.Here,theapproximatesolutionstothediffusionand Allen-Cahnequationsare gainedeasilyandsmartlywith nei-ther useof conversionnorlinearization.

3.1. Example 1 (diffusion equation)

First, Considerthe diffusionequation [55] ∂v

∂t = 2v

∂x2 +cosx, (8)

The givenconditions are:

v(x,0)=0, v(0,t)=1− e−t,

v(1, t )=−1+e−t,

The givenexact solution is:

v(x,t)= cosx1− e−t . (9)

Webegin with the constructionof the correctionfunction of MVIA-I for Eq. (8) as,

vn+1(x, t)= vn(x,t)+  t 0 λ(η) ∂vn(x, η) ∂η − cosx−  2vn(x, η) ∂x2 dη. (10) Thevalueof λ(η)canbefoundoutmostquicklybyusing variationaltheory. δvn+1(x, t)= δvn(x,t)+ δ  t 0 λ(η) ∂vn(x, η) ∂η − cosx−  2vn(x, η) ∂x2 dη.

Ignoring the restrictedterms

δvn+1(x,t)=δvn(x,t)+δ  t 0 λ( η)  ∂vn(x, η) η  dη, =(1+ λ( η))δvn(x,t)−  t 0 λ( η)δv n(x, η)d η.

(3)

Fig. 1. Absolute error graph in space-time graph form for 10th iteration by VIA-I corresponding to the Example 1.

Thestationaryconditionsare: λ(η)=0,1+ λ( η)=0, wegetascalarvalueofλ(η),whichisλ(η)=−1.Usingthis scalarvalueofλ(η)inEq. (10) givesthefollowingrecurrence relation: vn+1(x, t)= vn(x,t)−  t 0  vn(x, η) ∂η − cosx 2v n(x, η) ∂x2  dη. (11) Startingtheprocedurebyusinganappropriateinitialguess for the problem,

v0(x,t)=0,

other iterations can be obtained by utilizing the recurrence relation (11) , v1(x,t)=t cos(x), v2(x,t)=− t cos(x)(t− 2) 2 , v3(x,t)= tcos(x)t2− 3t+6 6 , . . . . . .

we terminate the procedureat v10(x,t). The absoluteerror of v10(x,t) in the domain of solution (x,t) [0, 10]× [0, 5]

can beseen inFig. 1 .

Now, solving the above system of linear diffusion equa-tion byMVIA-I. Using the modified algorithm MVIA-I, the recurrence relationfor Eq. (8) can bewritten as

vn+1(x, t,h)= vn(x,t,h)− h  t 0  vn(x, η,h) ∂η − cosx 2v n(x, η,h) ∂x2  dη. (12) Starting the procedure by using the appropriate initial guess for the problem v0(x,t)=0, other iterations can be

obtained by utilizingthe recurrence relation(12) ,

v1(x,t, h)=ht cos(x), v2(x,t, h)=− ht cos(x)(2h+ht− 4) 2 , v3(x,t, h)= ht cos(x)h2t2+6h2t+6h2− 9ht− 18h+18 6 , . . . . . .

weterminate the procedureatv10(x,t,h).A residualfunction

for obtaining an optimalvalue of hcan bedefined as

r10(x, t, h)= v10(x, t,h) ∂t − cos(x)2v 10(x, t,h) ∂x2 . (13) The square of residual function for 10th iteration with

re-specttoh for (x,t) [0, 10]× [0, 5] is e10(h)= ⎡ ⎣ 1 (11)2 10  i=0 10  j=0  r10  i, j 2,h 2⎤ ⎦ 1 2 (14) The residual function (13) can be used to approximate

e10(h) and the proper value of h can be found out by

mak-ing e10(h) minimum. The optimal value of h is determined

tobe0.85683707022111, whene10(h)isminimized.Wemay

getextraaccuratenessbyincreasingthenumeralofiterations. Putting the value ofh in v10(x,t, h) in the domain of

solu-tion (x,t) [0, 10]× [0, 5], theabsolute errorcan beseen inFig. 2 .

ComparingFigs. 1 and2 , we confirmedthat the modified algorithm:MVIA-Igives moreaccurateresultsthanthe clas-sical algorithm. Comparison of absolute errorsof VIA-Iand MVIA-IfordifferentvaluesofparametersisgiveninTable 1 .

3.2. Example 2 (Allen-Cahnequation)

Considerthe AC equation [1] of the form,

∂v ∂t = 2v ∂x2 +v 1− v2 , (15)

withthe initialcondition:

v(x,0)=−0.5+0.5 tanh(0.3536x),

The exactsolution is givenby:

v(x,t)= −0.5+0.5 tanh(0.3536x− 0.75t). (16)

(4)

Fig. 2. Absolute error graph in space-time graph form for 10th iteration by MVIA-I corresponding to Example 1. Table 1

Comparison of absolute errors for 10th iteration corresponding to Example 1.

x t Absolute Error in MVIA-I Absolute Error in VIA-I

1 0.5 1.671 × 10 −10 6.344 × 10 −10 2 1.0 3.563 × 10 −10 9.619 × 10 −09 3 1.5 2.683 × 10 −09 1.905 × 10 −06 4 2.0 1.871 × 10 −08 2.870 × 10 −05 5 2.5 5.510 × 10 −08 1.399 × 10 −04 6 3.0 5.522 × 10−07 3.398 × 10−03 7 3.5 2.929 × 10−06 1.406 × 10−02 8 4.0 8.666 × 10−07 1.141 × 10−02 9 4.5 8.689 × 10−06 2.528 × 10−01 10 5.0 1.682 × 10−05 0.7193

Tostartwith,wesolvetheabovesystemofACequationby VIA-II.MakingthecorrectionfunctionfortheEq. (15) as,

vn+1(x,t,h) = vn(x,t,h)+ h  t 0 λ(ς) ∂vn(x, ς,h) ∂ς −  2v n(x,ς,h) ∂x2 −vn(x,ς,h) 1 − v n(x,ς,h)2  dς, (17) Usingthe valueof λ(ς),whichis -1obtained bythe vari-ational principle [56–58] in Eq. (17) , results in the below correctionfunction: vn+1(x,t,h)=v0(x,t,h)+h  t 0 λ( ς)  −2vn(x,ς,h) ∂x2 − vn( x,ς,h) 1− vn(x,ς,h)2  dς, (18)

Starting with aninitial condition

v0(x,t)=−0.5+0.5tanh(0.3536x),

The followingdifferent iterationscanbeobtained withthe useof recurrence relation(18) ,

v1(x,t,h)= tanh ((221 ∗ x)/625 )/2 − ( h∗ t∗ exp((442 ∗ x)/625 ) ∗(585989 ∗ exp((442 ∗ x)/625 )+585886 ))/(390625 ∗ (exp ((442 ∗ x)/625 )+1 )3 − 1/2 . . . . . .

Forfinding the optimal valueof h for the estimated solu-tion, the subsequent residual functionis delineated:

r3(x, t, h)= ∂v3(x, t, h) ∂t2v 3(x, t, h) ∂x2 −v3( x,t,h) 1− v3(x,t,h)2 . (19)

Thenorm2ofresidualfunction(19) for3rd-order approx-imationfor (x,t) [0, 30]× [0, 1] is e3(h)= ⎡ ⎣ 1 (31)2 30  i=0 30  j=0  r3  i, j 30,h 2⎤ ⎦ 1 2 (20)

The residual function (19) can be used to approximate

e3(h) and the proper value of h can be found out by

mak-ing e3(h)minimum.The optimalvalue ofh is determinedto

be 0.956746100698240, when e3(h) is minimized. We may

get extra accurateness by increasing the numeral of itera-tions. Utilizing this optimal value ofh in v3(x,t, h) in the

domain (x,t) [0, 30]× [0, 1], the following results are obtained, whichcanbe seenin Table 2 ,Figs. 3 and 4 .

3.3. Example 3 (ACEquation)

Consider theAC equation [2] of thefollowing form

∂v ∂t =

2v ∂x2 − v

3+v, 0<x<1, 0<t <1, (21)

withthe initial condition:

v(x,0 )= −  3 A1 +  9 A2 1+ 24c A0B1  −1 + t anh  3c1+ √ 2cx 4c  6 A1+ 2  9 A2 1+ 24c A0B1− 6 B1  1 + t anh  3c1+ √ 2cx 4c  . WhereA0=−3,c=0.6, B1=−5,A1=−1, c1=0.1

TheexactsolutionofEq. (21) withtheaboveassumptions:

(5)

Fig. 3. Behavior of approximate solution (above) and exact Solution (below) corresponding to Example 2.

Fig. 4. Comparing the curves of absolute errors for different values of t corresponding to Example 2.

(6)

Fig. 5. Comparison of exact and approximate solutions for t= 0.01 corresponding to Example 3.

v(x,t)=− 12[−1+tanh{0.416667(0.3− 1.8t+0.848528x)}]

24+30[1+tanh{0.416667(0.3− 1.8t+0.848528x)}] .

(22) Tostartwith,wesolvetheabovesystemofACequationby VIA-II.MakingthecorrectionfunctionfortheEq. (21) as,

vn+1(x, t,h)=vn(x,t,h)+h  t 0 λ( ς)  vn(x, ς,h) ∂ς2vn(x,ς,h) ∂x2 − vn(x,ς,h)+  vn(x,ς,h)3 dς, (23)

Usingthe valueof λ(ς),whichis -1obtained bythe vari-ational principle [56–58] in Eq. (23) , results in the below correctionfunction: vn+1(x, t,h)=vn(x,t,h)− h  t 0  ∂vn(x, ς,h) ∂ς2vn( x,ς,h) ∂x2 − vn(x,ς,h)+vn(x,ς,h) 3  dς. (24)

Starting with aninitial condition

v0(x,t)=−

12[−1+tanh{0.416667(0.3+0.848528x)}] 24+30[1+tanh{0.416667(0.3+0.848528x)}], The otherdifferentiterationscanbeobtained withthe use ofrecurrencerelation(24) ,Forfindingoptimalvalueof hfor

estimated solution, the subsequent residual function is delin-eated: r4(x, t, h)= ∂v4(x, t,h) ∂t2v 4(x, t,h) ∂x2 −v4( x,t,h)+v4(x,t,h)3 (25)

Thenorm2of residualfunction(25) for4th-order approx-imationfor (x,t) [0, 1]× [0, 1] is e4(h) = ⎡ ⎣ 1 (11)2 10  i=0 10  j=0  r4  i 10, j 10,h 2⎤ ⎦ 1 2 (26) The residual function (25) can be used to approximate

e4(h) and the proper value of h can be found out by

mak-ing e4(h)minimum.The optimalvalue ofh is determinedto

be 1.00971373400743, when e4(h) is minimized. We may

get extra accurateness by increasing the numeral of itera-tions. Utilizing this optimal value ofh in v4(x,t, h) in the

domain(x,t) [0, 1]× [0, 1],moreaccurateresultsare ob-tained, which are reported in Table 3 , while comparison of exact andapproximate solutionscan beseenin Fig. 5

Thenumericalresultsfordiffusionequationarereportedin

Table 1 , while for AC equations are reportedin Table 2 and

Table 3 .Toprovetheeffectivenessoftheplannedtechniques, absolute errors are reported along with the results of other methods;finitedifference method[2] ,Adomian’s decomposi-tion [47] , multiquadric quasi-interpolation methods [47] and

(7)

Table 3

Comparison of numerical results for different values of t and x for Example 3.

x t

Exact Solution

Approximate Solution Absolute Errors

Present FDM [2] Present FDM [2] 0.00 0.01 0.1842577027 0.1842576837 0.184247 1.908E −08 1.06626E −05 0.01 0.01 0.18319724455 0.1831972253 0.183187 1.924E −08 1.06500E −05 0.02 0.01 0.1821415268 0.1821415074 0.182131 1.939E −08 1.06370E −05 0.03 0.01 0.18109054409 0.1810905245 0.181080 1.954E −08 1.06236E −05 0.04 0.01 0.1800442906 0.1800442709 0.180034 1.969E −08 1.06098E −05 0.05 0.01 0.1790027607 0.1790027408 0.178992 1.984E −08 1.05956E −05 0.06 0.01 0.1779659481 0.1779659281 0.177955 1.999E −08 1.05810 E −05

LLWM[1] .In comparisonwithothertechniquesresults, one canensurethat theresultsof modifiedvariationaliteration al-gorithms are moreprecise. It iscleared from figuresthat the proposed algorithms canhandle the problemsaccurately and will be applicable in ocean engineering for studying linear andnonlinear waterwaves.

4. Conclusions

In this study, approximate solutions of diffusion equation arisinginoilpollutionanddifferenttypesofACequationsare obtained byusing two modified algorithms.Basedonthe re-sults, ithasbeen foundthatthe appliedmethodswillbeable to use without using discretization, shape parameter, Ado-mian polynomials, transformation, linearization or restrictive assumptions and thus are particularly perfect with the ex-panded andflexible nature of the physical problemsandcan be easily extended tofractal calculus [59–62] arise inocean engineeringand science.

Declaration of CompetingInterest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared toinfluence thework reportedinthis paper.

References

[1] G. Hariharan, J. Membr. Biol. 247 (5) (2014) 371–380, doi: 10.1007/ s00232-014-9638-z.

[2] A. Yokus, H. Bulut, Int. J. Optim. Control Theor. Appl. 9 (1) (2018) 18, doi: 10.11121/ijocta.01.2019.00561.

[3] H.M. Patil, R. Maniyeri, Therm. Sci. Eng. Prog. 10 (2019) 42–47, doi: 10.1016/J.TSEP.2019.01.009.

[4] D. Kumar, A.R. Seadawy, A.K. Joardar, Chin. J. Phys. 56 (1) (2018) 75–85, doi: 10.1016/j.cjph.2017.11.020.

[5] R.K.Pandey,H.K.Mishra,Adv.Comput.Math.43(2)(2017)365–383.

[6] A. Yokus, H. Durur, Balıkesir Üniversitesi Fen Bilim. Enstitüsü Derg. 21 (2) (Oct. 2019) 590–599, doi: 10.25092/baunfbed.631193.

[7] H. Zhang, Commun. Nonlinear Sci. Numer. Simul. 12 (5) (Aug. 2007) 627–635, doi: 10.1016/J.CNSNS.2005.08.003.

[8] E.M.E. Zayed, K.A.E. Alurrfi, Chaos Solitons Fractals 78 (Sep. 2015) 148–155, doi: 10.1016/J.CHAOS.2015.07.018.

[9] J N Reddy, An Introduction to the Finite Element Method, Mc-Graw-Hill,2006.

[10] A.-M.Wazwaz,Appl.Math.Comput.200(1)(Jun.2008)160–166.

[11] D. Lu, A.R. Seadawy, I. Ahmed, Mod. Phys. Lett. B 33 (29) (Oct. 2019)1950363.

[12] O. González-Gaxiola, Optik (Stuttg) 194 (Oct. 2019) 163014, doi: 10. 1016/J.IJLEO.2019.163014.

[13] A. Al Qarni et al., Optik (Stuttg)., vol. 181, pp. 891–897.

[14] A.S.H.F. Mohammed, et al., Optik (Stuttg) 181 (Mar. 2019) 964–970, doi: 10.1016/J.IJLEO.2018.12.177.

[15] D.Kaya,A.Yokus,Math.Comput.Simul.60(6)(2002)507–512.

[16] H. Ahmad, T.A. Khan, C. Cesarano, Axioms 8 (4) (Oct. 2019) 119, doi: 10.3390/axioms8040119.

[17] H. Ahmad, T.A. Khan, J. Low Freq. Noise Vib. Act. Control 38 (3–4) (Jan. 2019) 1113–1124, doi: 10.1177/1461348418823126.

[18] H. Ahmad, Earthline J. Math. Sci. 2 (1) (Apr. 2019) 29–37, doi: 10. 34198/ejms.2119.2937.

[19] H.Ahmad,NonlinearSci.Lett.A9(1)(2018)27–35.

[20] H. Ahmad, T.A. Khan, P.S. Stanimirovic, I. Ahmad, J. Appl. Comput. Mech. (2020), doi: 10.22055/jacm.2020.33305.2197.

[21] A.H. Khater, D.K. Callebaut, A.R. Seadawy, Phys. Scr. 62 (5) (2000) 353–357, doi: 10.1238/physica.regular.062a00353.

[22] A.R. Seadawy, Eur. Phys. J. Plus 130 (9) (2015) 182, doi: 10.1140/epjp/ i2015-15182-5.

[23] A.H.Khater,D.K.Callebaut,M.A.Helal,A.R.Seadawy,Eur.Phys.J. D-At.Mol.Opt.PlasmaPhys.39(2)(2006)237–245.

[24] M.A. Helal, A.R. Seadawy, R.S. Ibrahim, Appl. Math. Comput. 219 (10) (2013) 5635–5648, doi: 10.1016/j.amc.2012.10.079.

[25] A.R. Seadawy, Optik (Stuttg) 139 (2017) 31–43, doi: 10.1016/j.ijleo. 2017.03.086.

[26] A.R. Seadawy, Phys. A Stat. Mech. its Appl. 439 (2015) 124–131, doi: 10.1016/j.physa.2015.07.025.

[27] K. Ayub, M.Y. Khan, Q.Mahmood-Ul-Hassan, Comput. Math. with Appl.74(12)(Dec.2017)3231–3241.

[28] S. Abbasbandy, J. Comput. Appl. Math. 207 (1) (Oct. 2007) 59–63, doi: 10.1016/J.CAM.2006.07.012.

[29] J.-H. He, Appl. Math. Comput. 135 (1) (Feb. 2003) 73–79, doi: 10.1016/ S0096-3003(01)00312-5.

[30] H.Ahmad,T.A. Khan, S.-W. Yao, J. Math. Comput.Sci. 21 (2020) 150–157.

[31] D.-N. Yu, J.-H. He, A.G. Garcıa, J. Low Freq. Noise Vib. Act. Control (Nov. 2018), doi: 10.1177/1461348418811028.

[32] H.M. Sedighi, K.H. Shirazi, Acta Astronaut 85 (Apr. 2013) 19–24, doi: 10.1016/j.actaastro.2012.11.014.

[33] H.M.Sedighi,K.H.Shirazi,Int.Rev.Mech.Eng.5(2011)941–946.

[34] S.Abbasbandy,Phys.Lett.A361(6)(2007)478–483.

[35] H.M.Sedighi,K.H. Shirazi, J.Zare,Int.J.NonLinearMech. 47(7) (Sep.2012)777–784.

[36] B. Ji, L. Zhang, Appl. Math. Comput. 343 (Feb. 2019) 100–113, doi: 10. 1016/J.AMC.2018.09.041.

[37] M. Nadeem, F. Li, H. Ahmad, Comput. Math. with Appl. (2019), doi: 10. 1016/j.camwa.2019.03.053.

[38] J.-H.He,Int.J.Non.Linear.Mech.34(4)(1999)699–708.

[39] J.-H.He,J.Comput.Appl.Math.207(1)(Oct.2007)3–17.

[40] N.Anjum,J.-H.He,Appl.Math.Lett.92(Jun.2019)134–138.

[41] M.M. Hosseini, S.T. Mohyud-Din, H. Ghaneai, M. Usman, Int. J. Non- linear Sci. Numer. Simul. 11 (7) (Jan. 2010) 495–502, doi: 10.1515/ IJNSNS.2010.11.7.495.

(8)

[50] H.Ahmad,NonlinearSci.Lett.A9(1)(2018)62–72.

[51] J.-H.He,G.-C.Wu,F.Austin,NonlinearSci.Lett.A1(1)(2010)1–30.

[52] H.Ahmad,A.R.Seadawy,T.A.Khan,P.Thounthong,J.TaibahUniv. Sci.14(1)(Jan.2020)346–358.

158240038.88612870.

[62] F.Y.Ji, C.H.He,J.J. Zhang, J.H.He, Appl.Math.Model. 82(2020) 437–448.

Şekil

Fig. 1. Absolute error graph in space-time graph form for 10th iteration by VIA-I corresponding to the Example 1
Fig. 2. Absolute error graph in space-time graph form for 10th iteration by MVIA-I corresponding to Example 1
Fig. 4. Comparing the curves of absolute errors for different values of t corresponding to Example 2
Fig. 5. Comparison of exact and approximate solutions for  t =  0 . 01 corresponding to Example 3

Referanslar

Benzer Belgeler

Özetle L-asparaginaz içeren kemoterapi protokolleri ile tedavi edilen lösemili hastalarda hiperglisemi risk fak- törleri; 10 yafl üzeri olmak, obezite, Down sendromu, di- yabet

— Beşiktaş sarayı hümayununda Teberda- ran’ı hassa dairesi kurbünde Valde Sul­ tan Kethüdası Osman Efendi’nin müced- deden bina eylediği çeşme ve muslukları­

for Integral Boundary Problems of Nonlinear FDEs with p-Laplacian Operator. Rocky Mountain Journal

Tam köprü yumuşak anahtarlamalı güç kaynağına ait çıkış gerilimi ve doğrultucu çıkışı 75KHz anahtarlama frekansı ve 100V giriş gerilimi için şekil

Baseline scores on the QLQ-C30 functioning scales from patients in both treat- ment arms were comparable to available reference values for patients with ES-SCLC; however, baseline

The potential of (-)-epicatechin-3-O-β-D-allopyranoside on bone resorption was down-regulator on osteoclastic activity and inhibited the acid phosphatase activities but not

Unlike the late Ottoman period, the early Republic was characterized by civilian supremacy and the relegation of the military into a secondary position vis-a`-vis the..

a) GGGP Program Eğitmeni, hazırlanan program takvimine göre, teknik teklifinde belirttiği içerik ve sürelere bağlı kalarak program ana eğitimlerini verir. Atölye