• Sonuç bulunamadı

Spectroscopic characterization of gold supported on tungstated zirconia

N/A
N/A
Protected

Academic year: 2021

Share "Spectroscopic characterization of gold supported on tungstated zirconia"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Catalysis

Today

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Spectroscopic

characterization

of

gold

supported

on

tungstated

zirconia

M.

Kantcheva

a,∗

, M.

Milanova

a

, I.

Avramova

b

, S.

Mametsheripov

a aDepartmentofChemistry,BilkentUniversity,06800Bilkent,Ankara,Turkey

bInstituteofGeneralandInorganicChemistry,BulgarianAcademyofSciences,Sofia1113,Bulgaria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30June2011

Receivedinrevisedform1December2011 Accepted12February2012

Available online 18 March 2012 Keywords:

Goldsupportedontungstatedzirconia XRD

DR-UV–visspectroscopy XPS

InsituFT-IRspectroscopyofadsorbedCO andCO+O2

a

b

s

t

r

a

c

t

Goldcatalystssupportedontungstatedzirconia(containing5–20wt%WO3)arepreparedbycationic

adsorptionfromaqueoussolutionof[Au(en)2]Cl3complex.ThematerialsarecharacterizedbyXRD,

DR-UV–visspectroscopyandXPS.ThenatureofthedepositedgoldspeciesisstudiedbyFT-IRspectroscopy ofadsorbedCO.ItisconcludedthatthegoldparticlesoccupypreferentiallytheWOx-freezirconiasurface

andthedispersionofgolddependsontheamountofcoodinativelyunsaturated(cus)Zr4+ions.

Modi-ficationofzirconiabytungstenincreasesthegolduptakebutatthesametimecausesdecreaseinthe concentrationof(cus)Zr4+ionsthusloweringthedispersionofgoldclusters.Accordingtotheresultsof

insituFT-IRspectroscopy,theAu/WOx ZrO2catalystsdisplayhigheractivityintheCOoxidationinthe

low-temperaturerange(upto150◦C)thantheWOx-freeAu/ZrO2sample.Thelow-temperature

activ-ityoftheW-containingcatalystscouldbeassociatedwithdecreasedbasicityofthesupportoxideions resultinginreducedaccumulationofstablecarbonatespecies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Supportedgoldcatalystsarehighlyactiveinreactionsimportant for the environmental catalysis [1], in particular for low-temperatureCOoxidation[1–9].Crucialfactorsthat controlthe activityofgoldcatalystsarethemetalparticlesize,thenatureand particlesizeoftheoxidesupport,andthestructureofAu-oxide contacts[1].Thepracticalapplicationofgoldcatalysts,however,is hinderedbecauseoftheirtendencyfordeactivationwiththe opera-tiontime.Themostprobablereasonforthedecreaseinthecatalytic activityistheformationofstablecarbonatespecieswhichblockthe perimeterofgold–supportinterfaceconsideredasactivereaction zone[3–6].TheaccumulationofCOxspeciesonthecatalystsurface

duringthecourseofCOoxidationtakesplacebyreadsorptionof CO2productmolecules[5].SinceCO2isanacidicmolecule,

lower-ingofthebasicityofthesupportsurfacebyintroductionofanacidic componentwouldpreventtheformationorreducetheamountof stablecarbonatespecies.

Highlydispersed(2–5nm)goldparticlesonoxidesupportscan beobtainedbydeposition–precipitation(DP)usingHAuCl4 asa

goldprecursor[1].However,thismethodcannotbeappliedinthe caseofacidicoxidesupportswithapointofzerocharge(PZC)below 5suchassilicaorWO3 [1].Thisisbecausethesupportsurface

isnegativelychargedabovethePZCwhichdoesnotallowstrong interactionbetweenthesupportand theanionicgoldprecursor

∗ Correspondingauthor.

E-mailaddress:margi@fen.bilkent.edu.tr(M.Kantcheva).

(AuCl4−).Cationicexchangeispresumedtobeaneffectivewayof

introducinggoldintoacidicoxides,e.g.SiO2-basedsupports[8–12].

Herein,wereporttheresultsofcharacterizationofgold cata-lystsupportedontungstatedzirconias.TheAu/WOx ZrO2samples

werepreparedbycationicadsorptionusing[Au(en)2]Cl3asthe

pre-cursor(en=ethylenediamine).Thismethodwasdevelopedfirstby Guillemotetal.[10] fortheintroductionofgoldintoYzeolites andusedalsobyothers[8,9,11]fordepositionofgoldonsilica.In ordertoevaluatethepotentialofanewmaterialasacatalystin theprocessofCOoxidation,itisimportanttoinvestigatethe inter-actionofthereactantswiththesurface.Forthatpurposeweused insituFT-IRspectroscopytostudytheadsorptionofCOandits coadsorptionwithoxygenoverAu-promotedandAu-freezirconia andtungstatedzirconias.

2. Experimental

2.1. Samplepreparation

Twodifferentprocedureswereusedforpreparationofhydrated zirconia.Accordingtoprocedure1,hydratedzirconia(denotedas HZ-1) wasprepared byhydrolysis of 0.3Msolution ofzirconyl chloride(ZrOCl2·H2O,Aldrich)withconcentrated(25%)ammonia

solutionatpH9.Theslurryoftheprecipitatedmaterialwaskept foragingatroomtemperaturefor12h.Thentheproductwas sepa-ratedbyvacuumfiltration,redispersedindeionizedwater,washed thoroughlytoremovethechlorideionsanddriedat100◦C.The crystallographicstructureofthematerialobtainedafter calcina-tionat600◦Cwaspredominantlymonocliniczirconia.Tungstated 0920-5861/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

Table1

Samplenotation,BETsurfaceareas,nominaltungstenandanalyticalgoldcontents.

Sample SBET(m2/g) WO3(wt%) Wa(at/nm2) Auloading(wt%) Auloading(at%) Auparticlesize(nm)b

Au/ZrO2 143 – – 1.43±0.03 0.30 8

Au/5WZ-I 116 5.0 1.2 1.27±0.01 0.27 8

Au/12WZ-I 115 11.8 3.0 1.83±0.01 0.40 9

Au/20WZ-I 140 19.4 4.5 2.06±0.03 0.44 10

Au/18WZ-CP 118 18.0 4.8 2.27±0.01 0.48 10

aTheWsurfacedensityiscalculatedbasedontheweightofzirconia. b AccordingtoXRD.

zirconiawas synthesized by coprecipitation [13] withnominal contentof18wt%WO3andbyimpregnationofHZ-1with

aque-oussolutionofammoniummetatungstate(AMT,Fluka)usingthe methodproposedbyMartinezetal.[14].Thisprocedureconsisted ofimpregnationofHZ-1withaqueoussolution(3mL/ghydrated zirconia)containingtherequiredamountofAMTtoobtainWO3

loadings corresponding to 5, 12 and 20wt%. The final calcina-tiontemperatureofalltungstatedzirconiaswas600◦C.Goldwas depositedbycationadsorptionfor2hfromaqueoussolutionof [Au(en)2]3+complex(5.85× 10−3M)atpH=9.6androom

tempera-ture.Aftertheseparationofthegoldcomplexsolutionbyfiltration, thesolidwaswashedbydeionizedwateruntilnegativetestfor chlorideions.Thesamplesweredriedat80◦Cfor48handcalcined for1hat400◦C.Thecationicgoldprecursorwaspreparedfollowing theprocedureofBlockandBailar[15].Theobtainedmaterialswere labeledasAu/xWZ-CPorI,wherexstandsfortheWO3nominal

contentinwt%.CPandIdenoteco-precipitationandimpregnation, respectively(seeTable1).

Inorder tostudytheeffect oftungsten,gold wasdeposited alsoonzirconiabycationadsorptionof[Au(en)2]3+complexusing

thesameconditionsappliedtotheW-containingsamples.Since theincorporationofWOxspeciesstabilizesthetetragonalphase

ofzirconia[14,16–22],WOx-freetetragonalzirconiawasusedfor

thepreparationofZrO2-supportedgoldsample.Thegoalwasto

eliminate theeffect of crystal phase onthe interactionof gold precursorwiththesupportbecausethere aredifferencesinthe acid–baseproperties[23],andtypesandconcentrationofthe sur-facehydroxylgroups[24]ofzirconiapolymorphs.Inaddition,the COadsorptioncapacityofmonocliniczirconiaislargerthanthat ofthetetragonalphase[23]whichmayaffecttheCO+O2surface

reaction.Lietal.[25]havefoundthatAusupportedonmonoclinic zirconiaexhibitedmuch higheractivityin thelow-temperature WGSreactionthanthecatalystsupportedontetragonalzirconia. Tetragonalphaseofzirconiawaspreparedbyamethodsimilarto thatdescribedbyJungandBell[24]denotedasprocedure2.The synthesisconsistedofhydrolysisof0.6MsolutionofZrO2Cl2·8H2O

withconcentratedammoniasolution(25%)atpH=9androom tem-perature.Theobtainedprecipitatewaswashedseveraltimeswith deionizedwateruntilnegativetestforCl−ions.Thenthewashed precipitatewasagedinaqueoussolutionofammonia(withpH=9) at100◦Cfor48hunderrefluxandperiodicalsupplementofNH3(aq) inordertokeepconstantpHof9.Theresultanthydratedzirconia wasdriedat100◦C for24h.ThematerialwasdenotedasHZ-2. Tetragonalzirconiawasobtainedbycalcinationofthehydrated zirconiaHZ-2at600◦Cfor6h.

2.2. Samplecharacterization

XRDanalysiswasperformedonaRigakuMiniflex diffractome-terwithNi-filteredCuK␣radiation(=1.5405 ˚A).TheDR-UV–Vis spectrawereobtainedunderambientconditionswithafiberoptic spectrometerAvaSpec-2048(Avantes)usingWS-2asareference. TheBETsurfaceareameasurementswereperformedwithaTriStar 3000automatedgasadsorptionanalyzer(Micrometrics).The sam-plesweredehydratedundervacuum(10−2Torr)for3hat250◦C

beforethemeasurementsinordertoremoveadsorbedwaterand volatilecompounds.

ThecontentofgoldwasdeterminedbyICP-MSanalysis.The tungsten content in the samples was calculated as difference betweenthenominalcontentinthesolidandtheconcentration oftungsteninthefiltrateproducedduringthedepositionofgold fromthegoldprecursor.Thetungstencontentinthefiltratewas determinedspectrophotometricallybythethiocyanatemethodat =410nm[20,26,27].

The X-ray photoelectron spectra were obtained using un-monochromatizedAlK␣(1486.6eV)radiationina VGESCALAB MKIIelectronspectrometerunderbasepressure of1× 10−8Pa. ThespectrometerresolutionwascalculatedfromtheAg3d5/2line

withtheanalyzertransmissionenergyof20eV.Thehalf-widthof thislinewas1eV.ThespectrometerwascalibratedagainsttheAu 4f7/2 line(84.0eV)andthesamplechargingwasestimatedfrom

C 1s(285eV)spectrafromnatural hydrocarboncontaminations onthesurface.TheaccuracyoftheBEmeasuredwas0.2eV.The photoelectronspectraofC 1s,O1s,Zr3d,W4fandAu4fwere recordedandcorrectedbysubtractingaShirley-typebackground andquantifiedusingthepeakareaandScofield’sphotoionization cross-sections.TheAuparticlesizewasobtainedfromtheXPSpeak intensitytreatedaccordingtotheKerkhof–Moulijnmodel[28,29]. TheFT-IRspectrawererecordedusingaBomem Hartman& BraunMB-102modelFT-IRspectrometerwithaliquid-nitrogen cooledMCTdetectorat a resolutionof 4cm−1 (100scans).The self-supportingdiscs(∼0.01g/cm2)wereactivatedintheIRcell

byheatingfor1hinavacuumat400◦C,andinoxygen(100Torr, passedthroughatrapcooledinliquidnitrogen)atthesame tem-perature,followedbyevacuationfor1hat400◦C.Thespectraof adsorbedgaseswereobtainedbysubtractingthespectraofthe activatedsamplefromthespectrarecorded.Thesamplespectra werealsogas-phasecorrected.

3. Resultsanddiscussion

3.1. Structuralcharacterization

Accordingto the XRDdata (Fig.1) all of thesamples stud-ied(exceptAu/5WZ-I)havethestructure oftetragonalzirconia (ICDDCartNo.04-005-4479).TheAu/5WZ-Isamplecontainssmall amountofmonocliniczirconia(ICDDCartNo.00-013-030).

Withincreaseinthetungstenloading,theanalyticalcontentof goldincreases(Table1).Itiswellknownthattungstatedzirconia containsacidicprotonsandtheiramountincreaseswiththe sur-facedensityoftheWOxspecies[13,16–20,30].Itisreasonableto

proposethatashighertheconcentrationof acidichydroxylson thesupportsurfaceaslargertheamountofdeprotonatedM O− surface sites(M=W and Zr)thus leadingtogreater number of anchoringsites for the[Au(en)2]3+ complex resultingin higher

surfaceconcentrationofgold.Theaveragesizeofgoldparticles, calculatedbyusingScherrerequationandthemaingold diffrac-tionlineof2=38.2◦(ICDDCartNo.00-004-0784),increaseswith theWcontent(Table1).

(3)

Fig.1.XRDpatternsofthesamplesstudied(t:tetragonal;m:monoclinic).

Thebasicmediumusedforthe[Au(en)2]3+adsorptioncaused

someleachingofWOxspeciesonlyinthecaseofAu/12WZ-Iand

Au/20WZ-Isamples.Afterthedepositionofgold,thetungstenloss amountsto0.20±0.05and0.61±0.02wt%ofWO3forAu/12WZ-I

andAu/20WZ-I,respectively. 3.2. DR-UV–visspectra

Fig. 2 compares the optical spectraof the samples studied. Theabsorptionbandat293–270nmwitha shoulderat 260nm observedinthespectraoftheAu-freesamples(Fig.2,spectra(a)) correspondstoLMCT(O2−W6+)transitioninoligomericWO

x

specieswithdifferentdegreeofpolymerization[14,17–21].The introductionofgoldcausesdrasticchangeintheopticalspectra (Fig.2,spectra(b)).Thebroadabsorptionwithmaximumat550nm observedonthegold-containingsamplesischaracteristicofthe plasmonicoscillationmodeofnanosizedgoldparticles[11,31,32]. Thestrongbandat270–293nmhasdisappearedandweaksignals at225–230and260–275nmareobservedinstead.Basedonthe spectrumofAu/ZrO2 sample(Fig.2A,spectrum(c)),theformer

bandisattributedtotheO2−→Zr4+CTtransition.Thespectraof

theAu-containingsamplesindicatethatgoldhinders the detec-tionofLMCTtransitions.Duetothehighabsorptioncoefficientof goldparticles[33],thesupportcannotinteractwiththeradiation. Consequently,thefundamentalbandsoftungstatedzirconiaare detectedwithsignificantlylowerintensities.

3.3. XPSanalysis

The resultsof XPS analysisfor all samples are summarized in Table 2. Binding energy of Au 4f7/2 is around 82.8–83.5eV

which, in agreementwith theliterature dataon Au/ZrO2

cata-lysts[7,25,34–36],isassigned tometallicgold.Thefullwidthat halfmaximum(FWHM)ofAu4fphotoelectronlinedecreaseswith

increasingtheWO3content.Thisisasignofmoreuniform

distribu-tionofAuparticlesontheW-modifiedsamplesurfacesmostlikely duetotheincreasedgolduptake.Thereasonfortheformationof metallicgoldwithoutadditionalreductionstepisthelowthermal stabilityofthe[Au(en)2]3+precursorcomplexwhenadsorbedon

oxidesurfaces[10,11,37].Theinitialcolorofthesampleswaslight yellow,however,duringthedryingat80◦Cthesamplesbecame gray-black. The changein thecolor wasfaster for the samples withhigherWcontent,whichsuggeststhattungstenassistsinthe decompositionofgoldprecursorcomplex.

SincetheXRDdataprovideinformationaboutthesizeoflarge goldclusters(largerthan5nm[38]),thesizeofthegoldparticles wasestimatedbyXPSintensityratiosusingthemodelproposedby KerkhofandMoulijn[28].Thismodelisbasedonthemetalloading andspecificsurfaceareaofthecatalystsandisusefulforthe char-acterizationofverysmallmetalparticles[38].Theaverageparticle sizecalculatedfromXPSforallgoldcontainingsamplesisaround 3nm.Theseresultsindicatethatlarge(8–10nm)andsmall(∼3nm) goldparticlesarepresentonthesurfacesofthesamplesprepared bycationicadsorptionofthe[Au(en)2]3+precursor.

ThespectraofthesamplesintheW4fregioncontainintense doubletwithW4f7/2 lineat35.1–36.3eVcorrespondingtoW6+

[22,30].TheZr3dphotoelectronlineforallAucatalystsexhibits peakforZr3d5/2at182.0–182.9eV,closetothatobservedforZr4+

ions[25,30,34,36,39–41].Fig.3showsthattheW/Zrsurfaceratios forthegoldcatalystssupportedontungstatedzirconiapreparedby impregnationincreaseslinearlyasafunctionofthetungsten con-tent.ThissuggeststhatthedispersionoftheWOxspeciesonthe

surfaceofthegoldcatalystsisuniform[19,22].FortheAu/WZ-CP samplethecalculatedW/Zrsurfaceatomicratiodeviatesfromthe establishedlineardependence.Ithasbeenshownthatalltungsten islocatedonthesurfacewhentungstatedzirconiawasprepared byimpregnationwhereasusingco-precipitationresultsin incor-porationofWatomsintoZrO2 lattice,stabilizingthetetragonal

structure[16,30].

IntheO1sXPSregionanintensivepeakat∼530.4eVisobserved forallinvestigatedcatalysts.Smallasymmetryathigherbinding energysideisdetectedtoo.Thissecondpeakcanberelatedtothe existenceofO−ions[42].Thissuggeststhepresenceinthe subsur-faceofoxygenionsthatbearlowerelectrondensitythanthe“O2−” ions;formallytheseoxideionscouldbedescribedas“O−”species. Theycouldbeassociatedwithsiteshavinghighercovalenceofthe M Obondsandsmallercoordinationnumberofoxygenionsthan aregularsite.Areasonablehypothesisistoconsidertheexistence, invariableproportions,ofdefectsinthesubsurface.

TheresultsinTable2showthatthemethodofintroductionof WOxspeciestozirconia(coprecipitationversusimpregnation)does

notaffectthesurfaceconcentrationofgold.However,in agree-mentwiththechemicalanalysis,theamountofgoldonthesurface increaseswiththeWO3loading.

3.4. InsituFT-IRspectroscopy

3.4.1. FT-IRspectraoftheactivatedsamples

Fig.4comparesthespectraoftheactivatedAu-freeand Au-containingxWZ-Isamples.IntheOHstretchingregionallsamples oftungstatedzirconiacontainabandat3640–3635cm−1whichis attributedtoW OHgroups[20].Thebroadabsorptionat approx-imately3445cm−1indicatesthepresenceofH-bondedhydroxyls. Thespectra inthefundamental W Ostretching regionshowa sharpbandat1008–1002cm−1typicalofW Ospecies[17,19–21]. ThedepositionofgolddoesnotcauseperturbationoftheW O band.However,comparedtothexWZ-Isupports,allAu-containing samples display bands in theOH stretching region withlower intensities.Thisisassociatedwiththeinvolvementofthesurface

(4)

Fig.2.(PanelA)Opticalspectraof18WZ-CP(a),Au/18WZ-CP(b)andAu/ZrO2(c).(PanelB)Opticalspectraof20WZ-I(a)andAu/20WZ-I(b).(PanelC)Opticalspectraof 12WZ-I(a)andAu/12WZ-I(b).(PanelD)Opticalspectraof5WZ-I(a)andAu/5WZ-I(b).

Table2

Bindingenergies,surfacecompositionandgoldparticlesizeforthesamples.

Sample O1s Zr3d5/2 W4f7/2 Au4f7/2 Auparticlesize(nm)

BE(eV) at% BE(eV) at% BE(eV) at% BE(eV) at% FWHMa

Au/ZrO2 530.2 65.2 182.5 34.6 – – 82.8 0.2 2.03 2.6 Au/5WZ-I 530.0 63.3 182.1 35.3 35.1 1.2 82.8 0.2 1.87 2.9 Au/12WZ-I 530.5 63.5 182.6 33.9 35.8 2.3 83.0 0.3 1.88 2.8 Au/20WZ-I 530.6 63.0 182.6 33.0 35.9 3.7 83.4 0.3 1.71 3.1 Au/18WZ-CP 530.4 64.7 182.9 32.4 36.3 2.6 83.5 0.3 1.68 3.3 aFWHMfortheAu4f

(5)

Fig.3.W/ZrsurfaceratiosasafunctionofWO3contentinAu/xWZ-I(x=0,5,12and 20wt%WO3)()andAu/18WZ-CPsamples().

hydroxylsofW-containingsupportsinthedepositionprocessof goldprecursor.

3.4.2. AdsorptionofCOatroomtemperature

TheanalysisoftheFT-IRspectraofCOadsorbedatroom tem-peratureonthesamplescanbeveryusefultoobtainqualitative informationonthenatureofsupportedgoldspecies.Fig.5A dis-plays the FT-IR spectra in the carbonyl region of CO (10Torr) adsorbedonthezirconiasamplesobtainedafterthecalcination at600◦C ofhydratedzirconiaspreparedbyprocedures1and2. ThefigureshowsalsothespectraofCOadsorbedonthecalcined supportspreparedbyimpregnatingtheHZ-1precursorwithAMT solutionandbycoprecipitation.Asmentionedabove,thesamples

ofzirconiaobtainedusingasprecursorshydratedzirconiasHZ-1 andHZ-2crystallizeafterthecalcinationat600◦Cinmonoclinic andtetragonalstructure,respectively.Astrongbandat2196cm−1 withapoorly resolvedshoulder isobserved inthespectrumof COadsorbedonmonocliniczirconia(Fig.5A)which correspond totwotypesofZr4+ COcarbonyls[2,17,20,23,31,43–45].Forthe

puretetragonalzirconiasampletheCOadsorptionyieldsalsoone asymmetricbandat2194cm−1withshoulderataround2188cm−1 whichareascribedtotwo typesofLewisacidsites[23,46].The spectra clearly show that the population of the coordinatively unsaturated(cus)Zr4+sitesonmonocliniczirconiaislargerthan

onthetetragonalzirconia.Thisexperimentalfactisinagreement withtheresultsofMorterraandcoworkers[23]whoconcluded thatmorphologicalandstructuralreasonsareresponsibleforthe differentconcentrationof(cus) Zr4+sitesonthesurfacesofthe

two crystallographicmodifications ofzirconia.Comparedtothe m-ZrO2,thetungstatedsamplespreparedfromtheHZ-1precursor

arecharacterizedbylowerintensityoftheZr4+ COband(Fig.5B)

duetosaturationofcoordinativepositionsofZr4+ionsinthe

sur-facelayerbytheWOxspecies.TheintensityoftheZr4+ COband

decreases graduallywith increase in the tungstenloading.The high-frequencyshiftofthecarbonylbandexhibitedintheWOx

-containingzirconiasamplesisassociatedwiththeincreasedacidity ofthe(cus)Zr4+sitescausedbytheelectron-withdrawingWO

x

groups [17,20].The intensityof theZr4+ CO bandin allxWZ-I

samples(havingatetragonalstructure)issignificantlyhigherthan thatinthetetragonalzirconia.Thisdifferencecanbeascribedto theapplication of two differentprocedures for thepreparation of the hydratedzirconia usedas precursor leading to different morphologyof thet-ZrO2 andxWZ-Isamples,i.e.differentsize

and shape ofthe particles, and differentamounts of structural defects.Inaddition,theacidityofthe(cus)Zr4+ionslocatedinthe

proximityoftheWOxdomainsisenhancedresultinginincreased

amountof(cus) Zr4+ions detectableby COadsorptionat room

temperature.

(6)

Fig.5.FT-IRspectraofCO(10Torr)adsorbedatroomtemperatureonthesamplesstudied(t:tetragonal;m:monoclinic).

As with the Au-free materials, the absorption at 2195–2198cm−1observedforallAu-promotedsamplesisassigned toCOadsorbedonZr4+surfacesites(Fig.5C).Theintensityofthe

Zr4+ CO bandinthe W-containingsamplesdecreasesafterthe

depositionofgold(comparewithFig.5B)indicatingthatthereare goldnanoparticleslocatedonthezirconiasurface.Lower concen-trationofthe(cus)Zr4+ionshasbeendetectedalsoonthesurface

ofAu/ZrO2 sampleascomparedwiththeAu-freetetragonal

zir-conia.Accordingtodatafromtheliterature[2,10,31,43,44,47–51], theabsorptionwithmaximumat2113–2116cm−1isassignedto COadsorbedonsmallthree-dimensionalgoldclusters, whereas theshoulderat2128–2135cm−1isusuallyattributedtoAuı+ CO species.FormationofpositivelypolarizedgoldonZrO2isassumed

tobecausedbythepresenceofadsorbedoxygenonthegold par-ticlesortheirinteractionwiththesupport[2,31,43,47].Itshould benotedthatthelastactivationstepoftheinvestigatedsamples consistedofevacuationat400◦Candadsorbedoxygencannotbe expectedundertheseconditions.Moreover,afterthereductionof thesamplesat400◦CwithCO,theabsorptionat2128–2135cm−1 isstillpresentinthespectraofCOadsorbedatroomtemperature. Recently, absorption bandat 2130–2140cm−1 observed during theCOadsorptiononAu/Nb2O5hasbeenattributedtoCO

coor-dinatedtolargergoldnanoparticles[52].Therefore,basedonthe latterinterpretation thefeatureat 2128–2135cm−1 (Fig.5C) is assignedtentativelytoCOcoordinatedtolargergoldnanoparticles. Thisproposition is supported bythe estimates of goldparticle sizesfromXRDand XPSdatashowingthatthesampleshaveat least two fractions of crystallites, large (∼8–10nm) and small (∼3nm). For convenience, the absorptions at 2128–2135cm−1 and 2113–2116cm−1 are denoted as high-frequency (HF) and low-frequency(LF)goldcarbonyls,respectively.Thebands corre-spondingtotheZr4+ COandAu COspeciesareremovedupon

dynamicevacuationatroomtemperature.

AccordingtothechemicalanalysistheAuloadingonAu/ZrO2

andAu/5WZ-Isamplesisveryclose,1.43and1.27wt%,respectively. However,theintensitiesofthebandsduetoCOadsorbedonthe goldsitesarehigherfortheW-containingsample(Fig.5C) suggest-inghighergolddispersion.Usingthesamearguments(Auloading

andintensitiesoftheAucarbonylbands),bettergolddispersioncan bededucedfortheAu/20WZ-I(2.06wt%Au)whencomparedwith theAu/18WZ-CPsample(2.27wt%Au).ThespectraofCOadsorbed ontheAu-freesupportsshowthattheamountof(cus)Zr4+ionsis

higheronthe5WZ-Isamplethanont-ZrO2.Likewise,thesurface

concentrationof(cus)Zr4+ionsonthe20WZ-Isampleishigherthan

thatonthe18WZ-CPsample.Itcanbeproposedthatthedispersion ofgolddependsontheamountof(cus)Zr4+ions.Thisassumption

canbesupportedbytheresultsofChenandGoodman[53]who showedbyusingHREELSandCOadsorptionthatAubondsdirectly tocoordinativelyunsaturatedTiatomonTiO2(110).

FortheAu/xWZ-Isampleseries,theincreaseintheintensitiesof Aucarbonylbandswiththeamountoftungstenisassociatedwith theincreaseintheAuloading.Accordingtotheresultsofcurve fittingofthegoldcarbonylbands(Table3),thefractionoflarger goldparticlesgivingrisetotheHFcarbonylbandincreaseswith theWloadingbylargerextentthanthefractionofthesmallergold particlescharacterizedbytheLFcarbonylband.Thisexperimental factcouldbeexplainedbytheassumptionthatinthecaseof W-containingsamplesthegoldparticlesformedduringthecalcination occupypreferentiallytheWOx-freezirconiasurface.The

modifica-tionofzirconiabytungstenfacilitatesthegolduptakebutatthe sametimecausesdecreaseintheconcentrationof(cus)Zr4+ions.

Thedecreaseintheamountofnucleationsitesforgoldparticles withincreaseintheWloadinglowersthedispersion.

Table3

Integratedareasofthegoldcarbonylbandsrecordedatroomtemperatureand PCO=10Torr(seeFig.5).

Sample HFbanda(cm−1) IHF(a.u.) LFbandb(cm−1) ILF(a.u.) IHF/ILF

Au/ZrO2 2128 0.78 2113 0.97 0.80

Au/5WZ-I 2132 1.28 2115 1.35 0.95

Au/12WZ-I 2136 1.79 2116 1.38 1.30

Au/20WZ-I 2136 2.66 2116 1.53 1.74

Au/18WZ-CP 2134 0.84 2115 0.73 1.15

aHFbandcorrespondstoCOadsorbedonlargeAuparticles. bLFbandcorrespondstoCOadsorbedonsmallgoldparticles.

(7)

Fig.6.FT-IRspectracollectedduringtheexposureofthesamplesAu/ZrO2(PanelA)andAu/12WZ-I(PanelC)toa(10TorrCO+10TorrO2)gasmixturefor10minatvarious temperatures.(PanelsBandD)GasphasespectraabovetheAu/ZrO2andAu/12WZ-Isamples,respectively(RT=roomtemperature).

3.4.3. FT-IRspectroscopicinvestigationofCOoxidationover Au/xWZ-Isamples

Inordertoevaluatethepotentialofanewmaterialasa cata-lyst,westudiedbyFT-IRspectroscopytheCOoxidationasasize

sensitiveprobereaction.Inthisinvestigationweusedthegold cat-alystssupportedontungstatedzirconiapreparedbyimpregnation. Inordertofindinformationabouttheeffectoftungsten,theCO+O2

reactionhasbeenstudiedontheAu/ZrO2 sampleaswell.Fig.6

Table4

AssignmentoftheIRabsorptionbandsobserveduponCO+O2adsorptiononAu/ZrO2andAu/12WZ-Isamplesatvarioustemperatures.

IRband(cm−1) Assignment IRband(cm−1) Assignment

2352,1344 Zr O C O 1660–1650,1375 CO2− 2193–2197 Zr4+ CO 1615,1220 BidentateHCO 3− 2135,2115 Auı+ CO,Au0 CO 1555,1320 BidentateCO 32− 1755 BridgedCO32− 1452–1450,1425–1418 PolydentateCO32−

(8)

showsthespectraobtainedduringthecontactoftheAu/ZrO2and

Au/12WZ-Icatalystswitha(10TorrCO+10TorrO2)mixtureinthe

isolatedIRcellatvarioustemperaturesfor10min.Thespectrum

ofAu/ZrO2catalystdetectedatroomtemperature(spectrumRTin

Fig.6A)containsabsorptionsat2193,2135and2115cm−1the for-merbandbeingassignedtoZr4+ COwhereasthelattertwobands

correspondtoHFand LFgoldcarbonyls,respectively.The spec-truminthe1620–1000cm−1regionissimilartothatreportedby Bachiller-Baezaetal.[54],Pokrovskietal.[55]andBolisetal.[56] forCO2 adsorbedontetragonalzirconia.Accordingly,thepeaks

at1615and 1220cm−1 revealthepresenceofbidentate hydro-gencarbonates(b-HCO3−).Thebandsat1555and1320cm−1 are

attributedtobidentatecarbonatespecies(b-CO32−)[54–56]and

thepairofbands at1450and 1425cm−1 areassigned to poly-dentatecarbonates(p-CO32−)[54,55]ormonodentatecarbonate

speciespeculiarofthet-ZrO2phase[56].Thelattertwobandsare

detectedupontheadsorptionofCO(10Torr)atroomtemperature althoughwithmuchweakerintensities.Theabsorptioncentered at1755cm−1 canbeassignedtobridgedCO32−[56,57],whereas

theweakbandsat1660–1650and1375cm−1(seealsoFig.6C)are attributedtocarboxylate,CO2−,species[57–59].Inthegasphase,

inadditiontothesignalofCO,veryweakabsorption correspond-ingtoCO2isdetected(Fig.6B,spectrumRT).Theexperimentaldata

showthatsomeoxidationofCOtakesplaceatroomtemperature. However,theproductofoxidation isretainedonthesurfaceof thecatalystmainlyascarbonate–carboxylatestructures.Increasing thetemperatureto50◦Ccausesenhancementoftheabsorptions between1800and1000cm−1anddecreaseintheintensitiesofthe carbonylbands(Fig.6A,spectrum50◦C).Atthesametime,the for-mationofanewsharpbandat2352cm−1isobserved.Thissignal isattributedtothe␯3modeofCO2moleculelinearlyadsorbedon

thesurfaceZrcationicsitesthroughoneOatom[56,58,59],i.e.to theZr O C Oconfiguration.Increasingthetemperatureto100◦C doesnotaffecttheintensitiesofthebandsofthep-CO32−speciesat

1450–1425cm−1(Fig.6A,spectrum100◦C).However,thereis con-siderabledecreaseintheabsorptionscorrespondingtoadsorbed CO2 (2352cm−1), b-HCO3− (1615 and 1220cm−1)and b-CO32−

species(1555and1320cm−1).Decreaseintheintensitiesofthe broadsignalcenteredat1755cm−1andtheshoulderat1660cm−1 isobservedaswell.Thebandsat2193(Zr4+ CO)and2115cm−1

(LFAucarbonyl)arenolongerpresent.However,thespecies char-acterizedbytheHFAucarbonylbanddisplayhigherstabilityand areobservedinthespectrumtakenat150◦C(notshownhere).This indicatesthatCOadsorbedonthelargergoldparticles(givingrise tothebandat2135cm−1)islessreactivethanthatcoordinatedto thesmallergoldclusters.Lowreactivityofgoldspecies character-izedbycarbonylbandsat2125–2140cm−1hasbeenreportedfor othergoldcontainingsamples[2,31,43].

Thegasphasespectrumtakenat100◦C(Fig.6B)showsdecrease in theintensity of theCO band and significantincrease in the amountofCO2produced.Furtherraiseinthetemperatureto200

and300◦Ccausesvanishingofthebandsat1755and1660cm−1 andtheabsorptionsduetoadsorbedCO2andCO,andloweringof

thesurfaceconcentrationofthehydrogencarbonateand carbon-atespecies.UndertheseconditionstheCOinthegasphasehas almostdisappearedandtheamountofCO2formedhasincreased

significantly.

The spectra obtained during the interaction of a (10Torr CO+10TorrO2)mixtureinthe25–300◦CwiththeAu/12WZ-I

cat-alyst(Fig.6CandD)containthesametypeofabsorptionbandsas thoseobservedontheAu/ZrO2sample.However,thereare

differ-encesthatshouldbenoted:(i)CO2adsorbedontheAu/12WZ-I

sampleisobservedalreadyatroomtemperatureandtheamount ofCO2producedat25◦Cissignificantlyhigherthanthatinthecase

oftheAu/ZrO2 sample.ThelargerconcentrationofCO2adsorbed

ontheAu/12WZ-Isample allows thedetectionof the␯1 mode

Fig.7.COconversionovertheAu/xZW-IandAu/ZrO2catalystsasafunctionof thetemperature.TheCOconversion(in%)isestimatedfromtheintegratedarea oftheIRabsorptionofgaseousCOobtainedatagiventemperatureinthe pres-ence(A)andabsenceofacatalyst(A0)accordingtotheequation:COconversion (%)=(A0−A)100/A0.

oftheadsorbedmoleculeat1344cm−1,otherwiseIRinactivefor gas-phaseCO2;(ii)between25and100◦Cthereisapproximately

2.5-fold increase in the surface concentration of adsorbed CO2

whereastheamountofsurfaceHCO3−andCO32−increasesonly

slightlyandismuchlowerthanthatontheAu/ZrO2sample.This

factreflectsthereducedbasicityoftheoxideionsofzirconiacaused bythedepositedWOx species.CO2 isacidic andit isused asa

probemoleculeforbasicsurfacesites[54,56].Theassignmentof theabsorptionbandsissummarizedinTable4.

ItshouldbepointedoutthatAu-freeWOx ZrO2samplesdonot

catalyzetheoxidationofCOinthe25–300◦Ctemperaturerange underthesamepartialpressuresofthereactinggases.Fig.7shows theCOconversionovertheAu/xZW-IandAu/ZrO2catalystsasa

functionofthetemperature.TheCOconversion(in%)isestimated fromtheintegratedareaoftheIRabsorptionofgaseousCOobtained atagiventemperatureinthepresence(A)andabsenceofa cata-lyst(A0)accordingtotheequation:COconversion=(A0−A)100/A0.

Thecurvesclearly indicatethatundertheconditionsofthe FT-IRexperiment, theAu/ZrO2 catalystdisplaysthelowestactivity

inthelow-temperaturerange(upto150◦C).Thebehaviorofthe lattersamplecanbeexplainedbyextensiveformationofsurface HCO3−/CO32−structures(seeFig.6A)thatblocktheactivesites

forthereaction.Theamountofcarbonatesretainedonthesurface dependsonthebasicityoftheoxideions,i.e.ontheW concentra-tion.ThespectrainFig.6AandCshowthatthemostresistantto decompositionarethep-CO32−speciesandtheirsurface

concen-trationdecreaseswiththeincreaseintheWcontent.

TheAu/5WZ-Isamplehasthebesthigh-temperatureactivity (above150◦C)amongthesamplesstudied.Thepoorerperformance ofthegoldcatalystswithWO3loadingof12and20wt%underthese

conditionscouldbeexplainedbythepresenceofsignificantamount oflargegoldparticles(seeTable3).ThereactivityofCOadsorbed onlargegoldclustersislowresultinginlowerCOoxidation activ-ity. Asmentioned above, both Au/ZrO2 and Au/5WZ-Icatalysts

havesimilarAuloadingandthefractionofsmallgoldparticlesis comparable(Table3).TheloweractivityoftheAu/ZrO2 catalyst

thanthatofAu/5WZ-Icouldbeattributedtothepresenceofstable HCO3−/CO32−structureswhichareaccumulatedattemperatures

below150◦Candcannotberemovedevenat300◦C.Theresults obtainedindicatethatgoldcatalystssupportedontungstated zirco-niashowlow-temperatureactivityintheoxidationofCO.However,

(9)

thedeposition of gold ontungstated zirconiaby adsorption of [Au(en)2]3+complexleadstotheformationofnon-uniforminsize

goldcrystallitesi.e.largeandsmall.Sincethesizeofgold parti-clesisakeyfeaturedeterminingtheactivityinCOoxidation,our futuretaskistooptimizetheprocessofgolddepositionby appli-cationofothermethodssuchasusingcolloidalgoldprecursorsor post-modificationofAu/ZrO2byWOxspecies.

4. Conclusions

Wehave shownthat goldcatalystssupportedontungstated zirconia(containing5–20wt%WO3)canbepreparedbycationic

adsorptionfromaqueoussolutionof[Au(en)2]Cl3complex.

Accord-ingtoXRDandXPSdatalarge(8–10nm)andsmall(∼3nm)gold particlesarepresentonthecatalystsurfaces.TheFT-IRspectraof adsorbedCOshowtheformationoftwo typesofAu CObands, at2128–2135cm−1 (high-frequencyband)and2113–2116cm−1 (low-frequencyband),whichareattributedtoCOcoordinatedto largeandsmallgoldparticles,respectively.Itisconcludedthatthe goldparticlesoccupypreferentiallytheWOx-freezirconiasurface

andthedispersionofgolddependsontheamountofcoodinatively unsaturated(cus)Zr4+ions.Modificationofzirconiabytungsten

increasesthegolduptakebutatthesametimecausesdecrease in theconcentration of (cus) Zr4+ ions.Consequently, the

frac-tionoflargegoldparticlesincreases.Undertheconditionsofthe FT-IR experiments, the gold catalysts supported on tungstated zirconiapreparedbyimpregnationdisplayhigheractivityinthe CO oxidationin thelow-temperaturerange(upto150◦C)than theWOx-freeAu/ZrO2catalyst.Theimprovedperformanceofthe

Au/WOx ZrO2 catalystsisassociatedwithreducedformationof

stableHCO3−/CO32−structuresthatblocktheactivesitesforthe

reaction.

Acknowledgments

ThisworkhasbeenperformedintheframeworkofaD36/003/06 COSTprogram.ThefinancialsupportofTBAG–109T854projectand NATOGrantESP.CLG.No.984160isgreatlyappreciated.

References

[1]M.Haruta,CATTECH6(2002)102–115.

[2]J.-D.Grunwald,M.Macviejewski,O.S.Becker,P.F.Fabrizioli,A.Baiker,J.Catal. 186(1999)458–469.

[3]P.Konova,A.Naydenov,Cv.Venkov,D.Mehandjiev,D.Andreeva,T.Tabakova, J.Mol.Catal.A213(2004)235–240.

[4]P.Konova,A.Naydenov,T.Tabakova,D.Mehandjiev,Catal.Commun.5(2004) 537–542.

[5]D.Widmann,Y.Liu,F.Schüth,R.J.Behm,J.Catal.276(2010)292–305. [6]A.Knell,P.Barnickel,A.Baiker,A.Wokaun,J.Catal.137(1992)306–321. [7]X.Zhang,H.Wang,B.-Q.Xu,J.Phys.Chem.B109(2005)9678–9683. [8]H.G.Zhu,C.D.Liang,W.F.Yan,S.H.Overbury,S.Dai,J.Phys.Chem.B110(2006)

10842–10848.

[9]H.G.Zhu,Z.Ma,J.C.Clark,Z.W.Pan,S.H.Overbury,S.Dai,Appl.Catal.A326 (2007)89–99.

[10]D.Guillemot,V.YuBorovkov,V.B.Kazansky,M.Polisset-Thfoin,J.Fraissard,J. Chem.Soc.FaradayTrans.93(1997)3587–3591.

[11]R.Zanella,A.Sandoval,P.Santiago,V.A.Basink,J.M.Saniger,J.Phys.Chem.B 110(2006)8559–8565.

[12]J.Xu,Y.Liu,H.Wu,X.Li,M.He,P.Wu,Catal.Lett.141(2011)860–865. [13]J.G.Santiesteban,J.V.Vartuli,S.Han,R.D.Bastian,C.D.Chang,J.Catal.168(1997)

431–441.

[14]A.Martinez,G.Prieto,M.A.Arribas,P.Concepcion,J.F.Sanchez-Royo,J.Catal. 248(2007)288–302.

[15]B.P.Block,J.C.BailarJr.,J.Am.Chem.Soc.73(1951)4722–4725. [16]R.A.Boyse,E.Ko,J.Catal.171(1997)191–207.

[17] M.Scheithauer,R.K.Grasselli,H.Knozinger,Langmuir14(1998)3019–3029. [18]D.G.Barton,M.Shtein,R.D.Wilson,S.T.Soled,E.Iglesia,J.Phys.Chem.B103

(1999)630–640.

[19]E.I.Ross-Medgaarden,W.V.Knowles,T.Kim,M.S.Wong,W.Zhou,C.J.Kiely,I.E. Wachs,J.Catal.256(2008)108–125.

[20]M.Kantcheva,C.Koz,J.Mater.Sci.42(2007)6074–6086.

[21] E.I.Ross-Medgaarden,I.E.Wachs,J.Phys.Chem.C111(2007)15089–15099. [22]F.DiGregorio,V.Keller,J.Catal.225(2004)45–55.

[23] V.Bolis,G.Cerrato,G.Magnaca,C.Morterra,Thermochim.Acta312(1998) 63–77.

[24] K.T.Jung,A.T.Bell,J.Mol.Catal.A163(2000)27–42.

[25]J.Li,J.Chen,W.Song,J.Liu,W.Shen,Appl.Catal.A334(2008)321–329. [26] C.E.Crouthamel,C.E.Johnson,Anal.Chem.26(1954)1284–1291. [27] D.F.Wood,R.T.Clark,Analyst83(1958)326–334.

[28]F.P.J.M.Kerkhof,J.A.Moulijn,J.Phys.Chem.83(1979)1612–1619. [29]V.Leon,Surf.Sci.339(1995)L931–L934.

[30]M.A.Cortes-Jacome,C.Angeles-Chavez,E.Lopez-Salinas,J.Navarrete,P.Toribo, J.A.Toledo,Appl.Catal.A318(2007)178–189.

[31]F.Boccuzzi, G.Cerrato, F.Pinna,G. Strukul,J.Phys. Chem.B 102(1998) 5733–5736.

[32]R.Kydd,J.Scott,W.Y.Teoh,K.Chiang,R.Amal,Langmuir26(2010)2099–2106. [33]S.Eustis,M.A.El-Sayed,Chem.Soc.Rev.35(2006)209–217.

[34]Y.Azizi,C.Petit,V.Pitchon,J.Catal.269(2010)26–32.

[35]S.Schimpf,M.Lucas,C.Mohr,U.Rodemerck,A.Bruckner,J.Radnik,H. Hofmeis-ter,P.Claus,Catal.Today72(2002)63–78.

[36]L.Ilieva,J.W.Sobczak,M.Manzoli,B.L.Su,D.Andreeva,Appl.Catal.A291(2005) 85–92.

[37]R.Zanella,L.Dellanoy,C.Louis,Appl.Catal.A291(2005)62–72.

[38] R.Wojcieszak,M.J.Genet,P.Eloy,P.Ruiz,E.M.Gaigneaux,J.Phys.Chem.114 (2010)16677–16684.

[39]S.Velu,K.Suzuki,C.S.Gopinath,H.Yoshidac,T.Hattori,Phys.Chem.Chem. Phys.4(2002)1990–1999.

[40] L.-C.Wang,Q.Liu,M.Chen,Y.-M.Liu,Y.Cao,He-Y.He,K.-N.Fan,J.Phys.Chem. C111(2007)16549–16557.

[41]R.Grabowski,J.Sloczynski,M.Sliwa,D.Mucha,R.P.Socha,ACSCatal.1(2011) 266–278.

[42] J.C.Dupin,D.Gonbeau,P.Vinatier,A.Levasseur,Phys.Chem.Chem.Phys.2 (2000)1319–1324.

[43]M.Maciejewski,P.Fabrizioli,J.-D.Grunwald,O.S.Becker,A.Baiker,Phys.Chem. Chem.Phys.3(2001)3846–3855.

[44] M.Manzoli,A.Chiorino,F.Boccuzzi,Surf.Sci.532–535(2003)377–382. [45] M.Kantcheva,E.Z.Ciftlikli,J.Phys.Chem.B106(2002)3941–3949.

[46]C.Morterra,G.Cerrato,V.Bolis,C.Lamberti,L.Ferroni,L.Montanaro,J.Chem. Soc.FaradayTrans.91(1995)113–123.

[47] F.Boccuzzi,A.Chiorino,J.Phys.Chem.B104(2000)5414–5416. [48] K.I.Hadjiivanov,G.N.Vayssilov,Adv.Catal.47(2002)307–511.

[49]M.Kantcheva,O.Samarskaya,L.Ilieva,G.Pantaleo,A.M.Venezia,D.Andreeva, Appl.Catal.B88(2009)113–126.

[50]D.Andreeva,M.Kantcheva,I.Ivanov,L.Ilieva,J.W.Sobczak,W.Lisowski,Catal. Today158(2010)69–77.

[51]F. Vindigni, M. Manzolli, A. Chiorino, F. Boccuzzi, Gold Bull. 42 (2009) 106–112.

[52]K.Musialska,E.Finocchio,I.Sobczak,G.Busca,R.Wojcieszak,E.Gaigneaux,M. Ziolek,Appl.Catal.A384(2010)70–77.

[53]M.S.Chen,D.W.Goodman,Science306(2004)252–255.

[54]B.Bachiller-Baeza,I.Rodriguez-Ramos,A.Guerrero-Ruiz,Langmuir14(1998) 3556–3564.

[55]K.Pokrovski,K.T.Jung,A.T.Bell,Langmuir17(2001)4297–4303.

[56]V.Bolis,G.Magnacca,G.Cerrato,C.Morterra,Top.Catal.19(2002)259–269. [57]G.Busca,V.Lorenzelli,Mater.Chem.7(1982)89–126.

[58]G.Ramis,G.Busca,V.Lorenzelli,Mater.Chem.Phys.29(1991)425–435. [59]L.F.Liao,C.F.Lien,D.L.Shieh,M.T.Chen,J.L.Lin,J.Phys.Chem.B106(2002)

Referanslar

Benzer Belgeler

These experimental facts indicate that the exposure of the activated sample to molecular oxygen at room temperature decreases the concentration of the oxygen vacancies and leads

characteristics of Turkish state lingered on in the 1990s and afterwards, but before, we will continue to discuss different forms of security approach. Ideationally, the claims

Then, we numerically show that G-CMAB achieves bounded regret in a real-world movie recommenda- tion problem, where the action corresponds to recommending a set of movies,

On the other hand, the interaction between social movement literature and deliberative democracy will be discussed by focusing on how public forums as being outcomes of a

Photocatalytic NO(g) oxidation and storage performance results obtained via UVA irradiation at room temperature for biotemplated TiO 2 microspheres initially calcined at

Customers who are willing to pay a higher price for the resource (henceforth referred to as class 1 customers) arrive later on the sales horizon, and the decision maker deter-

Table 2.5: Target detection accuracies and false alarm rates achieved using RC and region codifference methods with the distance metric defined in Eq.. The normalization is done

Promoting an international agreement on the legal status of the Caspian Sea would also not only advance regional peace and stability it would also facilitate access to natural