• Sonuç bulunamadı

Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device

N/A
N/A
Protected

Academic year: 2021

Share "Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Electrochimica

Acta

j o ur na l h o me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / e l e c t a c t a

Electrochromic

properties

of

nanostructured

tungsten

trioxide

(hydrate)

films

and

their

applications

in

a

complementary

electrochromic

device

Zhihui

Jiao

a

,

Jinmin

Wang

a

,

Lin

Ke

b

,

Xuewei

Liu

c

,

Hilmi

Volkan

Demir

a,d,e

,

Ming

Fei

Yang

a

,

Xiao

Wei

Sun

a,f,∗

aSchoolofElectricalandElectronicEngineering,NanyangTechnologicalUniversity,NanyangAvenue,Singapore639798,Singapore

bInstituteofMaterialResearchandEngineering,A*STAR(AgencyforScience,TechnologyandResearch),ResearchLink,Singapore117602,Singapore cSchoolofPhysicalandMathematicalSciences,NanyangTechnologicalUniversity,NanyangAvenue,Singapore637371,Singapore

dDepartmentofElectricalandElectronicsEngineering,DepartmentofPhysics,UNAMInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Bilkent,Ankara06800, Turkey

eSchoolofPhysicalandMathematicalSciences,NanyangTechnologicalUniversity,NanyangAvenue,Singapore639798,Singapore

fDepartmentofAppliedPhysics,CollegeofScience,andTianjinKeyLaboratoryofLow-DimensionalFunctionalMaterialPhysicsandFabricationTechnology,TianjinUniversity, Tianjin300072,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received31August2011 Receivedinrevisedform 16December2011 Accepted18December2011 Available online 26 December 2011 Keywords: Electrochromism Tungstentrioxide Thinfilm Complementarydevice

a

b

s

t

r

a

c

t

Orthorhombichydratedtungstentrioxide(3WO3·H2O)filmsconsistedofnanosticksand

nanoparti-cleswerepreparedonfluorinedopedtinoxide(FTO)-coatedsubstratebyafacileandtemplate-free hydrothermalmethodusingammoniumacetate(CH3COONH4)asthecappingagent.Irregularnanobrick

filmswereobtainedwithoutcappingagent.Duetothehighlyroughsurface,thenanostick/nanoparticle film depicts faster ion intercalation/deintercalation kinetics and a greater coloration efficiency (45.5cm2/C)thanthenanobrickfilm.Acomplementaryelectrochromicdevicebasedonthe

nanos-tick/nanoparticle3WO3·H2OfilmandPrussianblue(PB)wasassembled.Asaresult,thecomplementary

deviceshowsahigheropticalmodulation(54%at754nm),alargercolorationefficiency(151.9cm2/C)

andfasterswitchingresponseswithableachingtimeof5.7sandacoloringtimeof1.3sthanasingle 3WO3·H2Olayerdevice,makingitattractiveforapracticalapplication.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Upon electron-transfer or redox reactions, materials that

undergoreversiblecolorchangeswithvariationsintheiroptical

spectraarecalledelectrochromicmaterials[1–3].Electrochromic

devicescomposedofthesematerials,whichallowforcontrolling

colorcycles,have attractedgreat interestthankstotheir

appli-cations important for smart windows[4–6], displays[7,8] and

antiglare mirrors [9]. The tunable light transmittance resulting

fromthecolorchangeoftheelectrochromicfilmsismuchdesired

insmartwindows,which donotonlyincreasetheaestheticsof

traditional windowsbut also save energy by reducing heating

or cooling loads of the building interiors [10]. Among various

electrochromicmaterials,tungstenoxide(WO3)hasbeen

exten-sivelystudiedbecauseof itshighcolorationefficiencyand high

cyclicstabilitycomparedwithothertransitionmetaloxides[11].

∗ Corresponding author at: School of Electrical and Electronic Engineering, NanyangTechnologicalUniversity,NanyangAvenue,Singapore639798,Singapore. Tel.:+6567905369;fax:+6567933318.

E-mailaddress:exwsun@ntu.edu.sg(X.W.Sun).

Moreover,WO3-basedelectrochromicdevicesexhibitlowpower

consumption,agoodmemoryeffectandahighcontrastratio[12],

offeringthedesiredadvantagesinsmartwindowsanddisplays.Itis

widelyrecognizedthatnanostructuredWO3,incomparisontotheir

compactbulkforms,offerpotentialadvantagesinelectrochromic

applicationduetotheirlargesurfaceareathatcouldbothincrease

thecontactareabetweentheelectrodeandelectrolyteandreduce

thediffusionpathofionsthroughtheporousstructures[13].And

the electrochromic efficiency of WO3 can befurther improved

by doping suitable metal ions with higher electronegativity or

loweroxidizingcapabilitythanWions,suchasMoandTi[14,15].

Recently, one-dimensional(1D) WO3 nanostructureswithlarge

surfaceareas,includingnanowires[16,17],nanorods[18,19]and

nanobelts[20],havebeeninvestigated.Forelectrochromic

appli-cations,WO3nanostructuresneedtobeassembledasathinfilm

onconductivesubstratesandthemicrostructuresofthefilm

con-cerning the electrochromic performance largely dependon the

filmassemblingtechniquesandprocessingconditions.Suchthin

filmsofWO3 havebeengrownbyvacuumdeposition[21],

elec-trodeposition[22],sol–gel[23]andhydrothermalmethod[24,25].

Hydrothermal approach is one ofthe mostpromising methods

for fabricatingWO3 film becauseof itsmerits oflow cost, low

0013-4686/$–seefrontmatter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.electacta.2011.12.069

(2)

154 Z.Jiaoetal./ElectrochimicaActa63 (2012) 153–160

reactiontemperature,flexiblesubstrateselectionandeasy

scaling-upfor production.Moreover,the microstructuresof WO3 films

grown by hydrothermal approach can be precisely tailored by

varyingtheprecursorconcentration,temperature,duration, and

adoptingvarioussurfactantsandcappingagents.

Todate,anumberofhydrothermalmethodshavebeen

devel-opedforpreparing 1DWO3 nanostructures,includingnanorods

[19]andnanoribbons[26] byaddingdifferentinorganicsaltsas

cappingagents.However,previousreportsofdirectlygrownWO3

thinfilmsonsubstrateusingatemplate-freehydrothermalprocess

andtheircorrespondingelectrochromiccharacteristicshavebeen

quitelimited.Forexample,Tu’sgroupreportsahydrothermally

grownWO3nanowirearraysfilmrecently[27].Ahighcoloration

efficiencyof102.8cm2/Candfastswitchingresponseof4.2sfor

col-orationand7.6sforbleachingisachievedforthisfilm.Ourgroup

hasalsofabricatednanobrickWO3 filmontransparent

conduc-tivesubstrateusingacrystal-seed-assistedhydrothermalmethod

previously[24].Thefilmshowsagoodcyclicstabilityand

com-parablecolorationefficiency(38.2cm2/C).Althoughconsiderable

achievementshavebeenmade,theelectrochromicpropertiesof

hydrothermallygrownnanostructuredWO3 filmscanbefurther

improvedbyincreasingtheirsurfacearea.Moreover,thecapping

agenteffectsonthemorphologyofthehydrothermallygrownWO3

filmsandtheirresultantelectrochromiccharacteristicshavenot

beentotallyunderstoodyet.

Comparedwithasinglelayerelectrochromicdevice,itiswell

knownthatacomplementarydevicecontainingtwoproper

elec-trochromiclayerscouldfurtherimprovetheperformance,suchas

theopticalmodulation, cyclicstability andcoloration efficiency

[28,29]. Prussian blue (PB, iron (III) [hexacyanoferrate (II)]), a

coordination-compoundedtransitionmetal hexacyanometallate,

isasuitablecomplementaryelectrochromicmaterialtoWO3due

toitsoutstandingelectrochromicperformanceandproper

oper-ationalvoltage range. Although complementary electrochromic

deviceswithimprovedpropertiesbasedonelectrodepositedWO3

andPBfilmshavebeenreported[30],tothebestofour

knowl-edge,littleworkhasbeendoneonapplyingthehydrothermally

grownnanostructuredhydratedtungstenoxidefilmsinsuchkind

ofdevices.

In this work, we make an attempt to grow nanostructured

WO3filmsdirectlyonFTO-coatedglassbyahydrothermalmethod

usingammoniumacetate(CH3COONH4)asthecappingagent.The

cappingeffectsofCH3COONH4onthestructure,morphologyand

electrochromicpropertyoftheresultingnanostructuredhydrated

tungstenoxidefilmsareinvestigated.Moreover,acomplementary

electrochromicdevicecombiningthehydratedtungstenoxidefilm

withPBfilmisfabricatedand,asaresult,increasedoptical

modu-lationandcolorationefficiencyisdemonstrated.

2. Experimental

2.1. Preparationofcrystalseedlayers,precursorand

hydrothermaltreatment

Thedetailedproceduresforpreparingcrystalseedlayerscan

befoundelsewhere[24].Inatypicalexperimentforpreparingthe

precursor,Na2WO4·2H2O(0.0655g)wasdissolvedinto20mLof

de-ionizedwaterandthen4mLofHClwasaddedintothe

solu-tionuntilnomoreprecipitatewasformed.Theabovesuspension

waskeptin ice bathforabout10min,thenthetop liquidpart

wasremovedandde-ionizedwaterwasaddedtoobtaina20mL

suspension.SubsequentlyH2O2(0.2g)wasaddedintotheabove

suspensionunderintenselystirringandheating.Thewhite

precip-itatewasdissolvedandatransparentsolutionwasobtained.After

stirringfor5min,CH3COONH4(0.1g)wasaddedasthecapping

Fig.1.Schematicofthecomplementarydevice.

agent.ThenNaOH(1mol)solutionwasslowlymixedintothis

solu-tionwhilerigorously stirringuntilthepHvalueof thesolution

reached1.5.For thepurposeofcomparison, asolutionwithout

adding cappingagentwas alsoused.Theas-prepared solutions

weretransferredintoautoclavesasprecursorsforhydrothermal

treatments.TheFTOglassescoatedbyWO3seedlayerswereput

intoautoclavesandthehydrothermalprocesswaskeptat180◦C

for18h.

2.2. ElectrodepositionofPBandpreparationofelectrochromic

device

TheelectrodepositionofPBfilmwascarriedoutbyastandard

three-electrodesystem,wherea cleanFTOservedasthe

work-ingelectrode, a platinum sheetasthecounter electrode, and a

40 35 30

No salt

With CH

3

COONH

4

W 4f

5/2

Intensity (a.u.)

Binding Energy (eV)

W 4f

7/2

(b)

60 50 40 30 20 10

With CH

3

COONH

4

(440)

(044)

(400)

(420)

(331)

(113)

(222)

(202)

(220)

(022)

(200)

(002)

(111)

Intensity (a.u.)

2

θ

(deg.)

(020)

Without CH

3

COONH

4

(a)

Fig.2.XRDpatterns(a)and(b)tungsten4fregionXPSspectraoftheas-synthesized thinfilmsgrownwithandwithoutCH3COONH4.

(3)

Fig.3.FESEMimagesof(a)and(b)thenanobrick3WO3·H2OthinfilmgrownwithoutCH3COONH4;and(c)and(d)nanostick/nanoparticlefilmwithCH3COONH4.Insets: cross-sectionalandHRTEMimage.

Ag/AgCl/sat’dKCl solutionas thereference electrode. The

elec-trodepositionbathofPBcontained10mmolK3Fe(CN)6,10mmol

FeCl3 and 0.1mol KCland theelectrodepositionof PBthin film

wascarriedoutbyapplyingaconstant cathodiccurrentdensity

of50␮A/cm2for300s.Thethicknessoftheas-depositedPBfilmis

about450nm(measuredbyaTENCORP-10SurfaceProfiler).Then

theWO3workingelectrodeandPBcounterelectrodewere

sand-wichedtogetherwithhot-meltSurlynspacers.Aliquidelectrolyte

composedof0.2molLiClO4in␥-butyrolactone(␥-BL)was

intro-ducedbetweenthetwoelectrodesbycapillaryaction.Finallythe

cellwassealedwithepoxy,whichisschematicallyshowninFig.1.

2.3. Characterization

ThephasesofthesynthesisproductswereidentifiedbyX-ray

powderdiffraction(XRD,Siemens),usingCuK␣1(=0.15406nm)

radiation. X-ray photoelectron spectroscopy (XPS) data were

obtained on a Kratos AXIS spectrometer with monochromatic

AlK␣(1486.71eV)X-rayradiation.Themorphologiesofthe

as-prepared thin films were observed by field emission scanning

electron microscope (FESEM, JSM6340). High-resolution

trans-mission electron microscopy (HRTEM) image was obtained by

aJEM-2100 microscopeusinganacceleratingvoltageof200kV.

Theopticalabsorbanceandtransmittancespectraweremeasured

usingaUV/Visspectrophotometer(JESCO V670).

Electrochemi-calmeasurements wereperformedbya three-electrodesystem

(VersaSTAT3FPotentiostat/Galvanostat)withLiClO4 (0.2mol)in

␥-BL as the electrolyte, Pt sheet as the counter electrode and

Ag/AgCl/sat’dKClasthereferenceelectrode.

3. Resultsanddiscussion

3.1. Structuresandmorphologiesofas-preparedfilms

Fig.2(a)showstheX-raydiffraction(XRD)patternsofthe

as-preparedthin filmsgrownwithandwithoutCH3COONH4.Both

filmsshowthesamecrystallinestructureandallpeakscanbewell

indexedtotheorthorhombicphaseof3WO3·H2O(JCPDF87-1203)

withthecorrespondinglatticeconstantsofa=7.345,b=12.547and

c=7.737 ˚A.Thesharppeaksindicatethegoodcrystallinequalityof

(4)

156 Z.Jiaoetal./ElectrochimicaActa63 (2012) 153–160 1.5 1.0 0.5 0.0 -0.5 -1.0 -3 -2 -1 0 1 2 2 4 6 8 10 -3 -2 -1 0 1 2 Cur re n t de n si ty (m A/ cm 2) Scan rate 1/2 (V1/2/s1/2)

Current d

e

nsity (mA/cm

2

)

Potential (V vs. Ag/AgCl)

5mV/s-100mV/s

(b)

1 0 -1 -1.0 -0.5 0.0 0.5 1.0

With CH

3

COONH

4

Without CH

3

COONH

4

C

u

rrent density (mA cm

-2

mg

-1

)

Potential (V vs. Ag/AgCl)

(a)

1.0 0.5 0.0 -0.5 -1.0 -1 0 1 2 4 6 8 10 -2 -1 0 1 2 Scan rate 1/2 (V1/2/s1/2)

Current density (mA/cm

2)

(c)

5mV/s-100mV/s

C

u

rrent den

sity (mA/cm

2

)

Potential (V vs. Ag/AgCl)

1.5 1.0 0.5 0.0 -0.5 -1.0 -2 -1 0 1

As prepared

1000th

2000th

C

u

rrent

density (mA/cm

2

)

Potential (V vs. Ag/AgCl)

(d)

400 300 200 100 -5 0 5 10

15

(e)

With CH

3

COONH

4

Without CH

3

COONH

4

Current densit

y

(mA/cm

2

)

Time (s)

Fig.5. (a)Cyclicvoltammograms(CVs)ofthenanostick/nanoparticleandnanobrick3WO3·H2Ofilmsin␥-butyrolactonewith0.2molLiClO4;(b)and(c)CVsofthe nanos-tick/nanoparticleandnanobrickfilmatthescanratesof5,10,25,50and100mV/s,respectively.Insets:thecathodic/anodicpeakcurrentdensityasafunctionofthesquare rootofthescanrates;(d)CVsofthenanostick/nanoparticlefilmafter1st,1000th,and2000thcycles;and(e)chronoamperometry(CA)curveoftheas-synthesizedfilms recordedat±0.5Vfor40s.

theas-fabricatedfilms.TheelectrochromicperformanceofWO3is

closelyrelatedtoitscrystallinity.CrystallineWO3hasabetter

sta-bilitytoendureacidicelectrolytewithoutdegradationforalonger

cyclictimecomparedtoamorphousone,butatthecostofslower

responsetime andsmallercoloration efficiencyarisingfromits

smallerspecificsurfacearea[31].Byincreasingtheporosityand

preciselycontrollingthecrystalsize,crystallineWO3 filmswith

goodstabilityandfastresponsecansimultaneouslybeachieved.

Fig.2(b)showstheX-rayphotoelectronspectroscopy(XPS)dataof

(5)

1000 800 600 400 200 0 20 30 40 50 60

Transmittance (%)

Time (s)

(a)

0.036 0.030 0.024 0.018 0.012 0.4 0.6 0.8 1.0 36.8 cm2C-1

Optical density

Charge density (C/cm

2

)

(b)

1200 800 400 0 20 40 60

Transmittance (%)

Time (s)

(c)

0.05 0.04 0.03 0.02 0.01 0.4 0.8 1.2 1.6 45.5 cm2C-1

Optical density

Charge density (C/cm

2

)

(d)

Fig.6.Insitutransmittanceresponseandcolorationefficiencyat754nmforthenanobrickfilm(aandb)andthenanostick/nanoparticlefilm(candd).

correctedusingavalueof284.5eVfortheC1speakofcarbon.For

bothfilms,twowell-resolvedpeaksatabout35.5and37.6eVin

thespectraareattributedtothespinorbitsplitdoubletpeaksofW

4f7/2andW4f5/2,respectively.Thesetwopeaksarewellseparated

withoutanyshoulders,indicatingthatallWatomsareinthe+6

oxidizationstates.

Fig.3shows themorphologiesoftheas-synthesizedfilms. It

canbeseenthatthefilmgrownwithoutCH3COONH4consistsof

irregularaggregatednanobrickswithsizesrangingfromtensto

hundredsofnanometers(seeFig.3(a)and(b)),whilethinfilmmade

upofstackednanosticksandnanoparticlesisobtainedbyadding

CH3COONH4 asthecappingagent(Fig.3(c)and(d)).The

nanos-tickswithanaveragelengthof∼50nmarehorizontallystacked

together,leading to a coarsesurface. A lot of small

nanoparti-cleswithsizesoftensofnanometersareaccumulatedunderneath

thesesticks.Clearlatticefringesofthehigh-resolution

transmis-sionelectronmicroscopy(HRTEM)imagefromananostick(inset

ofFig.3(d))indicateitssinglecrystallinequality.Theinset

cross-sectionalimageshowsthatthefilmwithathicknessof∼560nm

hasagood adherencetothesubstrate.Accordingtotherecent

report[32],orthorhombic3WO3·H2Oactuallycontainstwotypeof

corner-sharingWO6octahedras.Onetypeisconductedbya

cen-traltungstenatomthatissurroundedbysixoxygenatoms,while

inthesecondtype, twoof theoxygenatomsarereplaced bya

shorterterminalW ObondandlongerW (OH)2 bond,

respec-tively.Finally,the3WO3·H2Olatticeisformedbystackinguplayers

consistingofthesetwostructuralunits.Herein,theCH3COONH4

hasacappingeffectonthestackingofthesetwostructuralunits,

resultingintheformationofnanosticks.Fig.4schematically

illus-tratestheformationprocessofthefilmsgrownwithandwithout

CH3COONH4.

3.2. Electrochemicalandelectrochromicpropertiesofthe

as-prepared3WO3·H2Ofilms

Cyclicvoltammograms(CVs)wereinvestigatedforbothfilms

andshowninFig.5(a).TheseCVswerenormalizedwithrespect

tothegeometricareaandtotheweightof3WO3·H2Ofilmwithin

thatarea.Duringeachscan,thefilmsundergotypicalreversible

colorchangesfrombluetocolorless.Therecordedcurrentisdue

toLi+intercalation/deintercalationandelectrontransferbetween

W6+andW5+accordingtothefollowingreaction:

WO3·0.33H2O(bleach)+xLi++xe−↔LixWO3·0.33H2O(blue).

(1)

Theintegratedcathodic/anodiccurrentequatestotheamountofLi+

intercalation/deintercalation.Itcanbeclearlyseenthatthe

nano-stick/nanoparticlefilmgrownwithCH3COONH4 showsahigher

currentdensityforbothintercalationanddeintercalationprocesses

overthesametimeperiodthanthenanobrickone,indicatingfaster

Li+intercalation/deintercalationkinetics.Thetotalcathodiccharge

for the nanostick/nanoparticle film is about 4.2mCcm−2mg−1,

compared to only about 2.0mCcm−2mg−1 for nanobrick

films.

TheCVsofnanostick/nanoparticleandnanobrickfilmsrecorded

between−1.0and1.2VatvariousscanspeedsareshowninFig.5(b)

and(c),respectively.ItcanbeseenfromFig.5(b)thatwhenthe

scanspeedis5mV/s,therearetwooxidationpeaksthatappearat

about−0.83and−0.56V,andtworeductionpeaksthatappearat

−0.45and−0.85V.Withtheincreasedscan speed,thefirst

oxi-dationpeaksdisappear,whilethesecondpeaksgetbroaderand

(6)

158 Z.Jiaoetal./ElectrochimicaActa63 (2012) 153–160 800 700 600 500 400 0.4 0.8 1.2 1.6

PB+WO

3

(hydrate)

PB

Absorbance (a.u.)

Wavelength (nm)

Fig.7.Opticalabsorptionspectraofacomplementaryelectrochromicdeviceanda singlePBlayerdeviceatthecoloredandbleachedstateunder±0.8V,respectively.

Thereductionpeaksshowasimilartrend.Whenthesecondanodic

peakcurrentdensitiesareplottedagainstthesquarerootofscan

rates,1/2,approximatelyalinearrelationshipisobtained(insetof

Fig.5(b)),whichsignifiesadiffusion-controlledprocess[33].The

effectivediffusioncoefficientDforthediffusingspeciesLi+canbe

estimatedfromthepeakcurrentdensity(jp)dependenceonthe

1000 800 600 400 200 0 0 20 40 60

Transmittance (%)

Time (s)

(a)

0.020 0.016 0.012 0.008 0.4 0.8 1.2 1.6

151.9 cm

2

C

-1

Optical density

Charge density (C/cm

2

)

(b)

Fig.8. (a)Switchingtimecharacteristicsbetweenthecoloredandbleachedstates forthecomplementaryelectrochromicdevicemeasuredat±0.8Vfor30sand(b) opticaldensityvariationwithrespecttothechargedensityrecordedat754nm.

squarerootofthepotentialscanrate(1/2)assumingasimplesolid

statediffusioncontrolledprocess[34]:

ıip ı√=2.69×10 5n3/2ACD (2) D=0.1382×10−10n−3A−2C−2



ıip ı√



2 (3)

wherenisthenumberofelectronstransferredinunitreaction,A

istheeffectivegeometricsurfaceareaofthe3WO3·H2Oelectrode,

andCistheconcentrationofthediffusionspecies(Li+).The

effec-tivediffusioncoefficientsDLi+havebeencalculatedfromEq.(3)

tobe2.19×10−11and1.39×10−11cm2/sfortheintercalationand

deintercalationprocess,respectively,comparabletothereported

values[35].Fig.5(c)showstheCVsofthenanobrickfilmrecorded

atdifferentscanrates,showingasimilarprofilebutsmallercurrent

density.ThecalculateddiffusioncoefficientsDLi+are9.60×10−12

and6.101× 10−12cm2/sfortheintercalationprocessand

deinter-calationprocess,respectively,whicharesmallerthanthoseofthe

nanostick/nanoparticlefilm.Thefasteriondiffusionkineticsofthe

nanostick/nanoparticlefilmarisesfromitsmuchroughersurface,

whichincreasesitssurfaceareaandreducestheionsdiffusionpath

length.Thecyclicstabilityofthenanostick/nanoparticlefilmwas

alsomeasuredforthe1st,1000th,and2000thcycleatroom

tem-peratureandtheresultsareshowninFig.5(d).Thecurrentdensity

increasesslightlywithin2000cycles, withoutaclearchangein

theshapeofCVcurve,indicatingexcellentcyclicstabilityofthe

film,whichissimilartothereportedcrystallineWO3nanoparticles

[12].Chronoamperometry(CA)datawererecordedforbothfilms

withthepotentialbeingsteppedfrom−0.5Vto+0.5Vfor40s,as

showninFig.5(e).Duringeachcycle,the3WO3·H2Ofilmschange

frombleachedstatetocoloredstatereversibly.Forbothfilms,the

peakcurrentdensityofbleachingismuchhigherthanthatof

col-oration, and thecurrent densityduring bleaching decaysfaster

thancoloration.ThischaracteristicistypicalforWO3withsmall

ionintercalation/deintercalation[20].Thehigherbleachingcurrent

arisesfromthegoodconductivityoftungstenbronze(LixWO3),

and therapid currentdecay is due totheconductor (LixWO3

)-to-semiconductor(WO3)transition,whilethecoloringkineticsis

alwaysslower than thebleaching one for WO3 filmsowingto

the higher resistance during WO3 toLixWO3 transition.

More-over,thepeakcurrentdensitiesofcoloration/bleaching(−4.9and

14.1mA/cm2)ofthenanostick/nanoparticlefilmarehigherthan

those(−2.4and7.5mA/cm2)ofthenanobrickfilm.Theresponse

time(definedas70%decreaseofcurrentdensity)forcoloration

(tc)andbleaching(tb)arecalculatedfromcurrent–timetransient

datafromFig.5(e).Thenanostick/nanoparticlefilmshowsfaster

coloration/bleachingresponses(tc∼7.0sandtb∼3.0s)thanthose

(tc∼9.0sandtb∼3.5s)ofthenanobrickfilm,inwellagreement

withtheresultsinFig.5(a–c).Thefastresponsesforbothfilmsare

comparabletothespray-pyrolysisdepositedamorphousWO3film

[36].

The in situ transmittance responses of the

nanos-tick/nanoparticle and nanobrick film for a 90% transmittance

changewere alsoinvestigated at 754nm bya ±0.8V bias (see

Fig. 6(a) and (c)). For thenanostick/nanoparticle film, the

col-orationtimetc isfoundtobe7.9s, andthebleachingtime tb is

4.8s. However,for thenanobrick film,thecoloration time tc is

foundtobe7.3s,andthebleachingtimetbis7.1s.Thebleaching

speedofthenanostick/nanoparticlefilmismuchfasterthanthe

nanobrick film, butthe coloration speed is a little slower.It is

worth tomention that a larger optical modulationof ∼45% of

the nanostick/nanoparticle film is achieved, compared to that

only38%ofthenanobrickfilm.Colorationefficiency(CE)values

ofboth filmswerealsostudiedand shownin Fig.6(b)and (d),

(7)

Fig.9.Photographsofacomplementaryelectrochromicdeviceatthebleachedstate(a)and(b)thecoloredstateunder±0.8V,respectively.

linearregionofthecurve.It canbeseenthat thecalculated CE

ofthenanostick/nanoparticlefilmis45.5cm2/C,largerthanthat

ofthenanobrickfilm(36.8cm2/C).Theimprovedelectrochromic

performanceofthenanostick/nanoparticlefilmisduetoitslarge

surfacearea.

3.3. Opticalandelectrochromicpropertiesofthecomplementary

device

Tofurtherimprovetheopticalcontrast,colorationefficiencyand

switchingstability,thenanostick/nanoparticlefilmisincorporated

inanelectrochromicdevicewithananodicallycoloredPBfilmas

acomplementaryelectrochromiclayer.ThemorphologyandCV

curveoftheas-depositedPBfilmwerealsoinvestigatedandshown

inFigs.S1andS2,respectively(seesupplementaryinformation).

Fig.7showsopticalabsorptionspectraofthecomplementary

elec-trochromicdeviceandasinglePBlayerdeviceatthebleachedand

coloredstateundera±0.8Vbias.ComparedwiththesinglePBlayer

device,thecomplementarydeviceshowsalargeroptical

modu-lationabove410nm,especially inthenearIRregion,indicating

ahighercolorcontrastandlargerheatregulation.Moreover,the

complementarydevicedepictsahigherabsorptioninthenearUV

regionatbothcoloredandbleachedstatesduetotheabsorptionof

3WO3·H2Ofilms.Theaboveresultishighlydesiredinsmart

win-dowapplicationssincemoreheatcanbeprohibitedfromentering

theinteriorbuildings,resultinginareductionofcoolingloads.

Fig.8(a)showstheinsitucoloration/bleachingtransmittance

responseofthecomplementarydevicemeasuredat754nm.The

maximumtransmittancemodulation(T)ofcoloration/bleaching

wasfoundto beabout 54% afterapplying a ±0.8V voltage for

30s,agreeingwellwiththeabsorbancespectrashowninFig.7.

Obvious color changes can be observed during the switching.

Thecolorationandbleachingtimeextractedas90%transmittance

changesarefoundtobe1.3and5.7s,respectively.Theswitching

responsesofthecomplementarydeviceforboththecolorationand

bleachingprocessesare muchfasterthan thosereportedvalues

[30].For this complementaryelectrochromic device,limitations

of switching response are mainly due to 3WO3·H2O electrode.

The fastcoloration/bleaching kineticsmay beattributed tothe

largeactivespecific areaof theroughsurface, which facilitates

theionsintercalation/deintercalationbyreducingtheirdiffusion

lengths. CEofthe complementarycell wasalsoinvestigated at

its peak absorbance (=754nm) and shown in Fig. 8(b). The

calculated CE value is 151.9cm2/C, comparable to that of the

reported WO3||PB complementary device [30]. And the CE of

thecomplementarydeviceisimprovedbyabout234%compared

witha single3WO3·H2O electrochromic layer(CE=45.5cm2/C).

Photographs ofthe complementarydeviceare shown in Fig.9,

depicting a high contrast between the bleached and colored

states, which leads to the obvious transparence changes. The

deviceshowspromisingapplicationsinenergy-savingsmart

win-dows.

4. Conclusions

Insummary,uniformandwell-adhesive3WO3·H2Ofilms

con-sisted of nanosticks/nanoparticleswere synthesizedvia a facile

andtemplate-freehydrothermalmethodbyaddingCH3COONH4as

thecappingagent.Thinfilmscomposedofaggregatednanobricks

wereobtainedwithoutCH3COONH4.Thenanostick/nanoparticle

film depicts faster charge transfer and greater coloration

effi-ciency (45.5cm2/C) than the nanobrick film (36.8cm2/C). A

complementary electrochromic device based on the

nanos-tick/nanoparticle 3WO3·H2O film and PB film was fabricated

anddemonstrateslargeropticalcontrast(54%at754nm),faster

switchingresponse(tb=1.3sandtc=5.7s)andgreatercoloration

efficiency(151.9cm2/C)thanasingle3WO

3·H2Ofilmdevice.The

complementarydeviceholdsgreatpromiseforpotential

applica-tionsinenergy-savingsmartwindows.

Acknowledgments

The authorswould liketo thank thefinancial support from

the Science and Engineering Research Council, Agency for

Sci-ence,TechnologyandResearch(A*STAR)ofSingapore(projectNos.

0921010057and0921510088),SingaporeNRF-RF-2009-09,and

NationalNaturalScienceFoundationofChina(NSFC)(projectNos.

61006037and61076015).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,atdoi:10.1016/j.electacta.2011.12.069.

References

[1]C.G.Granqvist,P.C.Lansaker,N.R.Mlyuka,G.A.Niklasson,E.Avendano,Sol. EnergyMater.Sol.Cells93(2009)2032.

[2]R.J.Mortimer,Chem.Soc.Rev.26(1997)147. [3]C.R.Granqvist,Nat.Mater.5(2006)89. [4]C.M.Lampert,Sol.EnergyMater.11(1984)1.

[5]G.A.Niklasson,C.G.Granqvist,J.Mater.Chem.17(2007)127.

[6] C.G.Granqvist,A.Azens,A.Hjelm,L.Kullman,G.A.Niklasson,D.Ronnow,M.S. Mattsson,M.Veszelei,G.Vaivars,Sol.Energy63(1998)199.

[7]R.J.Mortimer,A.L.Dyer,J.R.Reynolds,Displays27(2006)2.

[8]P.Bonhote,E.Gogniat,F.Campus,L.Walder,M.Gratzel,Displays20(1999)137. [9]D.R.Rosseinsky,R.J.Mortimer,Adv.Mater.13(2001)783.

[10]R.Baetens,B.P.Jelle,A.Gustavsen,Sol.EnergyMater.Sol.Cells94(2010)87. [11]C.G.Granqvist,Sol.EnergyMater.Sol.Cells60(2000)201.

[12]S.H.Lee,R.Deshpande,P.A.Parilla,K.M.Jones,B.To,A.H.Mahan,A.C.Dillon, Adv.Mater.18(2006)763.

[13]H.D.Zheng,J.Z.Ou,M.S.Strano,R.B.Kaner,A.Mitchell,K.Kalantar-Zadeh,Adv. Funct.Mater.21(2011)2175.

[14] J.M.O-RuedadeLeón,D.R.Acosta,U.Pal,L.Casta ˜neda,Electrochim.Acta56 (2011)2599.

(8)

160 Z.Jiaoetal./ElectrochimicaActa63 (2012) 153–160

[16]H.G.Choi,Y.H.Jung,D.K.Kim,J.Am.Ceram.Soc.88(2005)1684. [17]K.Q.Hong,M.H.Xie,H.S.Wu,Nanotechnology17(2006)4830.

[18]D.Z.Guo,K.Yu-Zhang,A.Gloter,G.M.Zhang,Z.Q.Xue,J.Mater.Res.19(2004) 3665.

[19]J.M.Wang,E.Khoo,P.S.Lee,J.Ma,J.Phys.Chem.C112(2008)14306. [20]H.Wang,X.Quan,Y.Zhang,S.Chen,Nanotechnology19(2008)065704. [21]R.A.Batchelor,M.S.Burdis,J.R.Siddle,J.Electrochem.Soc.143(1996)1050. [22] S.H.Baeck,K.S.Choi,T.F.Jaramillo,G.D.Stucky,E.W.McFarland,Adv.Mater.15

(2003)1269.

[23] S.Balaji,Y.Djaoued,A.S.Albert,R.Bruning,N.Beaudoin,J.Robichaud,J.Mater. Chem.21(2011)3940.

[24] Z.H.Jiao,X.W.Sun,J.M.Wang,L.Ke,H.V.Demir,J.Phys.D:Appl.Phys.43(2010) 285501.

[25] J.Zhang,X.L.Wang,X.H.Xia,C.D.Gu,J.P.Tu,Sol.EnergyMater.Sol.Cells95 (2011)2107.

[26] Z.J.Gu,T.Y.Zhai,B.F.Gao,X.H.Sheng,Y.B.Wang,H.B.Fu,Y.Ma,J.N.Yao,J.Phys. Chem.B110(2006)23829.

[27]J.Zhang,J.P.Tu,X.H.Xia,X.L.Wang,C.D.Gu,J.Mater.Chem.21(2011)5492. [28]J.Zhang,J.P.Tu,X.H.Xia,Y.Qiao,Y.Lu,Sol.EnergyMater.Sol.Cells93(2009)

1840.

[29]H.Huang,J.Tian,W.K.Zhang,Y.P.Gan,X.Y.Tao,X.H.Xia,J.P.Tu,Electrochim. Acta56(2011)4281.

[30]A.Kraft,M.Rottmann,Sol.EnergyMater.Sol.Cells93(2009)2088.

[31]M.Deepa,T.K.Saxena,D.P.Singh,K.N.Sood,S.A.Agnihotry,Electrochim.Acta 51(2006)1974.

[32]L.Zhou,J.Zou,M.M.Yu,P.Lu,J.Wei,Y.Q.Qian,Y.H.Wang,C.Z.Yu,Cryst.Growth Des.8(2008)3993.

[33]A.J.Bard,L.R.Faulkner,ElectrochemicalMethods,Fundamentalsand Applica-tions,Wiley,NewYork,2001.

[34]I.Shiyanovskaya,M.Hepel,E.Tewksburry,J.NewMater.Electrochem.Syst.3 (2000)241.

[35]S.R.Bathe,P.S.Patil,SmartMater.Struct.18(2009)025004. [36] S.R.Bathe,P.S.Patil,Sol.EnergyMater.Sol.Cells91(2007)1097.

Şekil

Fig. 1. Schematic of the complementary device.
Fig. 3. FESEM images of (a) and (b) the nanobrick 3WO 3 ·H 2 O thin film grown without CH 3 COONH 4 ; and (c) and (d) nanostick/nanoparticle film with CH 3 COONH 4
Fig. 8. (a) Switching time characteristics between the colored and bleached states for the complementary electrochromic device measured at ±0.8 V for 30 s and (b) optical density variation with respect to the charge density recorded at 754 nm.
Fig. 9. Photographs of a complementary electrochromic device at the bleached state (a) and (b) the colored state under ±0.8 V, respectively.

Referanslar

Benzer Belgeler

Statistics: Age of disease onset and trinucleotide repeat length; progression rate and trinucleotide repeat length were studied statistically by Pearson correlation

Ancak ülkemizde topoloji yalnızca lisans seviyesinde bir ders olarak yer almakta, günümüze kadar olan lisans öncesi (lise, ortaokul ve ilkokul) matematik ve geometri

■雙和吳志雄院長獲頒「98年度李國鼎管理獎章」!

A single-institution study of 7 years of experience was performed to investigate the clinicopathological and therapeutic characteristics of malignant pleural mesothelioma

Keywords: Aspergillus niger Nettle Nutritional enrichment Solid-state fermentation Utrica dioica L.. Nettle (Utrica dioica L.) is widely grown in different parts of the world

Çalışmamızda, testis dokusu için rutinde kullanılan ve kullanılması önerilen dört farklı fiksatif ile stereolojik yöntemler kullanılarak dokunun incelenmesi için

The central topic of this issue of SYNTHESE is the self-ascriptions of mental states of the intentional or propositional sort, such as perceptions, thoughts, desires,

That is, if the discount factor of the long-run player tends to 1 while holding the commitment type’s ex ante probability fixed, then the aforementioned reputation result à la