• Sonuç bulunamadı

Spectroscopic investigation of sulfur-resistant Pt/K2O/ZrO2/TiO2/Al2O3 NSR/LNT catalysts

N/A
N/A
Protected

Academic year: 2021

Share "Spectroscopic investigation of sulfur-resistant Pt/K2O/ZrO2/TiO2/Al2O3 NSR/LNT catalysts"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Catalysis

Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Spectroscopic

investigation

of

sulfur-resistant

Pt/K

2

O/ZrO

2

/TiO

2

/Al

2

O

3

NSR/LNT

catalysts

Z.

Say,

M.

Tohumeken,

E.

Ozensoy

DepartmentofChemistry,BilkentUniversity,06800Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6October2015

Receivedinrevisedform

25November2015

Accepted4December2015

Availableonline18January2016

Keywords: NSR/LNT

DeNOxAl2O3/ZrO2/TiO2

FTIR TPD

a

b

s

t

r

a

c

t

AnalternativeternarysupportoxidematerialanditsK2OandPtfunctionalizedcounterpartsintheform

ofPt/K2O/Al2O3/ZrO2/TiO2withdifferentK2Oloadingsweresynthesized.Structuralandmorphological

propertiesofthecatalystswerecharacterizedviaXRDandBETtechniquesincomparisontoa

conven-tionalPt/20Ba/AlbenchmarkNSR/LNTcatalyst.Comprehensivein-situFTIRandTPDanalysisrevealed

thatincreasingtheK2OloadinginthePt/K2O/AZTsystemleadstoanincreaseinNOxStorageCapacity

(NSC)attheexpenseoftheformationofbulk-likesulfatesrequiringhighertemperatureforcomplete

sulfureliminationwithH2(g).Observeddelicatetrade-offbetweenNSCandsulfurpoisoning

tenden-ciesofthecurrentlyinvestigatedfamilyofAZT-basedNSR/LNTcatalystsimpliesthatPt/5.4K2O/AZTisa

promisingcatalystrevealingcomparableNSCwithinthetemperaturerangeof473–673Ktothatofthe

conventionalPt/20Ba/Albenchmarkcatalyst,whileexhibitingsuperiorsulfurtoleranceandregeneration

characteristics.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

NOx emitted from mobile sources have serious destructive effectsontheatmosphere,globalecosystemandespeciallyonthe humanhealth.AboutonehalfofthetotalNOxemissionsresults frommobilesources[1].Whiletheveryfirstregulationsfordiesel engineemissionswereprimarilyfocusing onparticle emissions, otherhazardouspollutantssuchasCO,SO2,NOxand unburned

hydrocarbonsfrommobilesourcesarecurrentlybeingregulated withincreasingly stringentlimitations. Thisleadstoa constant pressureontheglobalautomotiveindustrytodevelopnoveland innovativeaftertreatmenttechnologiesthatcansatisfythe con-tinuously evolvingenvironmentallegislations and to lowerthe exhaustemissionlevels[2–4].Recently,itwasreportedthatNOx emissionsofsomeofthecurrentlyexistingdiesel-enginepassenger carsequippedwithmodernDeNOxaftertreatmentsystemsonthe highwaywereupto20–35timeshigherthanthatoftheallowed emissionlimits[5].Furthermore,averyrecentstudypublishedby theEuropeanEnvironmentAgency(EEA)[6]reportedthatwithout

∗ Correspondingauthor.

E-mailaddress:ozensoy@fen.bilkent.edu.tr(E.Ozensoy).

anyexception,eachEuropeanUnion(EU)memberstateviolates atleastoneormoreoftheexistingannualemissionlimitations associatedwithNOx,SOx,NH3andnon-methanevolatileorganic

compounds(NMVOC).AmongtheseEUmemberstates,particularly Germany,AustriaandIrelandwerefoundtofailmeetingannual EuropeanNOxemissionstandardsin2014.Thesestrikingexamples clearlycallforthedesignanddevelopmentofmoreefficient,more stableandmoreaffordableheterogeneouscatalyticarchitectures thatcanbeusedinmodernDeNOxaftertreatmenttechnologies.

Forlean-burnengines,apromisingaftertreatmentmethodfor thecatalyticNOxreductionisthesocalledNOxstorage/reduction

(NSR)/LeanNOxTrap(LNT)technology[7,8].AtypicalNSR/LNT

cat-alystiscomprisedofbasicoxides(e.g.BaO,K2O),redoxsites(e.g.

Pt,Pdand/orRh)and ahighsurfaceareasupportmaterial(e.g. -Al2O3)[2,3,9].

The conventional NSR/LNT catalyst, Pt/BaO/␥-Al2O3, exhibits

efficientNOxconversionandstorageperformancewithinthe oper-ationaltemperaturewindowofthedieselemissiontailpipe(i.e. 473–673K)[10–18].However,recentengineapplicationssuchas thefuel-efficientgasoline directinjection(GDI)engines require catalyticaftertreatmentsolutionswhichshouldbeableto oper-ateattemperaturesabove400◦C,wheretheconventionalNSR/LNT catalystscannotfunctioneffectively[19].ToyotaMotorCompany http://dx.doi.org/10.1016/j.cattod.2015.12.013

(2)

reportedthatK2OandBaOaretwoofthemostpromisingNOx

stor-agecomponentstobeusedinNSR/LNTcatalysts[20].Amongthese twodifferenttypesofbasicmetaloxides,theuseofK2Oattracted

particularinterestduetoitssuperiorNOxstoragecapacity(NSC)at elevatedtemperatures[21].OthernoteworthyadvantagesofK2O

domainsareassociatedtotheirstrongerbasicityandthelackof unfavorablesolid-stateinteractionsbetweenK2Oandthe-Al2O3

supportmaterial,unlikethatofBaOwhichmayleadtothe for-mationofundesiredBaAl2O4athightemperatures[22].Luoetal.

investigatedtheeffectofK2Oloading(within2–20wt.%)onthe

NSCofthePt/K2O/␥-Al2O3system.Itwasfoundoutthatthe

cat-alystformulationcontaining10wt.%K2Oresultedinthehighest

NSCvalueswithinawidetemperaturewindowof523–823K[22]. InadditiontothepromisingNSCofK2O-functionalized

mate-rialsin high temperature DeNOx applications, sulfur-poisoning tolerances as well as the sulfur regeneration characteristics of such systems should be also taken into consideration. It is knownthatK2Odomainsdispersedona␥-Al2O3 support

mate-rialarehighlypronetosulfurpoisoning,experiencingrapidand ratherirreversiblecatalyticdeactivation.AclassofnovelAl/Ti/Zr mixedoxides hasemerged in recent years with enhanced sur-faceandstructuralpropertiesassupportforK2O-basedNSR/LNT

catalysts [23–25]. In recent studies, ZrO2/TiO2, TiO2/Al2O3 and

Al2O3/ZrO2/TiO2-supportedNSR/LNTcatalystscanrevealsuperior

sulfurregenerationandNOxrecoveryperformancesascomparedto thatof␥-Al2O3-basedsystems(i.e.Pt/BaO/Al2O3vs.Pt/K2O/Al2O3)

[26,27].Takashietal.reportedthataZrO2:TiO2supportmaterial

withamassratioof70:30(whichalsorevealedthehighestSSA amongtheinvestigatedmaterialstherein)exhibitedthebest per-formanceintermsofsulfurresistance,thermaldurabilityandNOx abatement[28].TheirstudieswhichalsoincludedPt/Rh/Ba/K/AZT catalyst with nano-composite ternary oxide Al2O3/ZrO2/TiO2

-supportshowedexcellentNOxstoragecapacity(NSC)comparedto thatof␥-Al2O3/ZrO2/TiO2-support,where␥-Al2O3wasphysically

mixedwithZrO2/TiO2[29,30].Inaddition,Zouetal.[27]performed

adetailedanalysisontheeffectofAl2O3dopingintotheZrO2/TiO2

matrix,suggestingthattheAl:(Ti+Zr)atomicratioof3:1exhibited thehighestNSCforfreshandsulfur-regeneratedcatalyst.Inamore recentwork,Zouetal.studiedtheeffectofKloadingontheNSCand sulfurregenerationperformanceofPt/K/Al2O3/ZrO2/TiO2catalyst

underrealisticflowconditions[31].

However, these aforementioned comprehensive studies includedalimitednumberofspectroscopicinvestigationsonthe interactionsbetweenSOxspeciesandthecorrespondingcatalyst surfaces.Thus, inthecurrent work,we focusonthemolecular levelinvestigationofthefundamentalinteractionsthattakeplace betweenSOxspeciesandK-basednovelNSR/LNTcatalystsurfaces in a qualitative and a semi-quantitative manner. Along these lines, we investigate the SOx adsorption/uptakeas well as the

SOxreduction/regeneration/releasepropertiesofAl2O3/ZrO2/TiO2

(AZT)supportedPt/K/AZTcatalystsincomparisontoabenchmark NSR/LNTcatalyst (i.e.Pt/BaO/Al2O3)byutilizing in-situ

spectro-scopictechniques.GenerationofS-containingsurfacefunctional groups,theirthermalevolution,reductionandreleasesafunction oftemperatureandK2Oloadingaresystematicallymonitoredby

meansofin-situFourierTransformInfraredSpectroscopy(in-situ FTIR)andTemperatureProgrammedDesorption(TPD).Moreover, structuralandmorphologicalpropertiesofthesynthesized mate-rialsarealsoanalyzedviaX-rayDiffraction(XRD)andBrunauer, Emmettand Teller(BET)surface areaanalysis techniques. Cur-rent resultsprovide valuable molecular level insight regarding the interaction of SOx species withK-based NSR/LNT catalysts supportedonnovelAZT mixed oxidesurfaces and thedelicate trade-offbetweentheNSCandsulfurpoisoningphenomena.

2. Experimental

2.1. Materialsynthesis

2.1.1. SynthesisofPt/Al2O3/ZrO2/TiO2

Al2O3/ZrO2/TiO2 (AZT) supportmaterial was synthesized as

describedinoneofourformerpublicationswheretherelative com-positionoftheternaryoxidesystem(i.e.Al2O3/ZrO2/TiO2)bymass

was50:35:15[25].1wt. %platinum-incorporatedternary oxide materials were synthesized by incipient wetness impregnation methodusingasolutionofPt(NH3)2(NO2)2 (Aldrich,

diammine-dinitritoplatinum(II),3.4wt.%solutionindiluteNH3(aq)).Priorto

thePtaddition,Al2O3/ZrO2/TiO2wasinitiallycalcinedinairat973K

for150mininordertoremovetheorganicfunctionalitiesinthe precursor.AfterthePt-incorporation,Pt/AZTmaterialwas subse-quentlycalcinedin airat973Kfor 150minin ordertoremove nitrite/nitrateoriginatingfromthePtprecursorandtostructurally stabilizethecatalystsurface.

2.1.2. SynthesisofPt/K2O/Al2O3/ZrO2/TiO2

K2O-based catalysts were also prepared via wetness

impregnation. Pt/K2O/Al2O3/ZrO2/TiO2 catalysts with 2.7, 5.4

and 10.0wt. % K2O loading (i.e. Pt/2.7K2O/Al2O3/ZrO2/TiO2,

Pt/5.4K2O/Al2O3/ZrO2/TiO2 and Pt/10K2O/Al2O3/ZrO2/TiO2;

respectively)werepreparedviaimpregnationofAl2O3/ZrO2/TiO2

support(initially calcined at 973K for 150min) withan aque-ous solution of potassium nitrate (KNO3·6H2O, >99.0 %, Fluka,

France)followedbycalcinationat873Kfor150mininorderto thermallyremovethenitratecontentpresent intheprecursors. Finally, K2O/Al2O3/ZrO2/TiO2 structure was impregnated with

thePt(NH3)2(NO2)2 precursorandcalcined at973Kfor150min

under ambient conditions in order to attain 1wt. % nominal preciousmetalloading.Throughoutthecurrenttext,synthesized Pt/K2O/Al2O3/ZrO2/TiO2 catalysts with 2.7, 5.4 and 10.0wt. %

K2Oand 1wt.%PtloadingswillbeabbreviatedasPt/2.7K/AZT,

Pt/5.4K/AZTandPt/10K/AZT,respectively.

2.1.3. SynthesisofPt/BaO/-Al2O3

For the synthesis of the Pt/20BaO/Al benchmark catalyst, ␥-Al2O3supportmaterial(SASOLPuralox,210m2/g)was

impreg-natedwithanaqueoussolutionofbariumnitrate(Ba(NO3)2,ACS

Reagent,≥99%,Riedel-deHäen,Germany) whichwasfollowed bycalcination at873Kin air for 150min. Finally,20BaO/Al2O3

was impregnated with the Pt(NH3)2(NO2)2 precursor (Aldrich,

diamminedinitritoplatinum(II),3.4wt.%solutionindiluteNH3(aq))

toobtain1wt.%nominalpreciousmetalloading,followedby cal-cinationat973Kfor150min.Thiscatalystwillbeabbreviatedas Pt/20Ba/Althroughoutthecurrenttext.

2.2. Experimentalsetup

Comprehensivedescription ofthecustom-made batch-mode in-situ FTIR and TPD spectroscopic setup used in the current measurementscanbefoundelsewhere[10,14,25,32].Briefly,an FTIR spectrometer (Bruker Tensor 27) and a quadruple mass spectrometer(QMS,StanfordResearch Systems,RGA200)were simultaneouslyconnectedtoabatch-typespectroscopicreactor. FTIRexperimentswereperformedintransmissionmode.TPD pro-fileswereobtainedundervacuumbyusingacomputer-controlled lineartemperaturerampof12K/minwithamaximumsample tem-peratureof1173K.

(3)

2.3. Experimentalprocedures

2.3.1. MonitoringSOxadsorptionviain-situFTIR

Sulfuradsorption/poisoningcharacteristicsofeachmaterialwas investigatedbyexposingthecatalystsurfacestoa2.0TorrSO2+O2

gasmixture (SO2:O2=1:10, v/v) at 323K (SO2 purity>99%, Air

Products;O2purity>99.999%,LindeGmbH).Afterthe

introduc-tionofSOxmixtureat323K,sampleswereannealedto373,473, 573and673Kfor5mininthepresenceoftheSOxmixture.FTIR spectraofthesesulfatedsurfaceswereacquiredaftercoolingto 323Kinthepresenceofthegasmixtureandsubsequentevacuation to<10−3Torr. It shouldbenoted that theeffective concentra-tionofSO2usedinthecurrentpoisoningexperimentscorresponds

toca.263ppm (inabalancecarriergasunderflow conditions), whichtranslatesintoextremelyseverepoisoningconditions con-sideringthetypicalsulfurcontent(15ppm) ofUltraLowSulfur Diesel(ULSD)fuel.Thus,thecurrentpoisoningexperimentscanbe assessedasacceleratedandextremesulfurpoisoningexperiments, wherethenovelK-AZTbasedcatalystswereexposedtoparticularly challengingconditions,wheretheycandemonstratetheirultimate sulfur-regenerationcapabilities.

2.3.2. MonitoringSOxdesorptionviain-situFTIR

PriortoSOx desorptionexperiments,materialsweresulfated asdescribed aboveby collectinga series ofin-situFTIR spectra inthepresenceoftheSOxmixtureasafunctionoftemperature until673K.Afterthesaturationofthesurfaceswithsulfurat673K, thereactorwasevacuatedtoapressureof<10−2Torr,followedby theintroductionof15.0TorrofH2(g)(H2purity>99.999%,Linde

GmbH) at323K.Next, poisonedcatalystswere annealedunder hydrogenatmosphereat473,673,773,873and973Kfor5min. In-situFTIRspectrawereobtainedaftereachH2exposureandby

coolingthesampleto323KinthepresenceofH2.

2.3.3. SOxdesorptionviaTPD

BeforetheSOx-TPDexperiments,materialsurfaceswere ini-tiallyexposedtoa2.0TorrSO2+O2 gasmixture(SO2:O2=1:10)

at673Kfor30min.ThentheIRspectroscopicreactorwas evacu-atedtoapressurelowerthan10−3Torrfollowedbyheatingunder vacuumto1173Kwithalinearheatingrateof12K/min.IntheTPD experiments,m/z=32(correspondingtoO2(g)desorptionandS(g)

formationduetotheimpactionization-inducedfragmentationof desorbedSO2(g)speciesinQMS)andm/z=64(correspondingto

SO2(g)desorption)channelsweremonitoredviaQMS.

3. Resultsanddiscussion

3.1. Materialcharacterization 3.1.1. X-raydiffractionanalysis(XRD)

Fig. 1 illustrates the XRD patterns of Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZT,Pt/10K/AZTandPt/20Ba/Al.Apartfromthepresence ofstructurallywell-orderedmetallicplatinum(JCPDS001-1190), Pt/AZTandPt/K/AZTcatalystsgiveninFig.1exhibithighly amor-phouscharacteristics.On theotherhand,materialwith10.0wt. % K2O (i.e. Pt/10.0K/AZT) reveals additional poorly discernible

diffractionsignalsat2=30.48◦,50.50◦,60.91◦correspondingto tetragonal ZrO2 (JCPDS 80-2155) together with some

suppres-sion of Pt diffraction features. XRD analysis of the benchmark Pt/20Ba/AlNSR/LNT catalyst reveals␥-Al2O3 (JCPDS 001-1303),

BaAl2O4(JCPDS017-0306)andmetallicPt(JCPDS001-1190)

fea-tures.OnthePt/20Ba/Alcatalyst,BaOdomainsinteractwiththe ␥-Al2O3supportatelevatedtemperaturesyieldingtheformation

ofundesiredBaAl2O4phaseasaresultofthermalaging[2,3,33].

10 20 30 40 50 60 70 80 Pt/AZT Pt/20Ba/Al Pt/2.7K/AZT Pt/5.4K/AZT Pt/10K/AZT XR D I n te n sit y ( ar b . u .) 2θ(degree)

t-ZrO2 Pt γ-Al2O3 BaAl2O4

Fig.1.XRDpatternscorrespondingtoPt/AZT,Pt/2.7K/AZT,Pt/5.4K/AZT,Pt/10K/AZT

andPt/20Ba/Almaterialsuponcalcinationat973K.

Fig.2.BETspecificsurfacearea(SSA)valuesoftheinvestigatedmaterials.

3.1.2. BETspecificsurfacearea(SSA)measurements

Fig.2illustratesSSAvaluesforPt/AZT,Pt/2.7K/AZT,Pt/5.4K/AZT, Pt/10K/AZTandPt/20Ba/Al.SSAvaluesforPt/AZTisslightlyhigher than2.7wt.%K2O-modifiedcounterpart(i.e.Pt/2.7K/AZT).

How-ever,increaseintheK2Oloadingfrom2.7wt.%to5.4and10.0wt.

%monotonicallydecreasesSSAvaluesform177m2/gto155and

125m2/g;respectively.ItshouldbenotedthattheSSAvalueofthe

catalystwiththehighestK2Oloadingwascomparabletothatofthe

benchmarkPt/20Ba/Alcatalyst(134m2/g),whileSSAvaluesofall

oftheothercatalystswererelativelyhigher.

3.2. SOxUptake/adsorptionviain-situFTIRspectroscopy

Fig.3representstemperature-dependentadsorbedSOxspecies on Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZT and Pt/10K/AZT material surfaces upon exposure to 2.0Torr of SO2+O2 gas mixture

(SO2:O2=1:10).Whiletheblack-coloredspectraineachpanel

cor-respondtothesurfaceSOxspeciesgeneratedwithinatemperature rangeof323–573K,thetopmostredspectracorrespondtosulfur poisoningat673K.

(4)

1600

1400

1200

100

0

1600

1400

1200

1000

1600

1400

1200

100

0

1600 1400 1200 1000

Wavenumber (cm

-1

)

A

b

so

rb

ance

(

ar

b

.

u)

0.

5

0.

5

(b)

(c)

Pt/2.7K/AZT

Pt/5.4K/AZT

673K

673K

323K

323K

1306

1

178

1019

1048

1

105

1281

1

179

1005

1046

1

106

1027

1306

1391

975

(a)

Pt/AZT

673K

0.

5

Ab

so

rb

an

ce

(a

rb

. u

)

323K

Pt/10

K/AZT

Wavenumber (cm

-1

)

(d)

0.

5

1238

1

175

1

102

1051

673K

323K

Fig.3. FTIRspectrademonstratingtheSOxuptake/adsorptionpropertiesof(a)Pt/AZT,(b)Pt/2.7K/AZT(c)Pt/5.4K/AZTand(d)Pt/10K/AZTsurfaces.Blacksetofspectra

ineachpanelwereacquiredafterSOxexposure(2.0Torr,SO2:O2=1:10)at323K,followedbyannealingat373,473and573KintheSOxgasmixturefor15minand

subsequentevacuation.RedspectraineachpanelwererecordedafterSOxexposureat673Kandsubsequentevacuation.Allspectrawererecordedat323Kinvacuum.(For

theinterpretationofthereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

Kimetal.reportedthatanincreaseinK2Oloadingfrom2wt.

%to 30wt. % ledto a boost in NSC of Pt/K2O/Al2O3 materials

within600–800K[34].Aswillbedemonstratedlatter,although suchextremelyhighK2Oloadingscouldbebeneficialtoenhance

NSCintheabsenceofSOx,theymayalsoleadtoirreversiblesulfur poisoninginthepresenceofSOx.Therefore,inthecurrentstudy, welimitedtheK2OloadingoftheAZT-basedNSR/LNTmaterialsto

10wt.%.

Fig.3ashowsthatSOxadsorptiononPt/AZTatrelativelylower temperatures(i.e.323and373K)leadstotwomain vibrational featureslocatedat1027and975cm−1whichcanbeassignedto sulfate(SO42−)andsulfite(SO32−)functionalgroups,respectively

[35–39].Absorbanceintensitiesofthesetwoparticularvibrational frequenciesarecomparableatlowtemperatures,whilethesulfate featurestartstodominatethesulfitefeatureat higher temper-atures.Thermally-triggeredcatalyticoxidation of sulfitespecies tosulfatesonthePt/AZTsurfacecanalsobefollowedinFig.3a

bymonitoringthegrowthoftheantisymmetricstretchingmode ofsurfacesulfategroupslocatedat1391and1306cm−1 [14,40]. Asillustrated inFig. 3b–d,additionof basic K2Odomains onto

AZTternaryoxidesystemresultsinalterationofthespectralline shapes.Pt/2.7K/AZT(Fig.3b)presentsfivemajorvibrational fea-tureslocatedat1306,1178,1105,1048and1019cm−1.WhileIR stretchingsat1306,1105,1048and1019cm−1canbeattributedto thesurfacesulfate(SO42−)groupsonK2Oand/orontheAZT

sup-port,vibrationalfeaturelocatedat1178cm−1canbeattributedto bulk-likesulfategroupsonK2O[41,42].Thislatterfeaturebecomes

morediscerniblewithanincreaseintheK2Oloading(i.e.5.4wt.%

and10wt.%)evidentbytheincreasingrelativeabsorbance inten-sityof the1178cm−1 signalinFig.3candd.SOxadsorptionon Pt/5.4K/AZTandPt/10K/AZTmaterialsat673Kleadstovibrational featuresat1281and1238cm−1alongwiththeabsenceofany sig-nificantvibrationalbandslocatedatca.>1300cm−1 (Fig.3cand d).Thevibrationalsignalsat1281and1238cm−1canbeassigned

(5)

1600

140

0

120

0

100

0

1600

140

0

120

0

100

0

1600

140

0

120

0

100

0

Wavenu

mber (cm

-1

)

A

b

so

rb

ance

(

ar

b

.

u)

673K

473K

323K

773K

1306

1

178

1019

1048

673K

473K

323K

773K

1275

1

178

10

11

1049

(a)

(c)

Pt/2.7K/AZT

Pt/5.4K/AZT

0.

5

0.

5

1240

1240

1027

1306

1391

673K

473K

323K

773K

(a)

Pt/AZT

0.

5

Ab

so

rb

an

ce

(a

rb

. u

)

1600

140

0

120

0

100

0

Pt/10

K/AZT

673K

473K

323K

773K

873K

Wavenumber (cm

-1

)

1238

1

175

1

102

1051

Fig.4. FTIRspectraassociatedwithSOxreductionandregenerationof(a)Pt/AZT,(b)Pt/2.7K/AZT(c)Pt/5.4K/AZTand(d)Pt/10K/AZTmaterialsviaH2(g).Catalystswere

initiallysulfated(2.0Torr,SO2:O2=1:10for15minat673K)followedbyevacuationandsubsequentexposuretoH2(g)(15.0Torr)at323,473,673,773,873and973Kfor

5min.Allspectrawererecordedat323K.

topredominantlysulfatesonK2Odomains[14,41–43].Itcanbe

arguedthatwiththeincreasingK2Oloading,anincreasinglylarger

portionof the AZT surface is covered by K2O islands/domains,

decreasingtheextentofexposed/uncoveredAZTsurface.Itisalso likelythattheincreaseintheK2Oloadingalsoresultsinthegrowth

oftheK2Oparticlesizeandformationof3Dagglomerates,enabling

thestorageofSOxintheformofbulk-likesulfatesinthesub-surface ofthese3Dnanoparticles.Thisargumentisalsoingoodagreement withthemeasuredSSAvaluespresentedinFig.2suggestingthat theincreaseintheK2Oloadinginthecatalystformulationleads

toamonotonicdecreaseintheSSAasexpectedbysinteringofthe K2Odomainsandparticlesizegrowth.

3.3. SulfurregenerationwithH2(g)viain-situFTIRspectroscopy

Asmentionedabove,SOxreduction/regenerationperformance hasasignificantinfluenceonthecatalystlifetimeandNOxstorage

capacity.Therefore, SOx reductioncharacteristicsofsynthesized materialswerealsostudiedasafunctionoftemperaturebymeans of in-situ FTIR spectroscopy. Fig. 4 illustrates the evolution of theS-containingsurfacefunctionalgroupsonPt/AZT,Pt/2.7K/AZT, Pt/5.4K/AZTandPt/10K/AZTcatalystsurfacesasafunctionof tem-peraturewithin323–773Kinthepresenceofanexternalreducing agent,H2(g).

Inthesesetofexperiments,catalystswereinitiallysaturated witha2.0TorrofSO2+O2gasmixture(SO2:O2=1:10)at673Kfor

5minandthencooledto323Kfollowedbytheevacuationofthe spectroscopicreactor,introductionof15.0TorrH2(g)at323Kand

annealinginH2(g)atthegiventemperatureswithin323–773K.

This particularly chosen initialsulfation/poisoning temperature (i.e.673K)isnot onlyrelevant torealisticNSR/LNT operational temperatures,but isalsohighenoughtoactivateSO2 oxidation

tosulfitesandsulfatesinacomprehensivemanner.Intheseries ofexperimentsgivenin Fig.4,spectral lineshapesdo not

(6)

typi-300 400 500 600 700 800 900 1000

O2 SO2

300 40

0 50

0 60

0 70

0 80

0 90

0100

0

O2 SO2

300 40

0 50

0 60

0 70

0 80

0 90

0100

0

O2 SO2

Pt/2.7K/AZT

Pt/5.4K/AZT

Q

M

S In

te

n

si

ty

(a

rb

.

u.

)

(a)

Pt/AZT

1.

5E

-6

(b)

(c)

1.

5E

-6

Pt/10K/AZT

1.

5E

-6

1.

5E

-6

(d)

Q

M

S In

te

n

si

ty

(a

rb.

u

.)

Temperature (K)

Temperature (K)

820

920

910

975

820

810

880

920

800

300 40

0 50

0 60

0 70

0 80

0 90

0100

0

O2 SO2

Fig.5. TPDprofilesfor(a)Pt/AZT,(b)Pt/2.7K/AZT,(c)Pt/5.4K/AZTand(d)Pt/10K/AZTcatalystsafter2.0TorrSOx(2.0TorrSO2+O2,SO2:O2=1:10)adsorptionat673Kfor

30minandsubsequentevacuation.

callychangeinanoteworthymanneratreductiontemperatures ≤473K.However,increasingthereductiontemperatureto673K (grayspectrainFig.4a–c)leadstonoticeablealterationsintheFTIR spectra,wherebulkandsurfacesulfate/sulfitespeciessignificantly attenuateforPt/AZT,Pt/2.7K/AZTandPt/5.4K/AZT.Increasingthe temperatureto773KinthepresenceofH2 leadstothealmost

complete elimination of the SOx-related vibrational signatures onPt/AZT, Pt/2.7K/AZTandPt/5.4K/AZTsurfaces(redspectrain

Fig.4a–c). It canbe seenin Supporting information Fig.1 that whenPt/20Ba/AlbenchmarkNSR/LNT catalystis exposed toan identicalsetofsulfationandsubsequentreductiontreatments,a significantlygreaterportionofsulfate/sulfitespeciescontinueto existonthePt/20Ba/Alcatalystevenat773Kinthepresenceof 15.0Torr H2(g).This comparativeanalysis clearly suggests that

Pt/AZT,Pt/2.7K/AZTandPt/5.4K/AZTcatalystsexhibit asuperior sulfurregenerationperformancethanthatofthePt/20Ba/Al

cata-lyst,asthisformersetofmaterialscanbefullyde-sulfatedat773K inthepresenceofH2.

However, AZT-based catalystswith thehighest K2O loading

usedinthecurrentstudy(i.e.Pt/10K/AZT)notonlyshowedunique sulfur uptake characteristics as presented in Fig. 3d which is dominated by bulk-like sulfates, but also revealed a fairly dif-ferent SOx-reductionprofilein thepresence of H2 (Fig. 4d).As

can be seen in Fig. 4, at relatively low temperatures (i.e.T ≤ 673K), a significantportion of the SOx species can already be eliminated from Pt/AZT, Pt/2.7K/AZT and Pt/5.4K/AZT surfaces. However,atT≤673K,almostalloftheS-relatedsurfacefunctional groupsremainintactonPt/10K/AZT.Evenatareduction temper-atureof773K,althoughPt/AZT,Pt/2.7K/AZTsurfacescanbefully regenerated(Fig.4a–c),Pt/10K/AZTsurfacestillremainspartially blocked/poisonedbysulfur-containingfunctionalgroupsand com-pletelyeliminatedatonlyat≥873K(Fig.4d).

(7)

3.4. SulfurregenerationundervacuumviaTPDanalysis

TPDexperimentswerealsocarriedoutinvacuuminorderto investigatethethermalregenerationabilityofthesynthesized cat-alystsaftersulfurpoisoningintheabsenceofareducingagent,as wellastocomparetherelativeadsorptionstrengthsofSOxspecies

residingonthepoisoned catalystsurfaces.Prior toTPD experi-ments,eachcatalystwasexposedto2.0TorrSO2+O2gasmixture

(SO2:O2=1:10)at673Kfor30min.

Fig. 5 shows the TPD spectracorresponding to the thermal decomposition of sulfates and sulfites on Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZTandPt/10K/AZTcatalystsurfaces.IntheseTPD exper-iments,onlyO2 and SO2 desorptionchannels(correspondingto

masstochargeratiosofm/z=32and64;respectively)revealed sig-nificantsignalsandotherSOxorH2Sspecieswerenotdetectable.As

inthecaseoftheBaO-basedconventionalNSR/LNTcatalyst (Sup-portinginformationFig.2),SOx-relatedspeciesadsorbedonPt/AZT anditsK2O-incorporatedcounterpartsrevealhighthermal

stabil-itywhichisevidentbytheappearanceofSOxdesorptionsignalsat T>700K.AnalysisofthegeneralTPDlineshapesgiveninFig.5a–c suggeststhatatleasttwodifferentSOxdesorptionsignalsexistfor Pt/AZT,Pt/2.7K/AZTandPt/5.4K/AZTcatalystsatT<1050K, reveal-ingdesorptionmaximalocatedatca.800–820Kandat900–975K. Furthermore,SO2desorptiononthesesurfaceswithin700–1050K

isaccompaniedbyO2 desorption,suggestingthat sulfate/sulfite

decompositionoccursintheformofsimultaneousSO2+O2release.

It should benoted that thecontribution of theSO2 gastothe

m/z=32 signalduetoelectron-impactinducedfragmentationof SO2intheQMSionizerchamberislessthan10%,suggestingthat

m/z=32signalcanbealmostexclusivelyattributedtotheevolution ofO2(g)fromthecatalystsurfaces.

ItisvisibleinFig.5a–cthattheTPDdesorptionmaximatendto shifttowardshighertemperatureswithincreasingK2Oloadingin

thecatalystformulation.Itcanalsobenoticedthatwith increas-ingK2Oloadingto5.4wt.%(seeFig.5c),relativeintensityofthe

820KdesorptionfeaturewhichcanbemostlyassociatedwithSOx speciesonAZTsurfaceissuppressed,alongwiththegenerationof ahigh-temperaturedesorptionshoulderat975K.Thisisinperfect agreementwiththein-situFTIRresultspresentedinFig.3 suggest-ingthatwithincreasingK2Osurfacecoverage,extentofexposed

(uncovered)AZTsurfacedecreasesalongwithanincreaseinthe K2Oparticlesize,facilitatingtheformationofbulk-likesulfatesthat

arealsothermallymorestablethanthatofthesulfatesonAZT. ItisalsoimportanttonotethattheSOxdesorptionisnot com-pleteinFig.5b–devenat1050K(i.e.thehighestexperimentally attainabletemperature inthecurrent TPDsetup)as evidentby thepresenceof adesorptiontailatT=1050Kwhichis presum-ablyextendingwell-beyondthistemperature(assupportedbythe in-situFTIRresultsthatwillbeprovided later inthetext).This observationimpliesthatwhilesurfacesulfates/sulfitespresenton AZTsupportandK2Odomainsfullydecomposeattemperatures

below920K,bulk-like potassium sulfate species requirehigher desorptiontemperaturesforcompletethermaldecompositionand desorption.Inotherwords,presenceofbasicK2Odomainsyields

strongbindingsitesforSO2,leadingtotheformationofthermally

stablesurfaceandbulk-likeSOxspecies.

On theotherhand,a furtherincrease in theK2Oloadingto

10wt.%illustratesratherdifferentSOxdesorptioncharacteristics (Fig.5d).ItisevidentthattheSOxdesorptionfeaturesatT<1050K are suppressedto a great extent, leading toa relatively minor desorptionfeaturelocatedat910Kwithashoulderatca.810K. ConsideringthesignificantSOxuptakeofthePt/10K/AZTcatalyst surfacedemonstratedbythein-situFTIRdatagiveninFig.3d,itis clearthatmostofthesulfate/sulfitespeciesonPt/10K/AZTremain intactevenaftervacuumannealingupto1050K.Thisisalso quan-titativelypresentedinFig.6,whichpresentstheintegratedSO2TPD

Fig.6.AnalysisofrelativeSOxreleasefrominvestigatedcatalystscalculatedvia

integratedTPDsignalsgiveninFig.5.

desorptionsignalsfortheinvestigatedAZT-basedcatalystswithin 323–1050K.Fig.6illustratesthattheintegratedSOxdesorption signalofPt/AZTisroughlytwicegreaterthanthatofPt/2.7K/AZT and Pt/5.4K/AZTand alsoaboutfourtimes greaterthan thatof Pt/10K/AZT.

Figs.3,5and6,suggestthatafterthesulfationoftheAZT-based catalystsat673Kandasubsequentvacuumannealingupto1050K duringtheTPDexperiments,asignificantfractionofthesulfateand sulfitespeciesremainintactontheK-containingsamplesurfaces. Thus,itiscrucialtoinvestigatetheresidualSOxspeciesremaining ontheK-containingAZTsystemsaftertheTPDruns.Fig.7shows suchin-situFTIRexperimentscorrespondingtoallofthe investi-gatedsulfurpoisonedAZT-basedcatalystsbefore(blackspectra) andafter(redspectra)TPDexperiments.Fig.7aclearlyindicates thatintheabsenceofK2O,sulfur-poisonedPt/AZTcatalystcanbe

almostfullyregeneratedviavacuumannealingupto1050K dur-ingtheTPDexperiments.Ontheotherhand,Pt/2.7K/AZTcatalyst which releasesabout%50lesser amountof SOx speciesduring TPD(Fig.6),stillrevealsaminor,yetreadilydetectablequantityof SOx(Fig.7b).Ontheotherhand,Pt/5.4K/AZTcatalystwhichhasa comparableintegratedSOxdesorptionsignaltothatofPt/2.7K/AZT (Fig.6),revealsastrongerresidualSOxsignalintheFTIRspectrum obtainedaftertheTPDrungiveninFig.7c.Thisobservationisin linewiththefactthat Pt/5.4K/AZTsurfacestores asignificantly greateramountofSOxspecies(whicharealsothermallymore sta-ble)as compared tothatof Pt/2.7K/AZT.Finally, residualsulfur analysisofthePt/10K/AZTsurface(Fig.7d)indicatesthatalmost alloftheSOxspeciesgeneratedduringinitialpoisoningprocess remainintactaftertheTPDrunandvacuumannealingat1050K. Thus,itisapparentthattheminoramountofSOxreleaseduringthe TPDexperimentforPt/10K/AZT(Fig.6)correspondstoatiny frac-tionoftheoverallsulfurthatisstoredonthissurface.Thislatter resulthassomeresemblancetotheTPDdatacorrespondingtothat ofthePt/20Ba/AlbenchmarkcatalystgiveninSupporting informa-tionFigs.2and3andalsoinFig.6whichalsorevealanincomplete thermalregenerationuponvacuumannealingupto1050Kduring theTPDrun.

WealsoperformedacomprehensiveinvestigationoftheNOx

storage,releaseandreductioncharacteristicsofPt/K/AZTsystems viain-situFTIR,TPDaswellasquantitativeflow-reactor experi-ments[44].Adetailedaccountoftheseadditionalexperimentswill

(8)

1450

125

0

105

0

1450

125

0

105

0

1450

125

0

105

0

Wavenu

mber (cm

-1

)

A

b

sorb

an

ce

(a

rb

.

u)

0.

5

0.

5

(b)

(c)

Pt/2.7K/AZT

Pt/5.4K/AZT

1308

1

178

1019

1052

1238

1277

1

175

1049

1012

1225

111

5

A

b

sorb

an

ce

(a

rb

.

u)

(a)

1306

1391

Pt/AZT

1027

1450

125

0

105

0

Pt/10

K/AZT

Wavenumber (cm

-1

)

0.

5

0.

5

1238

1

181

1

147

11

15

1051

(d)

Fig.7.FTIRspectracorrespondingtoSOxcontentof(a)Pt/AZT,(b)Pt/2.7K/AZT,(c)Pt/5.4K/AZTand(d)Pt/10K/AZTcatalystsbefore(black)andafter(red)SOx-TPDruns.(For

interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

bediscussedthoroughlyinaforthcomingreport.Nevertheless,itis instructivetopresentrelativeintegratedTPDNOxdesorption sig-nalsobtainedaftersaturationofthefreshlypreparedAZT-based catalystswithNO2(5.0TorrNO2at323Kfor10min)intheabsence

ofsulfurascomparedtothatofthePt/20Ba/Albenchmark cata-lyst(Fig.8).AscanbeseeninFig.8,relativeNOxstorageamounts oftheAZT-basedcatalystsincreasemonotonicallywithincreasing K2Oloadinguntil5.4wt.%K2O,afterwhichitconvergestoavalue

thatiscomparabletothatofthePt/20Ba/Albenchmarkcatalyst. ItisworthmentioningthatNSCofthesynthesizedmaterialswere investigatedinaflow-modetubularreactorwheretheinletgasfeed wascomposedof500ppmNO,v.%5O2,v.%5CO2andv.%5H2O

balancedwithAr(g),revealingsimilarNSCvaluesforPt/5.4K/AZT (0.165mmol/gcat)andconventionalPt/20Ba/Al(0.171mmol/gcat)

at573K[44].

Acombinedanalysisofthestructuralcharacterizationresults aswellas thespectroscopicprobe moleculeadsorption experi-mentsgiveninthecurrentstudyallowsustoshedlightonsulfur poisoning,regeneration and NOxstorage characteristicsof AZT-basedNSR/LNTcatalystsfunctionalizedwithK2O.Intheabsence

oftheK2O,Pt/AZTsystemrevealshighSSA(191m2/g)and

rela-tivelyweaklyboundsulfates/sulfiteswhichcanreadilyberemoved fromthesurfaceina completefashioneitherbyreductionwith H2(g)at 773Kor simplybythermalregeneration invacuumat

ca.950K.However,duetolackofbasicK2Odomains,Pt/AZT

suf-fersfromrelativelylow NSC.IncreasingtheK2Oloadingto2.7,

5.4and10.0wt.%leadstoaprogressivelyincreasingNOx adsorp-tionwhereNSCseemstobeconvergingtoavaluesimilartothat ofPt/20Ba/AlbenchmarkcatalystforPt/5.4K/AZTandPt/10K/AZT. Furthermore,Pt/5.4K/AZTsampleallowscompleteremovalofSOx

(9)

Fig.8.RelativeintegratedNOxdesorptionsignalsobtainedfromNOx-TPD

experi-ments.

catalystwhosecompleteregenerationrequiresmuchhigher tem-peratures(i.e.973K)underidenticalreducingconditions.Although increasingtheK2Oloadingfrom5.4to10.0wt.%doesnotseem

tohaveatremendousenhancementinNOxadsorptionproperties ofthePt/K/AZTsystem,itdoesresultinunfavorableSOxuptake, releaseandregenerationcharacteristics.TPDandFTIRdata sug-gestthatK2OdomainstendtoagglomeratewithincreasingK2O

loadingand form 3D clusterswith growingK2O particle sizes.

Thesephenomena alsoexpeditetheformation of bulk-like sul-fatefunctionalitiesinthesubsurfaceofK2Odomainswithmuch

higherthermalstabilityandmuchstrongerresistanceagainst ther-maldecompositionandreductionwithhydrogen.Consequently, Pt/5.4K/AZTsystemappearsasapromisingalternativewhichcan alsobeusedinconjunctionwithconventionalPt/20Ba/AlNSR/LNT catalysts.

4. Conclusion

Inthecurrentstudy,advancedternaryandquaternarymixed oxidematerialsintheformofPt/K2O/Al2O3/ZrO2/TiO2were

syn-thesizedwithdifferentK2Oloadings.Synthesizedmaterialswere

structurallycharacterizedviaXRDandBETincomparisontoa con-ventionalPt/20Ba/AlbenchmarkNSR/LNTcatalyst.Interactionof thesecatalystsurfaceswithSOx(i.e.SO2+O2)mixturewere

moni-toredspectroscopicallyusingin-situFTIRandTPD.Ourfindingscan besummarizedasfollows:

• BesidesthepresenceoforderedmetallicPt,Pt/AZT,Pt/2.7K/AZT and Pt/5.4K/AZT materialsrevealed disordered structures. On theotherhand,Pt/10K/AZTexhibitedadditionaldiffraction sig-nals corresponding to tetragonal ZrO2 domains. Unlike the

AZT-supported materials,conventional Pt/20Ba/Albenchmark catalystwascomposedoforderedphasesincluding␥-Al2O3and

BaAl2O4.

• Increasein K2Oloadingfrom2.7 to5.4and10.0wt.%

mono-tonicallydecreasestheSSA values from177m2/gto 155and

125m2/g,respectively.ApartfromthePt/10K/AZTcatalyst,SSA

valuesofthecorrespondingPt/K/AZTcatalystsarehigherthan thatofthebenchmarkPt/20Ba/Alcatalyst(134m2/g).

• IncreasingtheK2OloadinginthePt/K/AZTsystemleadstothe

growthoftheK2Odomainsize(i.e.sintering),covering ofthe

AZTsurface withK2Oand anincreasein thebulk-likesulfate

functionalgroups requiringhigher temperaturesfor complete sulfurelimination viathermal decompositionorviareduction withH2(g).

• Increasein K2Oloadingin thePt/K/AZTformulationincreases

theNOxadsorptionupto5.4wt.%ofK2O.HoweverK2Oloadings

higherthanthisvaluedonothaveasignificantpositiveinfluence onNOxadsorption.

• Thereis a delicate trade-offbetweenNSC and sulfur adsorp-tion/release/regenerationcharacteristics.NSCandSOxtolerance ofAZTbasedNSR/LNTcatalystscanbeoptimizedsimultaneously bycarefullyfine-tuningtheK2Oloading.

• Among the investigated catalysts, Pt/5.4K/AZT was found to revealsuperiorsulfurregenerationperformancethanthatofthe conventionalPt/20Ba/Albenchmarkcatalystalongwitha com-parableNSC(0.165vs.0.171mmol/gcat,repsectively).

Acknowledgements

AuthorsacknowledgethefinancialsupportfromtheScientific andTechnologicalResearchCouncilofTurkey(TUBITAK)(Project Code:111M780).AuthorsalsoacknowledgeProf.LouiseOlssonand OanaMihai(ChalmersUniversityofTechnology)forquantitative flow-modeNSCmeasurements.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.cattod.2015.12. 013.

References

[1]F.Klingstedt,K.Arve,K.Eränen,D.Y.Murzin,Acc.Chem.Res.39(2006) 273–282.

[2]W.S.Epling,L.E.Campbell,A.Yezerets,N.W.Currier,J.E.Parks,Catal.Rev.Eng. 46(2004)163–245.

[3]S.Matsumoto,CATTECH4(2000)102–109.

[4]A.Fritz,V.Pitchon,Appl.Catal.BEnviron.13(1997)1–25.

[5]Q.Schiermeier,ThesciencebehindtheVolkswagenemissionsscandal,in: Nat.News,2015.

[6]<http://www.eea.europa.eu/publications/nec-directive-status-report-2014>.

[7]K.Kato,H.Nohira,K.Nakanishi,S.Iguchi,T.Kihara,H.Muraki,EuroPatent

application0,573,672A1,1993.

[8]N.Myioshi,S.Matsumoto,K.Katoh,T.Tanaka,K.Harada,N.Takahashi,K.

Yokota,M.Sugiura,K.Kasahara,SAETechnicalPapersSeriesNo.950809,

1995.

[9]S.Roy,A.Baiker,Chem.Rev.109(2009)4054–4091.

[10]Z.Say,E.I.Vovk,V.I.Bukhtiyarov,E.Ozensoy,Appl.Catal.BEnviron.142–143 (2013)89–100.

[11]W.S.Epling,D.Kisinger,C.Everest,Catal.Today136(2008)156–163.

[12]D.H.Kim,Y.Chin,G.G.Muntean,A.Yezeretz,N.W.Currier,W.S.Epling,H. Chen,H.Hess,C.H.F.Peden,Ind.Eng.Chem.Res.45(2006)8815–8821.

[13]S.M.Andonova,G.S.S¸ent ¨urk,E.Kayhan,E.Ozensoy,J.Phys.Chem.C113 (2009)11026.

[14]Z.Say,E.I.Vovk,V.I.Bukhtiyarov,E.Ozensoy,Top.Catal.56(2013)950–957.

[15]T.Szailer,J.H.Kwak,D.H.Kim,J.C.Hanson,C.H.F.Peden,J.Szanyi,J.Catal.239 (2006)51–64.

[16]I.S.Pieta,M.García-Diéguez,C.Herrera,M.a.Larrubia,L.J.Alemany,J.Catal. 270(2010)256–267.

[17]K.S.Kabin,P.Khanna,R.L.Muncrief,V.Medhekar,M.P.Harold,Catal.Today 114(2006)72–85.

[18]S.Morandi,F.Prinetto,G.Ghiotti,L.Castoldi,L.Lietti,P.Forzatti,M.Daturi,V. Blasin-Aubé,Catal.Today231(2014)116–124.

[19]D.H.Kim,K.Mudiyanselage,J.Szányi,H.Zhu,J.H.Kwak,C.H.F.Peden,Catal. Today184(2012)2–7.

[20]M.Takeuchi,S.Matsumoto,Top.Catal.28(2004)151–156.

[21]T.J.Toops,D.B.Smith,W.P.Partridge,Catal.Today114(2006)112–124.

[22]J.Luo,F.Gao,D.H.Kim,C.H.F.Peden,Catal.Today231(2014)164–172.

[23]E.Fridell,H.Persson,L.Olsson,B.Westerberg,A.Amberntsson,M.Skoglundh, Top.Catal.16/17(2001)133.

[24]J.Escobar,J.A.DelosReyes,T.Viveros,Ind.Eng.Chem.Res.39(2000)666.

(10)

[26]M.Meng,L.Guo,J.He,Y.Lai,Z.Li,X.Li,Catal.Today175(2011)72.

[27]Z.Q.Zou,M.Meng,X.Y.Zhou,X.G.Li,Y.Q.Zha,Catal.Lett.128(2009)475.

[28]N.Takahashi,A.Suda,I.Hachisuka,M.Sugiura,H.Sobukawa,H.Shinjoh,Appl. Catal.BEnviron.72(2007)187.

[29]H.Imagawa,T.Tanaka,N.Takahashi,S.Matsunaga,A.Suda,H.Shinjoh,J. Catal.251(2007)315.

[30]H.Imagawa,N.Takahashi,T.Tanaka,S.Matsunaga,H.Shinjoh,Appl.Catal.B Environ.92(2009)23.

[31]Z.Q.Zou,M.Meng,J.He,Mater.Chem.Phys.124(2010)987.

[32]Z.Say,M.Dogac,E.I.Vovk,Y.E.Kalay,C.H.Kim,W.Li,E.Ozensoy,Appl.Catal.B Environ154–155(2014)51.

[33]L.E.Venegas,N.A.Mazzeo,A.L.P.Rojas,AirQual.Appl.,InTech.,2011,ISBN: 978-953-307-307-1.

[34]D.H.Kim,K.Mudiyanselage,J.Szanyi,J.H.Kwak,H.Zhu,C.H.F.Peden,Appl. Catal.BEnviron.142–143(2013)472–478.

[35]M.Kantcheva,E.Z.Ciftlikli,J.Phys.Chem.B106(2002)3941–3949.

[36]C.Chang,J.Catal.53(1978)374–385.

[37]M.Waqif,SolidStateIonics95(1997)163–167.

[38]O.Saur,M.Bensitel,A.B.MohammedSaad,J.C.Lavalley,C.P.Tripp,B.A. Morrow,J.Catal.99(1986)104–110.

[39]H.Yao,H.K.Stepien,H.S.Gandhi,J.Catal.67(1981)231–236.

[40]G.S.S¸entürk,E.I.Vovk,V.I.Zaikovskii,Z.Say,A.M.Soylu,V.I.Bukhtiyarov,E. Ozensoy,Catal.Today184(2012)54–71.

[41]C.Sedlmair,K.Seshan,A.Jentys,J.Lercher,Catal.Today75(2002)413–419.

[42]Y.Liu,M.Meng,X.G.Li,L.H.Guo,Y.Q.Zha,Chem.Eng.Res.Des.86(2008) 932–940.

[43]H.Abdulhamid,E.Fridell,J.Dawody,M.Skoglundh,J.Catal.241(2006) 200–210.

Referanslar

Benzer Belgeler

Nanotechnology Research Center, Bilkent University, 06800 Bilkent, Ankara, Turkey and Department of Electrical and Electronics Engineering, Department of Physics, Bilkent

Keywords: Lyotropic Liquid Crystals, Molten Salts, Concentrated Aqueous Electrolytes, Self Assembly, Transition Metal Aqua Complex Salts, Alkali Metal Salts,

Excitation of the GMR, which gives our device our asym- metric absorption/reflection functionality, with transparency functionality that stems from the fact that the Si grating,

So, the first assertion of the lemma is a consequence of a well known fact of conformal mapping theory... After this work was

2Modern literary theory disti11guishes betwc.-en an author's intended meaning and whatever signijica.nc1:s ,l reader finds in the text. Not all patterns and relationships

In this stage of the algorithm, we resort to the heuristic algorithms employed in PaToH in order to partition the input hypergraph. The objectives that are

The reason for reviewing information about human, medical setting relationship, cancer patients and their spatial needs and healing environments, is to get

Similarly, in another study conducted using an 800 nm femtosecond laser operat- ing at 100 fs pulse duration and 1kHz repetition rate, increasing laser energies (0.16, 0.27, and