• Sonuç bulunamadı

View of Common Fixed Point Theorems Using Rational Contraction In Soft Compact Metric Spaces

N/A
N/A
Protected

Academic year: 2021

Share "View of Common Fixed Point Theorems Using Rational Contraction In Soft Compact Metric Spaces"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2499-2503

Research Article

2499

Common Fixed Point Theorems Using Rational Contraction In Soft Compact Metric

Spaces

Ramakant Bhardwaj

1

, Qazi Aftab Kabir

2

, Ritu Shrivastava

3

, G .V. V. Jagannadha Rao

4

1aDepartment of Mathematics, Amity University Kolkata (W.B) India, Department of Mathematics, APS

University, Rewa (M.P) India

2*Department of Mathematics, Govt. Gandhi Memorial Science College, Jammu & Kashmir

3Department of Mathematics, Bahrain Polytechnique, Bahrain 4Department of Mathematics,Kalinga University Naya Raipur 2aftabqazi168@gmail.com.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published

online: 28 April 2021

Abstract: The most important aim of the prevailing paper is searching for a new fixed point theorems using rational

Contractions in the setting of soft compact metric spaces which generalizes the results of Sayyed 𝑒𝑡 𝑎𝑙, [9]. In particular we investigate the soft compact space based rational expression with soft sets and get some new results.

Keywords: Soft sets(𝑠𝑠), soft compact metric space(𝑠𝑐𝑚𝑠), rational expression, contraction mappings. 𝟏 introduction

Molodtsov [14] presented the possibility of delicate sets as another numerical gadget for overseeing vulnerabilities and has demonstrated a few utilizations of this hypothesis in fixing numerous down to earth inconveniences in different controls like as economics, engineering, etc. Maji 𝑒𝑡 𝑎𝑙. [11, 12] examined delicate set thought in detail and gave a utilization of (𝑠𝑠) in determination making issues. Chen 𝑒𝑡 𝑎𝑙. [2] worked on a fresh out of the plastic new meaning of markdown and expansion of parameters of (𝑠𝑠). Shabir and Naz [16] learned about soft topological territories and clarified the possibility of delicate factor by utilizing various methodologies. A profound conversation of soft set and compact spaces can be seen in ([1,4, 8 𝑎𝑛𝑑 13]).

Compact metric spaces are one of the maximum vital lessons in popular topological areas [17]. They have many widely recognized homes which may be used in lots of disciplines. Zorlutuma 𝑒𝑡 𝑎𝑙. [2] introduced compact soft areas round a smooth topology. Sayyed 𝑒𝑡 𝑎𝑙. [9] defined the concept of (𝑠𝑐𝑚𝑠) and discuss some results of (𝑠𝑐𝑚𝑠). In the current work the concept of rational expression will be explore and generalize for (𝑠𝑐𝑚𝑠) and proved some fixed point results. Throughout this paper we represent Soft sets(𝒔𝒔), soft compact metric space(𝒔𝒄𝒎𝒔), and soft metric space(𝒔𝒎𝒔).

𝟐 preliminaries

Definition 𝟐. 𝟏. ([14]) Let 𝑉 be a universe and 𝐴 be a set of parameters. Let 𝑃(𝑉) denote the power set of 𝑉. A pair (𝐹, 𝐴) is called a (𝑠𝑠) over 𝑉, where 𝐹 is a mapping given by 𝐹: 𝐴 → 𝑃(𝑉).

Definition 𝟐. 𝟐. ([𝟕]) A mapping 𝑑̃: 𝑆𝑃(𝑋̃) × 𝑆𝑃(𝑋̃) → ℝ(𝐴∗) is said to be a (𝑠𝑚𝑠) on the (𝑠𝑠) 𝑋̃ if 1) 𝑑̃(𝑃Φ𝑢, 𝑃ψ𝑣 ) ≥ 0̃ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃Φ𝑢, 𝑃ψ𝑣∈ 𝑋̃,

2) 𝑑̃(𝑃Φ𝑢, 𝑃ψ𝑣 ) = 0̃ 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑃Φ𝑢= 𝑃ψ𝑣,

3) 𝑑̃(𝑃Φ𝑢, 𝑃ψ𝑣 ) = 𝑑̃(𝑃Φ𝑣, 𝑃ψ𝑢 ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃Φ𝑢, 𝑃ψ𝑣∈ 𝑋̃,

4) 𝑑̃(𝑃Φ𝑢, 𝑃ψ𝑣 ) ≤ 𝑑̃(𝑃Φ𝑢, 𝑃ψ𝑤 ) + 𝑑̃(𝑃Φ𝑤, 𝑃ψ𝑣 ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃Φ𝑢, 𝑃ψ𝑣, 𝑃ψ𝑤∈ 𝑋̃,

The (𝑠𝑠) 𝑋̃ with the soft metric 𝑑̃ on 𝑋̃ is called a (𝑠𝑚𝑠) and denoted by (𝑋̃, 𝑑̃, 𝐸̃) or (𝑋̃, 𝑑̃).

Definition 𝟐. 𝟑. ([𝟕]) Let (𝑋̃, 𝑑̃, 𝐸̃) be a (𝑠𝑚𝑠) and 𝑟̃ be a non negative soft real number. Then the soft set 𝐵(𝑃Φ𝑢, 𝑟̃) = {𝑃ψ𝑣∈ 𝑆𝑃(𝑋̃): 𝑑̃(𝑃Φ𝑢, 𝑃ψ𝑣 ) <̃ 𝑟̃} is called soft open ball with center 𝑃Φ𝑢 and of radius 𝑟̃.

𝟑 Soft Compact Metric Space

Definition 𝟑. 𝟏. ([𝟗]) A (𝑠𝑚𝑠) (𝑋̃, 𝑑̃, 𝐸̃) be a (𝑠𝑐𝑚𝑠). Let ℂ̃ = {(𝐶𝑖, 𝐴𝑖)} be a family of soft open cover of 𝑋̃.

Then ℂ̃ is called a soft open cover of 𝑋̃ if each soft point of 𝑋̃ is in some (𝐶𝑖, 𝐴𝑖) in ℂ̃, that is, ⋃(𝐶𝑖,𝐴𝑖)∈ℂ̃(𝐶𝑖, 𝐴𝑖) = 𝑋̃.

A sub collection of ℂ̃̃~ of ℂ̃ whose union is again 𝑋̃ then ℂ̃̃~ is called soft sub cover of 𝑋̃ in ℂ̃. If ℂ̃̃~ is finite; it

is called finite soft sub-cover of 𝑋̃ in ℂ̃.

Definition 𝟑. 𝟐. ([𝟗]) Let (𝑋̃, 𝑑̃, 𝐸̃) be a soft metric is called (𝑠𝑐𝑚𝑠) if every soft cover of 𝑋̃ has a finite soft subcover of 𝑋̃.

(2)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2499-2503

Research Article

2500

Definition 𝟑. 𝟑. ([𝟗]) Let (𝑋̃, 𝑑̃, 𝐸̃) be a (𝑠𝑐𝑚𝑠), and (𝑌, 𝐴) be a non-empty soft subset of 𝑋̃. then 𝑌̃ is said to be soft compact in 𝑋̃ if 𝑌̃ is soft compact as a subspace of 𝑋̃.

Definition 𝟑. 𝟒. A (𝑠𝑚𝑠) (𝑋̃, 𝑑̃, 𝐸̃) is called a soft compact if it is soft complete and soft totally bounded.

Proposition 𝟑. 𝟓. Let (𝑋̃, 𝑑̃, 𝐸̃) be a (𝑠𝑐𝑚𝑠). If (𝑋̃, 𝑑̃, 𝐸̃) is a soft sequence(𝑐𝑚𝑠), then (𝑋̃, 𝑑̃) is a α

sequence(𝑐𝑚𝑠) for each α ∈ 𝐴, where 𝐴 is a countable set. Here 𝑑̃ stands for the soft metric for only parameter α. α Example 𝟑. 𝟔. Let 𝐴̃ = ℕ, 𝑋 = [0, 1] and let soft metric 𝑑̃ be defined as follows:

𝑑̃(𝑝̃α𝑢, 𝑞̃α′

𝑣 ) = |α − α| + |𝑝̃ − 𝑞̃| + |𝑢 − 𝑣|

𝑑̃(𝑝̃α𝑢, 𝑞̃α′𝑣 ) = 𝑑̃(α, α′) − (𝑑̃(α, α′) − 𝑑̃(𝑝̃, 𝑞̃) − 𝑑̃|𝑢 − 𝑣|)

𝑑̃(𝑝̃α𝑢, 𝑞̃α′𝑣 ) = 𝑑̃(α, α′) − 𝑑̃(α, α′)

Where ℕ is a natural number of set. Therefore (𝑋̃, 𝑑̃, 𝐸̃) be a (𝑠𝑐𝑚𝑠) 𝟒 main results

In this section we use 𝑋 ̃ → (𝐶(𝑋))̃ rational contraction mapping and prove some common fixed point theorems in the framework of (𝑠𝑐𝑚𝑠).

Theorem 𝟒. 𝟏. Let (𝑋̃, 𝑑̃, 𝐸̃) be a (𝑺𝑪𝑴𝑺)and 𝑑̃ be a metric on 𝑋̃ such that (𝑋̃, 𝑑̃) is complete soft metric set and let mappings 𝑇, 𝑆: 𝑋̃ → (𝐶(𝑋))̃ ,satisfy the following conditions;

i) For each 𝛼̃ ∈ 𝑋̃, 𝑇(𝛼̃), 𝑆(𝛼̃) ∈ closed set(𝑋̃),

ii) 𝐻(𝑇(𝛼̃), 𝑆(𝛽̃)) ≤ 𝜓1[𝑑(𝛼̃, 𝑇(𝛼̃)) + 𝑑(𝛽̃, 𝑆(𝛽̃))] + 𝜓2[𝑑(𝛼̃, 𝑆(𝛽̃)) + 𝑑(𝛽̃, 𝑇(𝛼̃))]

Where 𝜓1, 𝜓2 are non-negative real numbers and 𝜓1+ 𝜓2< 1. Then 𝑇 𝑎𝑛𝑑 𝑆 has a common fixed point. Proof. Let 𝛼̃ ∈ 𝑋, 𝑇(𝛼0 ̃) is a non-empty closed set of 𝑋̃. We can choose that 𝛼0 ̃ ∈ 𝑇(𝛼1 ̃), for this 𝛼0 ̃ by the 1

same reason mentioned above 𝑆(𝛼̃) is non-empty closed set of 𝑋̃. 1

Since 𝛼̃ ∈ 𝑇(𝛼1 ̃) and 𝑆(𝛼0 ̃) are closed set of 𝑋̃, there exist 𝛼1 ̃ ∈ 𝑆(𝛼2 ̃) 1

such that 𝑑(𝛼̃, 𝛼1 ̃) ≤ 𝐻(𝑇(𝛼2 ̃), 𝑆(𝛼0 ̃)) + Φ, 1 Where Φ = 𝑚𝑎𝑥 { 𝜓1+ 𝜓2 1−(𝜓1+ 𝜓2), 𝜓1+ 𝜓2 1−(𝜓1+ 𝜓2)} 𝑑(𝛼̃, 𝛼1 ̃) 2 ≤ 𝐻(𝑇(𝛼̃ ), 𝑆(𝛼0 ̃)) + Φ 1 ≤ 𝜓1[𝑑(𝛼̃, 𝑇(𝛼0 ̃)) + 𝑑(𝛼0 ̃, 𝑆(𝛼1 ̃ ))] + 𝜓1 2[𝑑(𝛼̃, 𝑆(𝛼0 ̃)) + 𝑑(𝛼1 ̃, 𝑇(𝛼1 ̃))] + Φ 0 ≤ 𝜓1[𝑑(𝛼̃, 𝛼0 ̃) + 𝑑(𝛼1 ̃, 𝛼1 ̃)] + 𝜓2 2[𝑑(𝛼̃, 𝛼0 ̃) + 𝑑(𝛼2 ̃, 𝛼1 ̃)] + Φ 1 ≤ 𝜓1[𝑑(𝛼̃, 𝛼0 ̃) + 𝑑(𝛼1 ̃, 𝛼1 ̃)] + 𝜓2 2[𝑑(𝛼̃, 𝛼0 ̃) + 𝑑(𝛼1 ̃, 𝛼1 ̃)] + Φ 2 𝑑(𝛼̃, 𝛼1 ̃) ≤2 𝜓1+ 𝜓2 1−(𝜓1+ 𝜓2)𝑑(𝛼̃, 𝛼0 ̃) + Φ 1 𝑑(𝛼̃, 𝛼1 ̃) ≤ Φ𝑑(𝛼2 ̃, 𝛼0 ̃) + Φ 1

Thus for this 𝛼̃, 𝑇(𝛼2 ̃) is a non-empty closed set of 𝑋̃. 2

Since 𝛼̃ ∈ 𝑆(𝛼2 ̃) and 𝑆(𝛼1 ̃) and 𝑇(𝛼1 ̃) are closed set of 𝑋̃, there exist 𝛼2 ̃ ∈ 𝑇(𝛼3 ̃) 2

Such that 𝑑(𝛼̃, 𝛼2 ̃) 3 ≤ 𝐻(𝑇(𝛼̃), 𝑆(𝛼2 ̃)) + Φ1 2 ≤ 𝜓1[𝑑(𝛼̃, 𝑇(𝛼2 ̃)) + 𝑑(𝛼2 ̃, 𝑆(𝛼1 ̃ ))] 1 +𝜓2[𝑑(𝛼̃, 𝑆(𝛼2 ̃)) + 𝑑(𝛼1 ̃, 𝑇(𝛼1 ̃))] + Φ2 2 ≤ 𝜓1[𝑑(𝛼̃, 𝛼2 ̃) + 𝑑(𝛼3 ̃, 𝛼1 ̃)] + 𝜓2 2[𝑑(𝛼̃, 𝛼2 ̃) + 𝑑(𝛼2 ̃, 𝛼1 ̃)] + Φ3 2 ≤ 𝜓1[𝑑(𝛼̃, 𝛼2 ̃) + 𝑑(𝛼3 ̃, 𝛼1 ̃)] + 𝜓2 2[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼2 ̃, 𝛼2 ̃)] + Φ3 2 𝑑(𝛼̃, 𝛼2 ̃) 3 ≤ 𝜓1+ 𝜓2 1 − (𝜓1+ 𝜓2) 𝑑(𝛼̃, 𝛼1 ̃) + Φ2 2 ≤ Φ𝑑(𝛼̃, 𝛼1 ̃) + Φ2 2 ≤ Φ{Φ𝑑(𝛼̃, 𝛼0 ̃) + Φ} + Φ1 2 𝑑(𝛼̃, 𝛼2 ̃) ≤ Φ3 2𝑑(𝛼̃, 𝛼0 ̃) + 2Φ1 2

Similarly this process continue and we get a sequence {𝛼̃} such that 𝛼𝑛 ̃ ∈ 𝑆(𝛼𝑛+1 ̃) or 𝛼𝑛 ̃ ∈ 𝑇(𝛼𝑛+1 ̃) 𝑛

And

(3)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2499-2503

Research Article

2501

Suppose 0 ≪ 𝑢 be given, choose that, a natural number 𝑁1 such that Φ𝑛𝑑(𝛼̃, 𝛼0 ̃) + 𝑛Φ1 𝑛≪ 𝑢 ∀ 𝑛 ≥ 𝑁1

⇒ 𝑑(𝛼̃ , 𝛼𝑛+1 ̃) ≪ 𝑢. 𝑛

∴ {𝛼̃} is a Cauchy sequence in (𝑋̃, 𝑑̃, 𝐸̃) is a (𝑺𝑪𝑴𝑺)∃ 𝑝 ∈ 𝑋̃ such that 𝛼𝑛 ̃ → 𝑝. So choose a natural number 𝑛

𝑁2 such that 𝑑(𝛼̃, 𝑝) ≪𝑛 𝑢(1−(𝜓1+ 𝜓2)) 2𝑣(1+(𝜓1+ 𝜓2)) and 𝑑(𝛼̃ , 𝑝) ≪𝑛−1 𝑢(1−(𝜓1+ 𝜓2)) 2𝑣(𝜓1+ 𝜓2) ∀ 𝑛 ≥ 𝑁2. 𝑑(𝑇(𝑝), 𝑝) ≤ 𝑑(𝑝, 𝛼̃) + 𝑑(𝛼𝑛 ̃, 𝑇(𝑝)) 𝑛 ≤ 𝑑(𝑝, 𝛼̃) + 𝐻(𝑆(𝛼𝑛 ̃ ), 𝑇(𝑝)) 𝑛−1 ≤ 𝑑(𝑝, 𝛼̃) + 𝜓𝑛 1[𝑑(𝛼̃ , 𝑆(𝛼𝑛−1 ̃ )) + 𝑑(𝑝, 𝑇(𝑝))] 𝑛−1 +𝜓2[𝑑(𝛼̃ , 𝑇(𝑝)) + 𝑑(𝑝, 𝑆(𝛼𝑛−1 ̃ ))] 𝑛−1 ≤ 𝑑(𝑝, 𝛼̃) + 𝜓𝑛 1[𝑑(𝛼̃ , 𝛼𝑛−1 ̃) + 𝑑(𝑝, 𝑇(𝑝))] 𝑛 +𝜓2[𝑑(𝛼̃ , 𝑇(𝑝)) + 𝑑(𝑝, 𝛼𝑛−1 ̃)] 𝑛 ≤ 𝑑(𝑝, 𝛼̃) + 𝜓𝑛 1[𝑑(𝛼̃ , 𝑝) + 𝑑(𝑝, 𝛼𝑛−1 ̃) + 𝑑(𝑝, 𝑇(𝑝))] 𝑛 +𝜓2[𝑑((𝛼̃ , 𝑝) + (𝑝, 𝑇(𝑝)) + 𝑑(𝑝, 𝛼𝑛−1 ̃)] 𝑛 𝑑(𝑇(𝑝), 𝑝) ≤ 𝜓1+ 𝜓2 1−(𝜓1+ 𝜓2)𝑑(𝛼̃ , 𝑝) +𝑛−1 (1+(𝜓1+ 𝜓2) (1−(𝜓1+ 𝜓2) 𝑑(𝛼̃, 𝑝)∀ 𝑛 ≥ 𝑁𝑛 2. 𝑑(𝑇(𝑝), 𝑝) ≪𝑢

𝑣 for all 𝑣 ≥ 1, we get 𝑢

𝑣− 𝑑(𝑇(𝑝), 𝑝) ∈ 𝑃

And , as 𝑛 → ∞, we get 𝑢

𝑣→ 0

And P is closed −𝑑(𝑇(𝑝), 𝑝) ∈ 𝑃 but 𝑑(𝑇(𝑝), 𝑝) ∈ 𝑃. Therefore 𝑑(𝑇(𝑝), 𝑝) = 0 and so 𝑝 ∈ 𝑇(𝑝).

Similarly it can be established that 𝑝 ∈ 𝑆(𝑝). Hence 𝑇 and 𝑆 has a common fixed point.

Theorem 𝟒. 𝟐. Let (𝑋̃, 𝑑̃, 𝐸̃) be a (𝑺𝑪𝑴𝑺)and 𝑑̃ be a metric on 𝑋̃ such that (𝑋̃, 𝑑̃) is complete soft metric set and let mappings 𝑇, 𝑆: 𝑋 ̃ → (𝐶(𝑋))̃

Satisfy the following conditions;

i. For each 𝛼̃ ∈ 𝑋̃, 𝑇(𝛼̃), 𝑆(𝛼̃) ∈ closed set(𝑋̃),

ii. 𝐻(𝑇(𝛼̃), 𝑆(𝛽̃)) ≤ 𝜓1[𝑑(𝛼̃, 𝛽̃)) + 𝑑 (𝛽̃, 𝑆(𝛽̃))] + 𝜓2[𝑑(𝛽̃, 𝑆(𝛽̃)) + 𝑑(𝛼̃, 𝑇(𝛼̃))]

+𝜓3[𝑑(𝛽̃, 𝑇(𝛼̃)) + 𝑑(𝛼̃, 𝑆(𝛽̃))]

where 𝜓1, 𝜓2, 𝜓3 are non-negative real numbers and 𝜓1+ 𝜓2+ 𝜓3< 1

3. Then 𝑇 𝑎𝑛𝑑 𝑆 has a common fixed

point.

Proof. Let 𝛼̃ ∈ 𝑋̃, 𝑇(𝛼0 ̃) is a non-empty closed set of 𝑋̃. We can choose that 𝛼0 ̃ ∈ 𝑇(𝛼1 ̃), for this 𝛼0 ̃ by the 1

same reason mentioned above 𝑆(𝛼̃) is non-empty closed subset of 𝑋̃. 1

Since 𝛼̃ ∈ 𝑇(𝛼1 ̃) and 𝑆(𝛼0 ̃) are closed set of 𝑋̃, there exist 𝛼1 ̃ ∈ 𝑆(𝛼2 ̃) such that 1

𝑑(𝛼̃, 𝛼1 ̃) ≤ 𝐻(𝑇(𝛼2 ̃), 𝑆(𝛼0 ̃)) + Φ, 1 Where Φ = 𝑚𝑎𝑥 { 𝜓1+ 𝜓2+𝜓3 1−(𝜓1+ 𝜓2+𝜓3), 𝜓1+ 𝜓2+𝜓3 1−(𝜓1+ 𝜓2+𝜓3)} 𝑑(𝛼̃, 𝛼1 ̃) ≤ 𝐻(𝑇(𝛼2 ̃), 𝑆(𝛼0 ̃)) + Φ 1 ≤ 𝜓1[𝑑(𝛼̃, 𝛼0 ̃) + 𝑑(𝛼1 ̃, 𝑆(𝛼1 ̃ ))] + 𝜓1 2[𝑑(𝛼̃, 𝑆(𝛼1 ̃)) + 𝑑(𝛼1 ̃, 𝑇(𝛼0 ̃))] 0 +𝜓3[𝑑(𝛼̃, 𝑇(𝛼1 ̃)) + 𝑑(𝛼0 ̃, 𝑆(𝛼0 ̃))] + Φ 1 ≤ 𝜓1[𝑑(𝛼̃, 𝛼0 ̃) + 𝑑(𝛼1 ̃, 𝛼1 ̃)] + 𝜓2 2[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼2 ̃, 𝛼0 ̃)] 1 +𝜓3[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼1 ̃, 𝛼0 ̃)] + Φ 2 ≤ 𝜓1[𝑑(𝛼̃, 𝛼0 ̃) + 𝑑(𝛼1 ̃, 𝛼1 ̃)] + 𝜓2 2[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼2 ̃, 𝛼0 ̃)] 1 +𝜓3[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼1 ̃, 𝛼0 ̃) + 𝑑(𝛼2 ̃, 𝛼2 ̃)] + Φ 2 ≤ 𝜓1[𝑑(𝛼̃, 𝛼0 ̃) + 𝑑(𝛼1 ̃, 𝛼1 ̃)] + 𝜓2 2[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼2 ̃, 𝛼0 ̃)] 1 +𝜓3[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼1 ̃, 𝛼0 ̃) + 𝑑(𝛼2 ̃, 𝛼1 ̃)] + Φ 2 𝑑(𝛼̃, 𝛼1 ̃) ≤2 𝜓1+ 𝜓2+𝜓3 1−(𝜓1+ 𝜓2+𝜓3)𝑑(𝛼𝑜, 𝛼̃) + Φ 1 𝑑(𝛼̃, 𝛼1 ̃) ≤ Φ𝑑(𝛼2 𝑜, 𝛼̃) + Φ 1

Thus for this 𝛼̃, 𝑇(𝛼2 ̃) is a non-empty closed set of 𝑋̃. 2

Since 𝛼̃ ∈ 𝑆(𝛼2 ̃) and 𝑆(𝛼1 ̃) and 𝑇(𝛼1 ̃) are closed set of 𝑋̃, there exist 𝛼2 ̃ ∈ 𝑇(𝛼3 ̃) 2

such that

𝑑(𝛼̃, 𝛼2 ̃) ≤ 𝐻(𝑇(𝛼3 ̃), 𝑆(𝛼2 ̃)) + Φ1 2

≤ 𝜓1[𝑑(𝛼̃, 𝛼2 ̃) + 𝑑(𝛼1 ̃, 𝑆(𝛼1 ̃ ))] + 𝜓1 2[𝑑(𝛼̃, 𝑆(𝛼1 ̃)) + 𝑑(𝛼1 ̃, 𝑇(𝛼2 ̃))] 2

(4)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2499-2503

Research Article

2502

≤ 𝜓1[𝑑(𝛼̃, 𝛼2 ̃) + 𝑑(𝛼1 ̃, 𝛼1 ̃)] + 𝜓2 2[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼2 ̃, 𝛼2 ̃)] 3 +𝜓3[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼3 ̃, 𝛼2 ̃)] + Φ2 2 ≤ 𝜓1[𝑑(𝛼̃, 𝛼2 ̃) + 𝑑(𝛼1 ̃, 𝛼1 ̃)] + 𝜓2 2[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼2 ̃, 𝛼2 ̃)] 3 +𝜓3[𝑑(𝛼̃, 𝛼1 ̃) + 𝑑(𝛼2 ̃, 𝛼2 ̃) + 𝑑(𝛼3 ̃, 𝛼2 ̃)] + Φ2 2 𝑑(𝛼̃, 𝛼2 ̃) ≤3 𝜓1+ 𝜓2+ 𝜓3 1 − (𝜓1+ 𝜓2+ 𝜓3) 𝑑(𝛼̃, 𝛼1 ̃) + Φ2 2 ≤ Φ𝑑(𝛼̃, 𝛼1 ̃) + Φ2 2 ≤ Φ{Φ𝑑(𝛼̃, 𝛼0 ̃) + Φ} + Φ1 2 𝑑(𝛼̃, 𝛼2 ̃) ≤ Φ3 2𝑑(𝛼̃, 𝛼0 ̃) + 2Φ1 2

Similarly this process continue and we get a sequence {𝛼̃} such that 𝛼𝑛 ̃ ∈ 𝑆(𝛼𝑛+1 ̃) or 𝛼𝑛 ̃ ∈ 𝑇(𝛼𝑛+1 ̃) and 𝑛

𝑑(𝛼̃ , 𝛼𝑛+1 ̃) ≤ Φ𝑛 𝑛𝑑(𝛼̃, 𝛼0 ̃) + 𝑛Φ1 𝑛.

Suppose 0 ≪ 𝑢 be given, choose that, a natural number 𝑁1 such that Φ𝑛𝑑(𝛼̃, 𝛼0 ̃) + 𝑛Φ1 𝑛≪ 𝑢 ∀ 𝑛 ≥ 𝑁1

⇒ 𝑑(𝛼̃ , 𝛼𝑛+1 ̃) ≪ 𝑢. 𝑛

∴ {𝛼̃} is a Cauchy sequence in (𝑋̃, 𝑑̃, 𝐸̃) be a (𝑺𝑪𝑴𝑺), ∃ 𝑝 ∈ 𝑋̃ such that 𝛼𝑛 ̃ → 𝑝. So choose a natural number 𝑛

𝑁2 such that 𝑑(𝛼̃, 𝑝) ≪𝑛 𝑢(1−(𝜓1+ 𝜓2+𝜓3)) 2𝑣(1+(𝜓1+ 𝜓2+𝜓3)) and 𝑑(𝛼̃ , 𝑝) ≪𝑛−1 𝑢(1−(𝜓1+ 𝜓2+𝜓3)) 2𝑣(𝜓1+ 𝜓2+𝜓3) ∀ 𝑛 ≥ 𝑁2. 𝑑(𝑇(𝑝), 𝑝) ≤ 𝑑(𝑝, 𝛼̃) + 𝑑(𝛼𝑛 ̃, 𝑇(𝑝)) 𝑛 ≤ 𝑑(𝑝, 𝛼̃) + 𝐻(𝑆(𝛼𝑛 ̃ ), 𝑇(𝑝)) 𝑛−1 ≤ 𝑑(𝑝, 𝛼̃) + 𝜓𝑛 1[𝑑(𝛼̃ , 𝑝) + 𝑑(𝑝, 𝑇(𝑝))] 𝑛−1 +𝜓2[𝑑(𝑝, 𝑇(𝑝)) + 𝑑(𝛼̃ , 𝑆(𝛼𝑛−1 ̃ ))] 𝑛−1 +𝜓3[𝑑(𝑝, 𝑆(𝛼̃ )) + 𝑑(𝛼𝑛−1 ̃ , 𝑇(𝑝))] 𝑛−1 ≤ 𝑑(𝑝, 𝛼̃) + 𝜓𝑛 1[𝑑(𝛼̃ , 𝑝) + 𝑑(𝑝, 𝑇(𝑝))] 𝑛−1 +𝜓2[𝑑(𝑝, 𝑇(𝑝)) + 𝑑(𝛼̃ , 𝛼𝑛−1 ̃)] 𝑛 +𝜓3[𝑑(𝑝, 𝛼̃) + 𝑑(𝛼𝑛 ̃ , 𝑇(𝑝))] 𝑛−1 ≤ 𝑑(𝑝, 𝛼̃) + 𝜓𝑛 1[𝑑(𝛼̃ , 𝑝) + 𝑑(𝑝, 𝑇(𝑝))] 𝑛−1 +𝜓2[𝑑(𝑝, 𝑇(𝑝)) + 𝑑(𝛼̃ , 𝑝) + 𝑑(𝑝, 𝛼𝑛−1 ̃)] 𝑛 +𝜓3[𝑑(𝑝, 𝛼̃) + 𝑑((𝛼𝑛 ̃ , 𝑝) + (𝑝, 𝑇(𝑝))] 𝑛−1 𝑑(𝑇(𝑝), 𝑝) ≤ 𝜓1+ 𝜓2+𝜓3 1−(𝜓1+ 𝜓2+𝜓3)𝑑(𝛼̃ , 𝑝) +𝑛−1 1+( 𝜓2+𝜓3) 1−(𝜓1+ 𝜓2+𝜓3) 𝑑(𝛼̃, 𝑝)∀ 𝑛 ≥ 𝑁𝑛 2. 𝑑(𝑇(𝑝), 𝑝) ≪𝑢

𝑣 for all 𝑣 ≥ 1, we get 𝑢

𝑣− 𝑑(𝑇(𝑝), 𝑝) ∈ 𝑃

And

as 𝑛 → ∞, we get 𝑢

𝑣→ 0 and P is closed −𝑑(𝑇(𝑝), 𝑝) ∈ 𝑃 but 𝑑(𝑇(𝑝), 𝑝) ∈ 𝑃.

Therefore

𝑑(𝑇(𝑝), 𝑝) = 0 and so 𝑝 ∈ 𝑇(𝑝). Hence 𝑇 and 𝑆 has a fixed point.

Corollary 𝟒. 𝟑. Let (𝑋̃, 𝑑̃, 𝐸̃) be (𝑺𝑪𝑴𝑺) and 𝑑̃ be a metric on 𝑋̃ such that (𝑋̃, 𝑑̃, 𝐸̃) be a complete (𝑺𝑪𝑴𝑺)and let mappings 𝑇, 𝑆: 𝑋̃ → 𝐶(𝑋̃)

i. For each 𝛼̃ ∈ 𝑋, 𝑇1(𝛼̃), 𝑇2(𝛼̃) ∈ closed set(𝑋),

ii. 𝐻(𝑇1(𝛼̃), 𝑇2(𝛽̃)) ≤ 𝜓𝑎 [𝑑(𝛼̃, 𝛽̃)) + 𝑑 (𝛽̃, 𝑇2(𝛽̃))] + 𝜓𝑐[𝑑(𝛽̃, 𝑇1(𝛼̃)) + 𝑑(𝛼̃, 𝑇2(𝛽̃))]

Where 𝑎 and 𝑐 are non-negative real numbers and 𝑎 + 𝑐 <1

2. Then 𝑇 has a fixed point. References

1. Bhardwaj, R.K., Rajput S.S., Choudhry S, Yadava, R.N. (2008),“Some fixed point theorems in compact metric spaces”. Int. Journal of Math. Analysis, Vol. 2.2. No. 11, 543-550.

2. Chen, D., Tsang, E. C. C., Yeung, D. S. and Wang, X. (2005). The parameterization reduction of soft sets and its applications, Compute. Math. Appl. 49(5); (2005) 757–763.

3. Chiney, M. and Samanta, S. K. (2015). Vector soft topology, Ann. Fuzzy Math. Inform. 10(1); 45–64. 4. Das, S. and Samanta, S. K. (2012). Soft real sets, soft real numbers and their properties, J. Fuzzy Math.

20(3); 551–576.

5. Das, S. and Samanta, S. K. (2013). On soft complex sets and soft complex numbers, J. Fuzzy Math. 21(1); 195–216.

(5)

Turkish Journal of Computer and Mathematics Education Vol.12 No.10 (2021), 2499-2503

Research Article

2503

7. Das, S. and Samanta, S. K. (2013). Soft metric, Ann. Fuzzy Math. Inform. 6 (1); 77–94.

8. Fisher, B. (1977). On three fixed point mappings for compact metric space, Indian J. Pure and Appl.

Math. 8(4); 479-481.

9. Jalil, Sayyed., Reddy, surendranath, B. (2017). On soft compact, sequentially compact and locally compactness, Advances in Fuzzy mathematics. 12(4); 835-844.

10. Kabir, Q. A., Jamal, R., Mishra, J., Mohammad, M. and Bhardwaj, R. (2018). New Common Fixed Point Results in Hyperconvex Ultrametric Spaces, International journal of pure and applied mathematics, Vol. 119, No. 10, pp. 1261-1271.

11. Maji, P. K., Biswas, R. and Roy, A. R. (2003). Soft set theory, Compute. Math. Appl. 45(4); 555–562. 12. Maji, P. K., Roy, A. R. and Biswas, R. (2002). An application of soft sets in a decision making problem,

Compute. Math. Appl. 44(8); 1077–1083.

13. Mohammad, M., Jamal, R. and Kabir, Q. A. (2017). Soft cone metric spaces and common fixed point theorems, International Journal of mathematical Archive, 8(9); 1-6.

14. Molodtsov, D. (1999). Soft set theory-first results, Comput. Math. Appl. 37(4); 19-31 15. Ryszard E, (1989) “General Topology”, Heldermann Verlag Berlin.

16. Shabir, M. and Naz, M. (2011). On soft topological spaces, Compute. Math. Appl. 61(7); 1786 – 1799. 17. Zorlutuna. I, Akdag, M., Min. W.K. and Atmaca, S. (2012) “Remarks on soft topological spaces”, Annals

Referanslar

Benzer Belgeler

Bu çalışmada araştırıcı içi ve araştırıcılar arası sondalama cep derinliği ölçümlerinin tekrar- lanabilirliğinin Florida sonda ve konvansiyonal son- da

Betonun erken yaş şekil değiştirmeleri ve mekanik (dayanım ve rijitlik) özelliklerindeki değişimler ölçülerek yapı elemanı- nın kendi içindeki sıcaklık farklılıkları

Zaten 1994’te Sermet Çifter Kütüphanesinde sergilenen arşivi için şu ifadeyi kullanacak kadar açık bir yazar, nasıl tanıtılabilir kİ: “Sergilenenler,

Yılın en başarılı prodüksiyonu, yılın en iyi yerli oyunu, yılın en başarılı yönetmeni, yılın en başarılı er­ kek oyuncusu, yılın en başarılı

kurulması, partinin tutanak ve kararları kaleme alınmıştır. Devlet ve İhtilal adlı kitabında ise devlet kavramını tetkik etmiş Karl Marx ve Engels’in

contractive conditions involving rational expressions for four self mappings with weakly compatible property and obtain the coincidence and common fixed points of four self mappings

Later, Bojor [13, 18, 19] obtained some results in such settings by weakening the condition of Banach G contraction and  introducing some new type of connectivity of

İşte bu hatıralar, o sessizlikte saklandık­ ları yerden çıkar, bir fısıltı halinde yine sahneye dökülürler..?. Ama artık