• Sonuç bulunamadı

On solvability of one elliptic system in weighted Sobolev spaces

N/A
N/A
Protected

Academic year: 2021

Share "On solvability of one elliptic system in weighted Sobolev spaces"

Copied!
22
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selcuk Journal of

Applied Mathematics

Sel¸cuk J. Appl. Math.

Vol. 4, No. 1, pp. 3–24, 2003

On solvability of one elliptic system in

weighted Sobolev spaces



Lina N. Buldygerova

Department of Mathematics, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia; e-mail: b lina@gorodok.net

Received: March 11, 2003

Summary. In this article we consider an elliptic system in R3 and

prove a theorem on unique solvability in a special scale of weighted Sobolev spaces.

Key words: elliptic systems, weighted Sobolev spaces, uncondi-tional solvability

2000 Mathematics Subject Classification: 35J45, 35C15

1. Introduction

In the present article we consider the following elliptic system of partial differential equations in R3

(1.1)



u++∇u−= f+(x), div u+ = f−(x).

This system arises in various problems of mathematical physics. There are results concerning solvability of the system in various func-tional spaces. In particular, from results by V. N. Maslennikova (see, for example, [1]) it follows that, in the case of f−(x) ≡ 0, the sys-tem (1.1) is uniquely solvable in the Sobolev space

(1.2)

3



1

Wp1(R3)× Wp2(R3)

 The research was supported in part by the Russian Foundation for Basic

(2)

for p > 3/2. However, the system (1.1) is not unconditionally solvable in (1.2) for p ≤ 3/2. As is shown in the book [2], in the case of f−(x) ≡ 0 for the system (1.1) to be solvable in (1.2) it is necessary and sufficient that 

R3

f+(x) dx = 0.

To research solvability of the system (1.1) it is more convenient to use the weighted Sobolev spaces Wp,σl introduced by G. V. Demidenko in [3]. In the present article we study solvability of the system (1.1) in the spaces and show that, for suitable values of σ, the system is unconditionally solvable for any p > 1.

By definition [3], the norm in the space

Wp,σl (Rn), l = (l1, . . . , ln), li ∈ N, 1 < p < ∞, σ ∈ R1, is defined by u(x), Wl p,σ(Rn) =  0≤β/l≤1 (1 + x )−σ(1−β/l)Dβ xu(x), Lp(Rn), where x 2= n  i=1 x2li i, β = (β1, . . . , βn), β/l = n  i=1 βi/li.

In the isotropic case l1 = . . . = ln = l the norm is equivalent to the

norm 

0≤|β|≤l

(1 + |x|)−σ(l−|β|)Dβxu(x), Lp(Rn).

It was proved in [3] that the set of compactly-supported infinitely differentiable functions is everywhere dense in Wp,σl (Rn) for σ ≤ 1.

Hereinafter, we consider the weighted Sobolev spaces Wp,σl (Rn) for 0 < σ < 1.

We give a result on solvability of the system (1.1) in the weighted Sobolev spaces Wp,σl .

Theorem 1. Let 1 < p < ∞, 1 −2p3 < σ < 2p3, 1/p + 1/p = 1. Then

for every right-hand side f+(x) ∈ 3  1 Wp,σ1 (R3), (1 +|x|)2(1−σ)∇ f+(x) ∈ 3  1 Lp(R3), (1 +|x|)2(1−σ)f−(x) ∈ Lp(R3),

(3)

the system (1.1) has a unique solution u+(x) ∈ 3  1 Wp,σ1 (R3), u−(x) ∈ Wp,σ2 (R3); moreover, the following inequality holds:

(1.3) 3  j=1 u+j(x), Wp,σ1 (R3) + u−(x), Wp,σ2 (R3) ≤ c(3 j=1 fj+(x), Wp,σ1 (R3) + (1 + |x|)2(1−σ)∇ fj+(x), Lp(R3) +(1 + |x|)2(1−σ)f−(x), Lp(R3))

with some constant c > 0 independent of f+(x) and f−(x). Remark 1. It was proved in [3] that the operator

⎛ ⎜ ⎜ ⎝ 1 0 0 Dx1 0 1 0 Dx2 0 0 1 Dx3 Dx1 Dx2 Dx3 0 ⎞ ⎟ ⎟ ⎠: 3  1 Wp,11 (R3)× Wp,12 (R3) 3 1 Wp,11 (R3)× Lp(R3) is an isomorphism for 1 < p < 3/2.

2. The scheme of the proof of the theorem

We outline the basic points of the proof of solvability of the system (1.1).

First, by analogy with [2, Chapter 3], we construct a sequence of approximate solutions to the system (1.1) by using S. V. Uspenskii’s integral representation [6] for summable functions

(2.1) ϕ(x) = lim h→0(2π) −n h−1  h v−|α|−1  Rn  Rn

e(ix−yvα ξ)G(ξ)ϕ(y) dξdydv, where (2.2) G(ξ) = 2mξ 2mexp(−ξ 2m), 2= n  i=1 ξi2/αi, m ∈ N.

(4)

We use (2.1) and (2.2) for αi = 1/2, n = 3.

To this end we consider the following system with a parameter

ξ ∈ R3 ⎪ ⎨ ⎪ ⎩ v++ L(iξ)v−=f+(ξ), M (iξ)v+=f−(ξ), where L(iξ) = ⎛ ⎝12 3 ⎞

, M (iξ) = (iξ1, iξ2, iξ3).

The system is obtained by formal application of the Fourier operator to the system (1.1) under the condition that the vector-functions f+(x) and f−(x) are infinitely differentiable and compactly-support-ed. Since det(M (iξ)L(iξ)) = −|ξ|2 = 0 for ξ ∈ R3\{0}, we obviously

obtain (2.3) v+(ξ) = (I +L(iξ) |ξ|2 M (iξ))f+(ξ) − L(iξ) |ξ|2 f−(ξ), (2.4) v−(ξ) = −M (iξ)|ξ|2 f+(ξ) + |ξ|12f−(ξ). We construct the vector-functions

(2.5) u+k(x) = (2π)−3/2 k  1/k v−1  R3 eixξG(ξvα)v+(ξ) dξ dv, (2.6) u−k(x) = (2π)−3/2 k  1/k v−1  R3 eixξG(ξvα)v−(ξ) dξ dv.

It follows from the definition of the vector-functions v+(ξ) and v−(ξ)

that ⎨ ⎩ u+k(x) + L(Dx)u−k(x) = fk+(x), M (Dx)u+k(x) = fk−(x), where fk+(x) = (2π)−3 k  1/k v−|α|−1  R3  R3 e(ix−yvα ξ)G(ξ)f+(y) dξ dy dv,

(5)

fk−(x) = (2π)−3 k  1/k v−|α|−1  R3  R3 e(ix−yvα ξ)G(ξ)f(y) dξ dy dv. By the integral representation (2.1) we can consider the vector-functions (2.5) and (2.6) as an approximate solution to (1.1).

The vector-functions (2.3) and (2.4) can have singularities only at ξ = 0. Therefore, by (2.2) the vector-functions u+k(x) and u−k(x) are infinitely differentiable. It is obvious that we can indicate a natural number m1 such that if m ≥ m1 in (2.2) then these vector-functions

are summable with an arbitrary power p ≥ 1. To this end, it suffices to take m1such that the functions k(ξ) ∈ C∞(R3\{0}), homogeneous

in α of degree q ∈ [−1, 0], satisfy the inequality |

R3

eixξξ 2m1e−ξ2m1k(ξ) dξ| ≤ c(1+x )−(|α|+1), x ∈ R

3, |α| = 3/2.

Henceforth we suppose that m ≥ m1 in (2.2).

In the following section we prove the estimates

(2.7) 3  j=1 u+k,j(x), Wp,σ1 (R3) + u−k(x), Wp,σ2 (R3) ≤ c[3 j=1 ( |γ|=1 (1 + |x|)2(1−σ)Dγ xfj+(x), Lp(R3) + fj+(x), Wp,σ1 (R3)) +f−(x), Lp(R3) + |x|2(1−σ)f−(x), Lp(R3)]

with some constant c > 0 independent of f+(x), f−(x) and k, and also establish the convergence

(2.8) 3  j=1 (u+k1,j(x) − u+k2,j(x)), Wp,σ1 (R3) +(u−k 1(x) − u−k2(x)), Wp,σ2 (R3) → 0, k1, k2 → ∞

under the conditions

1 < p < ∞, 1 3

2p < σ < 3

2p, 1/p + 1/p

 = 1.

By completeness of the space

3



1

(6)

from (2.7) and (2.8) it follows that there exists a vector-function u+(x) ∈ 3  1 Wp,σ1 (R3), u−(x) ∈ Wp,σ2 (R3)

that is a solution to the system (1.1) and satisfies the estimate (1.3). Prove the uniqueness of solutions, i. e. show that if u(x) is a solu-tion to the system

(2.9) ⎧ ⎨ ⎩ u++ L(Dx)u−= 0, x ∈ R3, M (Dx)u+= 0, then u(x) = 0 nearly everywhere in R3.

First, we assume that u+(x) and u−(x) are compactly-supported. Applying the Fourier operator to the system (2.9), we obtain the following system of linear equations:

⎧ ⎪ ⎨ ⎪ ⎩  u++ L(iξ)u−= 0, x ∈ R3, M (iξ)u+= 0.

We can rewrite the system in the matrix form L(iξ)u = 0, where L(iξ) =  I L(iξ) M (iξ) 0  .

Since det(M (iξ)L(iξ)) = 0 for ξ ∈ R3\{0} thenu(ξ) = 0 nearly every-

where in R3; moreover, by continuityu(ξ) ≡ 0, ξ ∈ R 3. Hence, u(x) is the zero solution, and the system (1.1) has a unique compactly-supported solution. Then, taking into account the estimates from Lemma 2 of [4], for β, |β| = 2, the solution to (1.1) satisfies the inequality

(2.10) Dβxu−(x), Lp(R3) ≤ c(3

j=1

fj+(x), Wp,σ1 (R3) + f−(x), Lp(R3)) with some constant c > 0 independent of f+(x) and f−(x).

Now we consider a more general case. Let u(x) ∈ 3

1 W

1

p,σ(R3)× Wp,σ2 (R3) be a solution to the system (2.9). Prove that u(x) = 0 nearly

(7)

everywhere in R3. Since u−(x) ∈ Wp,σ2 (R3) it follows that for every

ε > 0 there is a compactly-supported function u−ε(x) ∈ Wp,σ2 (R3) such that

u−(x) − u−ε(x), Wp,σ2 (R3) ≤ ε.

Consider the function u+ε(x) = −L(Dx)u−ε(x). Obviously, u+ε(x) is compactly-supported too. We have the following system

⎧ ⎨ ⎩

u+ε(x) + L(Dx)u−ε(x) ≡ 0, x ∈ R3,

M (Dx)u+ε(x) ≡ − u−ε(x).

According to (2.10), for β, |β| = 2, the estimate holds: Dβ

xu−ε(x), Lp(R3) ≤ c − u−ε(x) Lp(R3)

with some constant c > 0 independent of ε. Since u+(x) and u−(x) satisfy the system (2.9) then u−(x) ≡ 0. Consequently,

 − u− ε(x), Lp(R3) = (u−(x) − u−ε(x)), Lp(R3) ≤ c  |γ|=2 Dγx(u−(x) − u−ε(x)), Lp(R3) ≤ cε. Hence, for β, |β| = 2, we have

Dβ

xu−ε(x), Lp(R3) ≤ cε,

Dβ

xu−(x), Lp(R3) ≤ Dβx(u−(x) − u−ε(x)), Lp(R3)

+Dxβu−ε(x), Lp(R3) ≤ ε + cε.

Since the inequality holds for every ε > 0 then Dβxu−(x), Lp(R3) =

0 for |β| = 2. From the estimate [7]

|x|−2σu−(x), Lp(R3) ≤ c|x|2(1−σ) u−(x), Lp(R3)

it follows that u−(x) = 0 nearly everywhere in R3. Then u+(x) = 0

and u(x) = 0 nearly everywhere in R3. Thus, we proved the

(8)

3. Estimates for approximate solutions

To obtain estimates for approximate solutions to the system (1.1), we rewrite the vector-functions (2.5) and (2.6) as follows:

u+k(x) = u+,+k (x) + u+,−k (x) = (2π)−3/2 k  1/k v−1  R3 eixξG(ξvα)(v+,+(ξ) + v+,−(ξ)) dξ dv, u−k(x) = u−,+k (x) + u−,−k (x) = (2π)−3/2 k  1/k v−1  R3 eixξG(ξvα)(v−,+(ξ) + v−,−(ξ)) dξ dv, where

v+,+(ξ) = (I +L(iξ)|ξ|2 M (iξ))f+(ξ), v+,−(ξ) = −L(iξ)|ξ|2 f−(ξ),

v−,+(ξ) = −M (iξ)|ξ|2 f+(ξ), v−,−(ξ) = |ξ|12f−(ξ).

Estimates for the higher-order derivatives of the vector-functions u+k(x) and u−k(x) follow from the lemmas [4].

Lemma 1. Let β = (β1, β2, β3),|β| = 1. Then the following estimates

hold: (3.1) 3  j=1 Dβ xu+,+k,j (x), Lp(R3) ≤ c 3  j=1  |γ|=1 Dγ xfj+(x), Lp(R3), (3.2) 3  j=1 Dβ xu+,−k,j (x), Lp(R3) ≤ cf−(x), Lp(R3)

with some constant c > 0 independent of f+(x), f−(x) and k; more-over, (3.3) 3  j=1 Dβxu+k1,j(x) − Dβxuk+2,j(x), Lp(R3) → 0, k1, k2→ ∞.

(9)

Lemma 2. Let β = (β1, β2, β3),|β| = 2. Then the following estimates hold: (3.4) Dβxu−,+k (x), Lp(R3) ≤ c 3  j=1  |γ|=1 Dγ xfj+(x), Lp(R3), (3.5) Dβxu−,−k (x), Lp(R3) ≤ cf−(x), Lp(R3)

with some constant c > 0 independent of f+(x), f−(x) and k; more-over,

(3.6) Dβxu−k1(x) − Dxβu−k2(x), Lp(R3) → 0, k1, k2 → ∞.

To obtain estimates for u+k(x) and Dxγu−k(x), |γ| < 2, we consider the functions (3.7) Kh(x) = h−1 h v−1  R3 eixξG(ξvα)k(ξ) dξ dv, 0 < h < 1, where the function k(ξ) ∈ C∞(R3\{0}) is homogeneous in α of degree

q < 0. The derivatives of k(ξ) satisfy the estimates |Dξβk(ξ)| ≤ cβξ q−βα, ξ = 0,

where cβ > 0 are constants.

We will use the following lemma [4].

Lemma 3. Let |α| + q > 0. There is m0 such that if m ≥ m0 in

the definition (2.2) of the function G(ξ) then the following uniform estimate holds:

x |α|+q|K

h(x)| ≤ c, x ∈ Rn,

with some constant c > 0 independent of h.

Henceforth we deal with integrals of the form (3.7) for q ∈ [−1, 0]. Now we establish estimates for the vector-functions u+k(x) and xu−k(x), |γ| < 2. Lemma 4. Let 1 < p < ∞, 1 3 2p < σ < 3 2p, 1/p + 1/p = 1.

Then the following inequalities hold: (3.8) 3  j=1 |x|−σu+,+ k,j (x), Lp(R3)

(10)

≤ c3 j=1  |γ|=1 |x|(1−σ)Dxγfj+(x), Lp(R3), (3.9) 3  j=1 |x|−σu+,−k,j (x), Lp(R3) ≤ c|x|(1−σ)f−(x), Lp(R3)

with some constant c > 0 independent of f+(x), f−(x) and k; more-over, (3.10) 3  j=1 (1 + |x|)−σ(u+ k1,j(x) − u+k2,j(x)), Lp(R3) → 0, k1, k2 → ∞.

Proof. From the definition of the vector-function u+,+k (x) we have (3.11) u+,+k (x) = 3  l=1 (2π)−3/2 k  1/k v−1  R3 eixξG(ξvα) ×(iξl)−1(iξl)v+,+(ξ) dξ dv = 3  l=1 (2π)−3/2 k  1/k v−1  R3 eixξG(ξvα)(iξl)−1

×(I + L(iξ)|ξ|2 M (iξ))Dylf+(ξ) dξ dv = 3  l=1 (2π)−3 k  1/k v−1  R3  R3 ei(x−y)ξG(ξvα)(iξl)−1 ×(I +L(iξ) |ξ|2 M (iξ))dξ  Dylf+(y) dy dv. Introduce the notation

Kk,l(x) = k  1/k v−1  R3 eixξG(ξvα)Ql(ξ) dξ dv,

(11)

Then u+,+k (x) = 3  l=1 (2π)−3  R3

Kk,l(x − y)Dylf+(y) dy.

The entries of the matrix L(iξ)|ξ|2 M (iξ) are homogeneous in α = (1/2, 1/2, 1/2) of degree 0. Therefore, all entries Ql(ξ) are homogeneous

in α of degree q = −1/2 < 0. Since |α| + q = 3/2 − 1/2 = 1 > 0 then the conditions of Lemma 3 are satisfied. Hence, applying this lemma, we obtain the inequality

3  j=1 |x|−σu+,+ k,j (x), Lp(R3) ≤ c3 j=1 3  l=1 x qσ  R3 x − y −|α|−q|Dylfj+(y)| dy, Lp(R3) = c 3  j=1 3  l=1 |x|qσ  R3 x − y −|α|−qy q(1−σ) ×y q(σ−1)|Dylfj+(y)| dy, Lp(R3). Taking into account the inequality

3  i=1 |yi|(1−σ)/|α|≤ cy 1−σ, 0≤ σ ≤ 1, we have 3  j=1 |x|−σu+,+k,j (x), Lp(R3) ≤ c3 j=1 3  l=1  R3 3  i=1 |xi|σq/|α||xi− yi|−1−q/|α||yi|q/|α|(1−σ) ×y q(σ−1)|D ylfj+(y)| dy, Lp(R3) = c 3  j=1 3  l=1 (  R1  R1  R1 3  i=1 1/|xi|−σq/|α|1/|xi− yi|1+(q/|α|)

×1/|yi|q/|α|(σ−1)Fl,j(y) dy, Lp(R1)pdx2dx3)1/p = c 3  j=1 3  l=1 (  R1  R1  R1  R1 [  R1 1/|x1|−σq/|α|1/|x1− y1|1+(q/|α|)

(12)

×1/|y1|q/|α|(σ−1)Fl,j(y) dy1] 2  i=1 1/|xi|−σq/|α|1/|xi− yi|1+(q/|α|) ×1/|yi|q/|α|(σ−1)dy2dy3, Lp(R1)pdx2dx3)1/p = c 3  j=1 3  l=1 (  R1  R1   R1  R1 KFl,j(x1, y2, y3) ×2 i=1 1/|xi|−σq/|α|1/|xi− yi|1+(q/|α|) ×1/|yi|q/|α|(σ−1)dy2dy3, Lp(R1)pdx2dx3)1/p.

Applying Minkowski’s inequality, we obtain

3  j=1 |x|−σu+,+k,j (x), Lp(R3) ≤ c3 j=1 3  l=1 (  R1  R1 [  R1  R1 KFl,j(x1, y2, y3), Lp(R1) ×2 i=1 1/|xi|−σq/|α|1/|xi− yi|1+(q/|α|) ×1/|yi|q/|α|(σ−1)dy2dy3]pdx2dx3)1/p. As σ < 2p3 then −qσ/|α| < −q/p < 1/p. From the conditions of the lemma we find that

σ − 1 > − 3

2p, q(σ − 1)/|α| < −q/p

< 1/p.

Since

−qσ/|α| < 1/p, q(σ − 1)/|α| < 1/p, −q/|α| > 0, using the Hardy–Littlewood inequality [5], we have

3  j=1 |x|−σu+,+ k,j (x), Lp(R3) ≤ c3 j=1 3  l=1 (  R1  R1 [  R1  R1 Fl,j(x1, y2, y3), Lp(R1)

(13)

×2 i=1 1/|xi|−σq/|α|1/|xi− yi|1+(q/|α|) ×1/|yi|q/|α|(σ−1)dy2dy3]pdx2dx3)1/p = c 3  j=1 3  l=1 (  R1   R1  R1 Fl,j(x1, y2, y3), Lp(R1) ×2 i=1 1/|xi|−σq/|α|1/|xi− yi|1+(q/|α|) ×1/|yi|q/|α|(σ−1)dy2dy3, Lp(R1)pdx3)1/p.

Applying Minkowski’s inequality, we obtain

3  j=1 |x|−σu+,+ k,j (x), Lp(R3) ≤ c3 j=1 3  l=1 (  R1 [  R1  R1 Fl,j(x1, y2, y3), Lp(R1) ×1/|x2|−σq/|α|1/|x2− y2|1+(q/|α|)1/|y2|q/|α|(σ−1)dy2, Lp(R1) ×1/|x3|−σq/|α|1/|x3− y3|1+(q/|α|)1/|y3|q/|α|(σ−1)dy3]pdx3)1/p.

Using the Hardy–Littlewood inequality two times, we have

3  j=1 |x|−σu+,+ k,j (x), Lp(R3) ≤ c3 j=1 3  l=1 (  R1 [  R1 Fl,j(x1, x2, y3), Lp(R1), Lp(R1) ×1/|x3|−σq/|α|1/|x3− y3|1+(q/|α|)1/|y3|q/|α|(σ−1)dy3]pdx3)1/p = c 3  j=1 3  l=1   R1 Fl,j(x1, x2, y3), Lp(R1), Lp(R1) ×1/|x3|−σq/|α|1/|x3− y3|1+(q/|α|)1/|y3|q/|α|(σ−1)dy3, Lp(R1) ≤ c3 j=1 3  l=1 Fl,j(x1, x2, x3), Lp(R1), Lp(R1), Lp(R1)

(14)

= c 3  j=1 3  l=1 (  R1 Fl,j(x), Lp(R1), Lp(R1)pdx3)1/p = c 3  j=1 3  l=1 (  R1  R1 Fl,j(x), Lp(R1)pdx2dx3)1/p = c 3  j=1 3  l=1 Fl,j(x), Lp(R3) = c 3  j=1 3  l=1 x q(σ−1)Dxlfj+(x) Lp(R3).

Since q = −1/2 and x 1/2 ∼ |x| it follows that

3  j=1 |x|−σu+,+k,j (x), Lp(R3) ≤ c 3  j=1 3  l=1 |x|(1−σ)Dxlfj+(x) Lp(R3). Prove (3.9). From the definition of the vector-function u+,−k (x) we obtain u+,−k (x) = (2π)−3/2 k  1/k v−1  R3 eixξG(ξvα)(−L(iξ) |ξ|2 )f−(ξ) dξ dv = (2π)−3 k  1/k v−1  R3  R3 ei(x−y)ξG(ξvα)(−L(iξ) |ξ|2 ) dξ  f−(y) dy dv. All entries of the matrix L(iξ)|ξ|2 are homogeneous in α = (1/2, 1/2, 1/2) of degree q = −1/2 < 0. Therefore, as above we have the estimate

3  j=1 |x|−σu+,− k,j (x), Lp(R3) ≤ c R3 3  i=1 |xi|qσ/|α||xi− yi|−1−q/|α||yi|q(1−σ)/|α|

×y q(σ−1)|f−(y)| dy, Lp(R3).

Applying the Hardy–Littlewood inequality three times, we obtain the estimate (3.9): 3  j=1 |x|−σu+,− k,j (x), Lp(R3) ≤ cx q(σ−1)f−(x), Lp(R3) ≤ c|x|(1−σ)f−(x), Lp(R3).

(15)

To prove the convergence (3.10), we have to prove that (3.13) (1 + |x|)−σ(u+,+k1,j(x) − u+,+k2,j(x)), Lp(R3) → 0, (3.14) (1 + |x|)−σ(u+,−k1,j(x) − u+,−k2,j(x)), Lp(R3) → 0

for every j = 1, 2, 3 as k1, k2 → ∞. Obviously, it suffices to establish

(3.13) and (3.14) for compactly-supported f+(x).

Prove (3.13). By the representation (3.11) and the notation (3.12) for the matrix Ql(ξ) = (Qj,il (ξ)), it suffices to consider the function

wk(x) = (2π)−3 k  1/k v−1  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  Dylfi+(y) dy dv and prove the convergence

(3.15) (1 + |x|)−σ(wk1(x) − wk2(x)), Lp(R3) → 0, k1, k2 → ∞. We have wk1(x) − wk2(x) = (2π)−3 k1  1/k1 v−1 ×  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  Dylfi+(y) dy dv −(2π)−3 k2  1/k2 v−1  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  Dylfi+(y) dy dv = (2π)−3 1/k 2 1/k1 v−1  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  Dylfi+(y) dy dv +(2π)−3 k1  1/k2 v−1  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  Dylfi+(y) dy dv −(2π)−3 k1  1/k2 v−1  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  Dylfi+(y) dy dv −(2π)−3 k2  k1 v−1  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  Dylfi+(y) dy dv

(16)

= (2π)−3 1/k 2 1/k1 v−1  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  Dylfi+(y) dy dv −(2π)−3 k2  k1 v−1  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  Dylfi+(y) dy dv. Using Minkowski’s inequality, we obtain

(1 + |x|)−σ(wk1(x) − wk2(x)), Lp(R3) ≤ | 1/k 2 1/k1 v−1(1 + |x|)−σ  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  ×Dylfi+(y) dy, Lp(R3) dv| +| k2  k1 v−1(1 + |x|)−σ  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  ×Dylfi+(y) dy, Lp(R3) dv| = Ik11,k2 + Ik21,k2.

Consider the first summand. As the functions Qj,il (ξ) are homoge-neous in α of degree q = −1/2 < 0 and (1 + |x|)−σ≤ 1, from Young’s inequality we obtain Ik11,k2 ≤ | 1/k 2 1/k1 v−1  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  ×Dylfi+(y) dy, Lp(R3) dv| ≤ | 1/k 2 1/k1 v−1  R3

eixξG(ξvα)Qj,il (ξ) dξ, L1(R3) dv|Dylfi+(y), Lp(R3)

(change of variables: s = ξvα, z = x/vα) =| 1/k 2 1/k1 v−1−qdv|  R3

eiszG(s)Qj,il (s) dξ, L1(R3)Dylfi+(y), Lp(R3). Recalling that q < 0, we find that

(17)

Consider the second summand Ik21,k2. Using the inequalities x − y (1 + x )−1≤ a(1 + y ), |x|−σ ≤ ax qσ, q = −1/2 < 0, we have Ik21,k2 ≤ | k2  k1 v−1(1 + x )qσ  R3  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ  ×Dylfi+(y) dy, Lp(R3) dv| ≤ c| k2  k1 v−1  R3 x − y qσ|  R3 ei(x−y)ξG(ξvα)Qj,il (ξ) dξ| ×(1 + y )−qσ|Dylfi+(y)| dy, Lp(R3) dv|.

As the functions Qj,il (ξ) are homogeneous in α of degree q = −1/2 < 0, from Young’s inequality we obtain

Ik21,k2 ≤ c| k2  k1 v−1x qσ  R3 eixξG(ξvα)Qj,il (ξ) dξ, Lp(R3) dv| ×(1 + y )−qσ|D ylfi+(y)|, L1(R3) (change of variables: s = ξvα, z = x/vα) = c| k2  k1 v−1−|α|/p−q+qσdv|z qσ  R3 eiszG(s)Qj,il (s) dξ, Lp(R3) ×(1 + y )−qσ|D ylfi+(y)|, L1(R3). Since 1 +|α|/p+ q(1 − σ) > 1 + q(σ − 1) + q(1 − σ) = 1 and the functions fi+(y) are compactly-supported, we find that

Ik21,k2 → 0, k1, k2→ ∞.

The above arguments yield (3.15) and consequently (3.13). Simi-larly, we can prove (3.14).

(18)

Lemma 5. Let β = (β1, β2, β3), α = (1/2, 1/2, 1/2), βα < 1, 1 < p < ∞, 1 3 2p < σ < 3 2p, 1/p + 1/p = 1.

Then the following inequalities hold:

(3.16) x −σ(1−βα)Dβxu−,+k (x), Lp(R3) ≤ c1 3  j=1 |x|1−σDxjfj+(x), Lp(R3) +c2 3  j=1 |x|2(1−σ)D xjfj+(x), Lp(R3), (3.17) x −σ(1−βα)Dβxu−,−k (x), Lp(R3) ≤ c(|x|1−σf−(x), Lp(R3) + |x|2(1−σ)f−(x), Lp(R3))

with constants c1, c2 > 0 independent of f+(x), f−(x) and k; more-over,

(3.18) (1 + x )−σ(1−βα)(Dβxu−k1(x) − Dxβu−k2(x)), Lp(R3) → 0, k1, k2 → ∞.

Proof. From the definition of u−,+k (x) we have xu−,+k (x) = (2π)−3/2 k  1/k v−1  R3

eixξG(ξvα)(iξ)β(−M (iξ)

|ξ|2 )f+(ξ) dξ dv = (2π)−3/2 3  j=1 k  1/k v−1  R3 eixξG(ξvα)−(iξ)β |ξ|2 Dyjfj+(ξ) dξ dv = (2π)−3 3  j=1 k  1/k v−1  R3  R3 ei(x−y)ξG(ξvα)−(iξ) β |ξ|2 dξ)Dyjfj+(y) dy dv = (2π)−3 3  j=1 (  R3 k 1/k v−1  R3 ei(x−y)ξG(ξvα)−(iξ) β |ξ|2 dξ dv  Dyjfj+(y) dy).

(19)

Introduce the notation KQ,k(x) = k  1/k v−1  R3 eixξG(ξvα)Q(ξ) dξ dv,

where Q(ξ) = −(iξ)|ξ|2β. Then

xu−,+k (x) = (2π)−3 3  j=1  R3

KQ,k(x − y)Dyjfj+(y) dy.

Since the function Q(ξ) is homogeneous in α of degree q = βα−1 < 0, we obtain |α| + q = 3/2 + βα − 1 ≥ 1/2 > 0. Hence, using Lemma 3, we have x −σ(1−βα)Dxβu−,+k (x), Lp(R3) ≤ c3 j=1 x qσ R3

x−y −|α|−qy q(1−σ)y q(σ−1)|D

yjfj+(y)| dy, Lp(R3) ≤ c3 j=1   R3 3  i=1 |xi|qσ/|α||xi− yi|−1−q/|α|

×|yi|q(1−σ)/|α|y q(σ−1)|Dyjfj+(y)| dy, Lp(R3).

As σ < 2p3 then

−qσ/|α| < −q/p < 1/p. From the conditions of the lemma we find that

σ − 1 > − 3

2p, q(σ − 1)/|α| < −q/p

< 1/p.

Since

−qσ/|α| < 1/p, q(σ − 1)/|α| < 1/p, −q/|α| > 0,

by the Hardy–Littlewood inequality, we have x −σ(1−βα)Dβ xu−,+k (x), Lp(R3) ≤ c3 j=1 x (1−σ)(1−βα)D xjfj+(x), Lp(R3) and the estimate (3.16)

(20)

Prove (3.17). From the definition of the vector-functions u−,−k (x) we obtain Dxβu−,−k (x) = (2π)−3/2 k  1/k v−1  R3 eixξG(ξvα)(iξ)β |ξ|2 f−(ξ) dξ dv = (2π)−3 k  1/k v−1  R3  R3 ei(x−y)ξG(ξvα)(iξ)β |ξ|2  f−(y) dy dv = (2π)−3  R3

KQ,k(x − y)f−(y) dy,

where KQ,k(x) = k  1/k v−1  R3 eixξG(ξvα)Q(ξ) dξ dv, Q(ξ) = (iξ)β |ξ|2 .

Since the function Q(ξ) is homogeneous in α of degree q = βα−1 < 0, |α| + q = 3/2 + βα − 1 ≥ 1/2 > 0, then, as above, by Lemma 3 we have the inequality

x −σ(1−βα)Dxβu−,−k (x), Lp(R3) = (2π)−3x qσ



R3

KQ,k(x − y)f−(y) dy, Lp(R3)

≤ cx qσ R3

x − y −|α|−qy q(1−σ)y q(σ−1)|f(y)| dy, L p(R3) ≤ c R3 3  i=1 |xi|qσ/|α||xi− yi|−1−q/|α|

|yi|q(1−σ)/|α|y q(σ−1)|f−(y)| dy, Lp(R3).

Therefore, by the Hardy–Littlewood inequality, we arrive at (3.17): x −σ(1−βα)Dβxu−,−k (x), Lp(R3) ≤ x q(σ−1)|f−(x)|, Lp(R3)

≤ c(|x|1−σf−(x), Lp(R3) + |x|2(1−σ)f−(x), Lp(R3)). The convergence (3.18) can be established in the same way as (3.10).

(21)

Taking into account Lemmas 1, 2, 4 and 5, for the approximate solutions we obtain the following estimates

u−k(x), Wp,σ2 (R3) ≤ c[ 3  j=1 ( |γ|=1 Dxγfj+(x), Lp(R3) +(|x|1−σDxjfj+(x), Lp(R3) + |x|2(1−σ)Dxjfj+(x), Lp(R3)) +f−(x), Lp(R3) + |x|1−σf−(x), Lp(R3) +|x|2(1−σ)f−(x), Lp(R3)], 3  j=1 u+ k,j(x), Wp,σ1 (R3) ≤ c[3 j=1 ( |γ|=1 |x|(1−σ)Dγ xfj+(x), Lp(R3) + Dγxfj+(x), Lp(R3)) +f−(x), Lp(R3) + |x|1−σf−(x), Lp(R3)] for p ∈ (1, ∞) and σ ∈ (1 −2p3,2p3 ). Since |x|1−σ ≤ c(1 + |x|)(1−σ)≤ c(1 + |x|)2(1−σ)

and for the Laplace operator the following inequality holds [7]: |x|−2σu, L p(R3) + |x|−σ∇u, Lp(R3) ≤ c|x|2(1−σ) u, Lp(R3), we have 3  j=1 u+k,j(x), Wp,σ1 (R3) ≤ c[3 j=1 ( |γ|=1 (1 + |x|)2(1−σ)Dxγfj+(x), Lp(R3) + fj+(x), Wp,σ1 (R3)) +f−(x), Lp(R3) + |x|2(1−σ)f−(x), Lp(R3)], u−k(x), Wp,σ2 (R3) ≤ c[3 j=1 ( |γ|=1 (1 + |x|)2(1−σ)Dxγfj+(x), Lp(R3) + fj+(x), Wp,σ1 (R3)) +f−(x), Lp(R3) + |x|2(1−σ)f−(x), Lp(R3)].

Hence, we obtain the estimate (2.7). From Lemmas 1, 2, 4, 5 we have also the convergence (2.8) for p ∈ (1, ∞) and σ ∈ (1 −2p3,2p3).

The theorem is proved.

Acknowledgment. The author is very grateful to Prof. G. V. Demi-denko for statement of the problem and his assistance.

(22)

References

1. Maslennikova, V. N. (1968): Lp-estimates and the asymptotic behavior as t

→ ∞ of a solution of the Cauchy problem for a Sobolev system [in Russian],

Trudy Mat. Inst. Steklov. Akad Nauk SSSR,103, 117–141.

2. Demidenko, G. V. and Uspenskii, S. V. (1998): Partial Differential Equations

and Systems Not Solvable with Respect to the Highest-Order Derivative [in

Russian], Nauchnaya Kniga, Novosibirsk; English transl.: Marcel Dekker, New York, 2003.

3. Demidenko, G. V. (1994): On weighted Sobolev spaces and integral operators determined by quasi-elliptic equations, Russian Acad. Sci. Dokl. Math. 49, No. 1, 113–118.

4. Demidenko, G. V. (2001): Isomorphic properties of one class differential op-erators and their applications, Siberian Math. J.,42, No. 5, 865–883. 5. Hardy, G. H., Littlewood, J. E., and Polya, G. (1934): Inequalities, Univeristy

Press, Cambridge.

6. Uspenskii, S. V. (1972): On a representation of functions defined by one class of hypoelliptic operators [in Russian], Trudy Mat. Inst. Steklov. Akad Nauk SSSR,117, 292–299.

7. Demidenko, G. V. (1998): On quasielliptic operators in Rn, Siberian Math. J.,39, No. 5, 884–893.

Referanslar

Benzer Belgeler

(2002) TOEFL (Test of English as a Foreign Language) and IELTS (International English Language Testing System) are the most popular English proficiency exams that

Certified that this thesis conforms to the formal standards of the Institute of Economics and Social

İlk aşamada, 1900-1950 yılları arasında toplumsal ve kültürel yapı, kadının toplumsal konumu, gelişen endüstri, teknolojik yenilikler, sanat akımları ve tasarım

İnan (2006) Anasınıfı çocuklarının duygu ve düşüncelerini ifade etmelerinde çocuk resimlerinin önemi (6 Yaş Grubu) isimli çalışmada çocukların duygu ve

karşılanmayan hemşirelik bakım gereksinimi miktarı ve nedenlerini değerlendirmek amacı ile yapılan bu araştırma sonuçları incelendiğinde, hemşirelerin vardiyalarda

In the Fig. 4.5 it is shown the signal at the gate of the main switch of the amplifier. In the Tab. 4.1 the rise and fall times, power dissipation of simulation and experimental

共Color online兲 Excited-state absorption within valence and conduction states of Si NCs per excited carrier and at unity filling factor under three dif- ferent optical pumping

Her ne kadar, ac¸ı histogramı genellikle iki nesne arasındaki ac¸ı ic¸in yaklas¸ık bir de˘ger veriyor olsa da, bir nesnenin di˘gerine g¨ore uzamsal olarak yayılmıs¸