• Sonuç bulunamadı

On Jost Solution of Diffusion Equation With Discontinuous Coeffcient

N/A
N/A
Protected

Academic year: 2021

Share "On Jost Solution of Diffusion Equation With Discontinuous Coeffcient"

Copied!
15
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Fen Bilimleri Dergisi, Cilt 32, No. 1, (2011)

On Jost Solution of Diffusion Equation With Discontinuous

Coefficient

Yas¸ar C¸ AKMAKand Seval KARACAN Department of Mathematics, Faculty of Science, Cumhuriyet University, SIVAS 58140, TURKEY

Received 08.04.2011; accepted 22.06.2011

Abstract. In this work, integral representation of Jost solution of a diffusion equation is obtained and the properties of representation of the kernel are studied.

AMS subject classifications: Primary 34A55, Secondary 34B24, 34L05 Key words: Diffusion equation, Integral representation, Jost solution

1. Introduction

An important role in the spectral theory of linear operators was played by the trans-formation operator. Marchenko [3] , [5] first applied the transtrans-formation operator to the solution of the inverse problem. Transformation operator was also used in the fundamental paper of Gelfand and Levitan [4] . Yurko [11] studied the inverse problem theory for Sturm Liouville operators on the half-line.

−y00+ q (x) y = λy, x > 0 has a unique solution satisfying the integral equation

e (x, ρ) = exp (iρx) − 1

2iρ +∞Z

x

(exp (iρ (x − t)) − exp (iρ (t − x))) q (t) e (t, ρ) dt. where ρ ∈©ρ : Imρ ≥ 0, ρ 6= 0, λ = ρ. The function e (x, ρ) is called the Jost so-lution [11] .

Huseynov [14] has considered the differential equation

−y00+ q (x) y = λ2y, x ∈ (0, a) ∪ (a, +∞)

with discontinous conditions y (a − 0) = αy (a + 0) , y0(a − 0) = α−1y0(a + 0),

where α 6= 1, α > 0, λ is a complex valued function and satisfies the condition

xq (x) ∈ L1(I) . Then for all λ from the upper half-plane, the Jost solution is unique and it is in the form

e (x, λ) = e0(x, λ) + +∞Z

x

K (x, t) eiλtdt.

Corresponding author. Email addresses: ycakmak@cumhuriyet.edu.tr

(2)

Let’s consider the diffusion equation with discontinous coefficient

−y00+ [2λp (x) + q (x)] y = λ2ρ (x) y, x ∈ (0, a) ∪ (a, +∞) = I. (1.1) we assume that

(1 + x) q (x) , p (x) ∈ L1(I) , (1.2)

p (x) ∈ BC (I) , (1.3)

where L1(I) is the space of integrable functions and BC (I) denotes bounded, con-tinuous functions on I,

λ is a complex parameter and ρ (x) is a step function: ρ (x) =

½

1, 0 ≤ x ≤ a

α2, a < x ≤ π , 0 < α 6= 1. (1.4) The function e (x, λ) , satisfying the equation (1.1) and condition at infinity lim

x→∞e (x, λ) e

−iλx = 1 is said to be Jost solution of (1.1). It is easy to show that if

q (x) ≡ 0, then the Jost solution is the function e0(x, λ) = ( R1(x) eiλx , x > a α+R 2(x) eiλµ +(x) + α−R 3(x) eiλµ (x) , 0 < x < a (1.5) where µ±(x) = ±pρ (x)x + a³1 ∓pρ (x)´and α±=1 2 µ α ± 1 α.

2. Main Result

The main result of the present paper is the following.

Theorem. If a complex-valued function q (x) fulfilled condition (1.2), then there exists the Jost solution e (x, λ) of equation (1.1) for all λ from the upper half-plane, it is unique and representable in the form

e (x, λ) = e0(x, λ) + +∞Z

µ+(x)

K (x, t) eiλtdt, (2.1) where, for each fixed x ∈ (0, a) ∪ (a, +∞), the kernel K (x, .) belongs to the space

L1+(x) , ∞). Moreover, K(x, t) is countinous with partial derivatives

∂K(x, t) ∂x , ∂K(x, t)

∂t for t 6= µ

(x) and it satisfies the following properties

a)+∞R µ+(x) |K (x, t)| dt ≤ eσ(x)−1, σ (x) =+∞R x [2 |p (t)| + (1 + |t|) |q (t)|] dt (2.2) b)α+R00 2(x) + 2iλαα+R 0 2(x) − 2λα+p (x) R2(x) +2ip (x) K (x, µ+(x))−α+q (x) R 2(x)−2αdK (x, µ +(x)) dx = 0 (2.3)

(3)

c)α−R00 3(x) − 2iλαα−R 0 3(x) − 2λα−p (x) R3(x) −2ip (x) K (x, µ−(x) − 0) + 2ip (x) K (x, µ(x) + 0) −α−q (x) R 3(x)−2αdK (x, µ (x) − 0) dx +2α dK (x, µ−(x) + 0) dx = 0 (2.4) d)∂ 2K (x, t) ∂x2 −α 22K (x, t) ∂t2 +2ip (x) ∂K (x, t) ∂t = q (x) K (x, t) (2.5) e) lim x+t→∞ ∂K (x, t) ∂x = 0, x+t→∞lim ∂K (x, t) ∂t = 0 (2.6)

Here e0(x, λ) is in the form of (1.5) which is shown above.

e (x, λ) is in the form e (x, λ) = e0(x, λ) + +∞Z x S0(x, t, λ) [2λp (t) + q (t)] e (t, λ) dt, (2.7) where S0(x, t, λ) =                sin λ (x − t) λ , a < x < t α+sin λ (µ+(x) − t) λ + α −sin λ (µ−(x) − t) λ , x < a < t sin λα (x − t) λα , x < t < a (2.8) Proof:

Substituting (2.1) into (2.7) , we get

e0(x, λ) + +∞R µ+(x) K (x, t) eiλtdt = e 0(x, λ) ++∞R x S0(x, t, λ) [2λp (t) + q (t)] Ã e0(t, λ) + +∞R µ+(t) K (t, ξ) eiλξ ! dt.

Firstly, for x > a, we arrive +∞R x K (x, t) eiλtdt + (R 1(x) − 1) eiλx= =+∞R x S0(x, t, λ) (2λp (t) + q (t)) µ R1(t) eiλt+ +∞R t K (t, ξ) eiλξdt

Now, if one evaluates the right-hand side of above equation, then it follows that +∞R x S0(x, t, λ) [2λp (t) + q (t)] R1(t) eiλtdt + +∞R x S0(x, t, λ) [2λp (t) + q (t)] µ+∞ R t K (t, ξ) eiλξdt

(4)

=+∞R x sin λ (x − t) 2p (t) R1(t) eiλtdt ++∞R x sin λ (x − t) λ q (t) R1(t) e iλtdt ++∞R x sin λ (x − t) 2p (t) µ+∞ R t K (t, ξ) eiλξdt ++∞R x sin λ (x − t) λ q (t) µ+∞ R t K (t, ξ) eiλξdt = −i +∞R x p (t) R1(t) eiλxdt + i +∞R x p (t) R1(t) eiλ(−x+2t)dt +1 2 +∞R x q (t) R1(t) à x R −x+2t eiλudu ! dt − i +∞R x p (t) µ+∞ R t K (t, ξ) eiλ(x−t+ξ)dt +i+∞R x p (t) µ+∞ R t K (t, ξ) eiλ(−x+t+ξ)dt +1 2 +∞R x q (t) à +∞R t K (t, ξ) x−t+ξR −x+t+ξ eiλududξ ! dt = −ieiλx+∞R x p (t) R1(t) dt +i 2 +∞R x p µ x + t 2 ¶ R1 µ x + t 2 ¶ eiλtdt 1 2 +∞R x à +∞R (x+t)/2 q (u) R1(u) du ! eiλtdt −i+∞R x µ+∞ R x p (u) K (u, t − x + u) dueiλtdt +i+∞R x à (x+t)/2R x p (u) K (u, t + x − u) du ! eiλtdt +1 2 +∞R x à +∞R x q (u)t−x+uR t+x−u K (u, ξ) dξdu ! eiλtdt.

Thus, in the case of x > a, one can obtain the following equations

R1(x) = 1 − i +∞R x p (t) R1(t) dt K (x, t) = i 2p µ x + t 2 ¶ R1 µ x + t 2 ¶ 1 2 +∞R (x+t)/2 q (u) R1(u) du −i +∞R x p (u) K (u, t − x + u) du + i (x+t)/2R x p (u) K (u, t + x − u) du +1 2 +∞R x q (u)t−x+uR t+x−u K (u, ξ) dξdu. (2.9)

(5)

Similiarly, for 0 < x < a, we obtain R2(x) − 1 = −i α a R x p (t) R2(t) dt − i +∞R a p (t) R1(t) dt R3(x) − 1 = i α a R x p (t) R3(t) dt − i +∞R a p (t) R1(t) dt,

where K (x, t) ≡ 0 for |ξ| < αt − αa + a. Further one can get the following integral equations for the kernel K (x, t) ,

If 0 < x < a, αx − αa + a < t < −αx + αa − a ; K (x, t) = iα + 2p µ t + αx + αa − a R2 µ t + αx + αa − a −α+ a R (t+αx+αa−a)/2α q (u) R2(u) du +iα 2p µ −t + αx + αa + a R3 µ −t + αx + αa + a −α− a R (−t+αx+αa+a)/2α q (u) R3(u) du − α+ 2 +∞R a q (u) R1(u) du +iα 2 p µ t − αx + αa + a 2 ¶ R1 µ t − αx + αa + a 2 ¶ +α− 2 (t−αx+αa+a)/2R a q (u) R1(u) du − i α a R x

p (u) K (u, t − αx + αu) du

+i

α

(t+αx+αa−a)/2αR

x

p (u) K (u, t + αx − αu) du − 1

a R x q (u)t−αx+αuR t+αx−αu K (u, ξ) dξdu −iα++∞R a

p (u) K (u, t − αx + αa − a + u) du −α

+ 2 +∞R a q (u)t−αx+αa−a+uR t+αx−αa+a−u K (u, ξ) dξdu +iα−(t−αx+αa+a)/2R a

p (u) K (u, t − αx + αa + a − u) du

+α 2 (t−αx+αa+a)/2R a q (u) t−αx+αa+a−uR t+αx−αa−a+u K (u, ξ) dξdu (2.10) if 0 < x < a, -αx + αa − a < t < −αx + αa + a; K (x, t) = iα + 2p µ t + αx + αa − a R2 µ t + αx + αa − a −α + a R (t+αx+αa−a)/2α q (u) R2(u) du

(6)

+iα 2p µ −t + αx + αa + a R3 µ −t + αx + αa + a −α a R (−t+αx+αa+a)/2α q (u) R3(u) du −α + 2 +∞R a q (u) R1(u) du +iα 2 p µ t − αx + αa + a 2 ¶ R1 µ t − αx + αa + a 2 ¶ +α 2 (t−αx+αa+a)/2R a q (u) R1(u) du − i α a R x

p (u) K (u, t − αx + αu) du

+i

α

(t+αx+αa−a)/2αR

x

p (u) K (u, t + αx − αu) du 1 a R x q (t)t−αx+αuR t+αx−αu K (u, ξ) dξdu −iα++∞R a

p (u) K (u, t − αx + αa − a + u) du −α + 2 +∞R a q (u)t−αx+αa−a+uR t+αx−αa+a−u K (u, ξ) dξdu +iα−(t−αx+αa+a)/2R a

p (u) K (u, t − αx + αa + a − u) du

+α 2 (t−αx+αa+a)/2R a q (u)t−αx+αa+a−uR t+αx−αa−a+u K (u, ξ) dξdu (2.11) if 0 < x < a, −αx + αa + a < t < +∞; K (x, t) = iα + 2 p µ t + αx − αa + a 2 ¶ R1 µ t + αx − αa + a 2 ¶ −α + 2 +∞R (t+αx−αa+a)/2 q (u) R1(u) du +iα− 2 p µ t − αx + αa + a 2 ¶ R1 µ t − αx + αa + a 2 ¶ −i α a R x

p (u) K (u, t − αx + αu) du

+i

α

a

R

x

p (u) K (u, t + αx − αu) du 1 a R x q (u)t−αx+αuR t+αx−αu K (u, ξ) dξdu −iα++∞R a

(7)

+iα+(t+αx−αa+a)/2R

a

p (u) K (u, t + αx − αa + a − u) du −α + 2 +∞R a q (u)t−αx+αa−a+uR t+αx−αa+a−u K (u, ξ) dξdu −iα−+∞R a

p (u) K (u, t + αx − αa − a + u) du

+iα−(t−αx+αa+a)/2R a

p (u) K (u, t − αx + αa + a − u) du α− 2 (t−αx+αa+a)/2R a q (u)t−αx+αa+a−uR t+αx−αa−a+u K (u, ξ) dξdu. (2.12)

Let’s shown by the method of successive approximations that, equations of (2.10) , (2.11) and (2.12) have solution K (x, .) ∈ L1(µ+(x) , ∞) satisfying property of (2.2).

In the case of x > a K0(x, t) = i 2p µ x + t 2 ¶ R1 µ x + t 2 ¶ 1 2 +∞R (x+t)/2 q (u) R1(u) du K1(x, t) = −i +∞R x p (u) K0(u, t − x + u) du +i (x+t)/2R x p (u) K0(u, t + x − u) du + 1 2 +∞R x q (u) t−x+uR t+x−u K0(u, ξ) dξdu Kn(x, t) = −i +∞R x p (u) Kn−1(u, t − x + u) du +i (x+t)/2R x p (u) Kn−1(u, t + x − u) du +1 2 +∞R x q (u)t−x+uR t+x−u Kn−1(u, ξ) dξdu K (x, t) = X n=0 Kn(x, t) (2.13)

Let us show by induction that +∞Z αx−αa+a |Kn(x, t)| dt ≤σ n+1(x) (n + 1)!, where, +∞Z x [2 |p (t)| + (1 + |t|) |q (t)|] dt = σ (x) . (2.14) Indeed,

(8)

+∞R x |K0(x, t)| dt ≤ 1 2 +∞R x ¯ ¯ ¯ ¯p µ x + t 2 ¶¯¯ ¯ ¯ ¯ ¯ ¯ ¯R1 µ x + t 2 ¶¯¯ ¯ ¯ dt +1 2 +∞R x +∞R (x+t)/2

|q (u)| |R1(u)| dudt. We obtain +∞R x |K0(x, t)| dt ≤ +∞R x [2 |p (t)| + (1 + |t|) |q (t)|] dt. Thus +∞Z x |K0(x, t)| dt ≤ σ (x) . (2.15) For n = 1 +∞R x |K1(x, t)| dt ≤ +∞R x +∞R x

|p (u)| |K0(u, t − x + u)| dudt ++∞R

x

(x+t)/2R

x

|p (u)| |K0(u, t + x − u)| dudt +1 2 +∞R x +∞R x |q (u)|t−x+uR t+x−u |K0(u, ξ)| dξdudt. ≤+∞R x [2 |p (t)| + (1 + |t|) |q (t)|] σ (t) dt. We get +∞Z x |K1(x, t)| dt ≤ σ 2(x) 2! . (2.16) Suppose that +∞Z x |Kn−1(x, t)| dt ≤σ n(x) n! (2.17)

is valid for n − 1. Let’s show that +∞Z x |Kn(x, t)| dt ≤ σn+1(x) (n + 1)!. (2.18) +∞R x |Kn(x, t)| dt ≤ +∞R x +∞R x

|p (u)| |Kn−1(u, t − x + u)| dudt

+ +∞R

x

(x+t)/2R

x

|p (u)| |Kn−1(u, t + x − u)| dudt+1

2 +∞R x +∞R x |q (u)| t−x+uR t+x−u |Kn−1(u, ξ)| dξdudt +∞R x [2 |p (t)| + (1 + |t|) |q (t)|]σ n(t) n! dt.

(9)

Hence +∞Z x |Kn(x, t)| dt ≤ σ n+1(x) (n + 1)!

is valid. It follows by virtue of last equation in the case of x > a, series, (2.13) convergents in L1(x, +∞) for each fixed x, and then

+∞R x |K (x, t)| dt ≤ P n=0 +∞R x |Kn(x, t)| dt ≤ 1 − 1 + σ (x) +σ2(x) 2! + ... + σn+1(x) (n + 1)! + ... = eσ(x)−1. (2.19)

Now, we consider the case of 0 < x < a.

Then, put K (x, t) ≡ 0 for t > −αx + αa − a in the case of αx − αa + a < t <

−αx + αa − a −αx+αa−aR αx−αa+a |K0(x, t)| dt ≤ α+ 2 −αx+αa−aR αx−αa+a ¯ ¯ ¯ ¯p µ t + αx + αa − a ¶¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯R2 µ t + αx + αa − a ¶¯ ¯ ¯ ¯ dt +α + −αx+αa−aR αx−αa+a à a R (t+αx+αa−a)/2α |q (u)| |R2(u)| du ! dt +α− 2 −αx+αa−aR αx−αa+a ¯ ¯ ¯ ¯p µ −t + αx + αa + a ¶¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯R3 µ −t + αx + αa + a ¶¯ ¯ ¯ ¯ dt +α −αx+αa−aR αx−αa+a à a R (−t+αx+αa+a)/2α |q (u)| |R3(u)| du ! dt +α+ 2 −αx+αa−aR αx−αa+a µ+∞ R a |q (u)| |R1(u)| dudt +α 2 −αx+αa−aR αx−αa+a ¯ ¯ ¯ ¯p µ t − αx + αa + a 2 ¶¯¯ ¯ ¯ ¯ ¯ ¯ ¯R1 µ t − αx + αa + a 2 ¶¯¯ ¯ ¯ dt +α− 2 −αx+αa−aR αx−αa+a à (t−αx+αa+a)/2R a |q (u)| |R1(u)| du ! dt α + α +∞R x |p (t)| dt + α++∞R x (1 + |t|) |q (t)| dt −α α +∞R x |p (t)| dt +α−+∞R x (1 + |t|) |q (t)| dt + αα++∞R x (1 + |t|) |q (t)| dt +α−+∞R x |p (t)| dt + 2αα−+∞R x (1 + |t|) |q (t)| dt

(10)

< α++∞R x [2 |p (t)| + (1 + |t|) |q (t)|] dt +α−+∞R x [2 |p (t)| + (1 + |t|) |q (t)|] dt +α (α++ 2α)+∞R x (1 + |t|) |q (t)| dt + α−+∞R x |p (t)| dt < α+σ (x) + ασ (x) + 2α+∞R x (1 + |t|) |q (t)| dt + 4α+∞R x |p (t)| dt < (α++ α+ 2α) σ (x) = c1σ (x) . (2.20) Hence −αx+αa−aZ αx−αa+a |K0(x, t)| dt ≤ c1σ (x) .

Put K (x, t) ≡ 0 for t < −αx+αa−a in the case of −αx+αa−a < t < −αx+αa+a to get −αx+αa+aR −αx+αa−a |K0(x, t)| dt ≤ α + 2 −αx+αa+aR −αx+αa−a ¯ ¯ ¯ ¯p µ t + αx + αa − a ¶¯¯ ¯ ¯ ¯ ¯ ¯ ¯R2 µ t + αx + αa − a ¶¯¯ ¯ ¯ dt +α+ −αx+αa+aR −αx+αa−a à a R (t+αx+αa−a)/2α |q (u)| |R2(u)| du ! dt +α 2 −αx+αa+aR −αx+αa−a ¯ ¯ ¯ ¯p µ −t + αx + αa + a ¶¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯R3 µ −t + αx + αa + a ¶¯ ¯ ¯ ¯ dt +α −αx+αa+aR −αx+αa−a à a R (−t+αx+αa+a)/2α |q (u)| |R3(u)| du ! dt +α + 2 −αx+αa+aR −αx+αa−a µ+∞ R a |q (u)| |R1(u)| dudt +α− 2 −αx+αa+aR −αx+αa−a ¯ ¯ ¯ ¯p µ t − αx + αa + a 2 ¶¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯R1 µ t − αx + αa + a 2 ¶¯ ¯ ¯ ¯ dt +α 2 −αx+αa+aR −αx+αa−a à (t−αx+αa+a)/2R a |q (u)| |R1(u)| du ! dt < α + α +∞R x |p (t)| dt + α++∞R x (1 + |t|) |q (t)| dt +α α +∞R x |p (t)| dt + α−+∞R x (1 + |t|) |q (t)| dt ++∞R x (1 + |t|) |q (t)| dt + α−+∞R x |p (t)| dt

(11)

+αα−+∞R x (1 + |t|) |q (t)| dt < α++∞R x [2 |p (t)| + (1 + |t|) |q (t)|] dt +α−+∞R x [2 |p (t)| + (1 + |t|) |q (t)|] dt + (αα−+ α+)+∞R x (1 + |t|) |q (t)| dt + α−+∞R x |p (t)| dt < α+σ (x) + ασ (x) + αα++∞R x [2 |p (t)| + (1 + |t|) |q (t)|] dt = (α++ α+ αα+) σ (x) = c2σ (x) . (2.21) Thus −αx+αa+aZ −αx+αa−a |K0(x, t)| dt ≤ c2σ (x) is obtained. For −αx + αa + a < t < +∞, +∞R −αx+αa+a |K0(x, t)| dt ≤α + 2 +∞R −αx+αa+a ¯ ¯ ¯ ¯p µ t + αx − αa + a 2 ¶¯¯ ¯ ¯ ¯ ¯ ¯ ¯R1 µ t + αx − αa + a 2 ¶¯¯ ¯ ¯ dt +α+ 2 +∞R −αx+αa+a à +∞R (t+αx−αa+a)/2 |q (u)| |R1(u)| du ! dt +α− 2 +∞R −αx+αa+a ¯ ¯ ¯ ¯p µ t − αx + αa + a 2 ¶¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯R1 µ t − αx + αa + a 2 ¶¯ ¯ ¯ ¯ dt < α++∞R x |p (t)| dt + α++∞R x (1 + |t|) |q (t)| dt + α++∞R x |p (t)| dt = α++∞R x [2 |p (t)| + (1 + |t|) |q (t)|] dt = α+σ (x) . (2.22) So +∞Z −αx+αa+a |K0(x, t)| dt ≤ α+σ (x) . Then, it follows from (2.20) , (2.21) and (2.22) for 0 < x < a

+∞Z

αx−αa+a

|K0(x, t)| dt ≤ Cσ (x) , (2.23) where C = c1+ c2+ α+, c

(12)

Now, for n = 1, if one evaluate integral +∞R αx−αa+a |K1(x, t)| dt then +∞R αx−αa+a |K1(x, t)| dt ≤ 1 α +∞R αx−αa+a µa R x

|p (u)| |K0(u, t − αx + αu)| dudt +1 α +∞R αx−αa+a µa R x

|p (u)| |K0(u, t + αx − αu)| dudt + 1 +∞R αx−αa+a à a R x |q (u)|t−αx+αuR t+αx−αu |K0(u, ξ)| dξdu ! dt + +∞R αx−αa+a µ+∞ R a

|p (u)| |K0(u, t − αx + αa − a + u)| dudt + +∞R αx−αa+a à (t+αx−αa+a)/2R a

|p (u)| |K0(u, t + αx − αa + a − u)| du ! dt +α + 2 +∞R αx−αa+a à +∞R a |q (u)| t−αx+αa−a+uR t+αx−αa+a−u |K0(u, ξ)| dξdu ! dt +α− +∞R αx−αa+a µ+∞ R a

|p (u)| |K0(u, t + αx − αa − a + u)| dudt +α− +∞R αx−αa+a à (t−αx+αa+a)/2R a

|p (u)| |K0(u, t − αx + αa + a − u)| du ! dt +α 2 +∞R αx−αa+a à (t−αx+αa+a)/2R a |q (u)|t−αx+αa+a−uR t+αx−αa−a+u |K0(u, ξ)| dξdu ! dt < CRa x [2 |p (t)| + (1 + |t|) |q (t)|] σ (t) dt +C+∞R a [2 |p (t)| + (1 + |t|) |q (t)|] σ (t) dt. (2.24) It follows from (2.24) +∞Z αx−αa+a |K1(x, t)| dt ≤ Cσ 2(x) 2! . (2.25) Assume that +∞Z αx−αa+a |Kn−1(x, t)| dt ≤ Cσ n(x) n! (2.26)

is valid for n − 1.Let’s show that +∞Z

αx−αa+a

|Kn(x, t)| dt ≤ Cσ n+1(x)

(13)

is valid for n. +∞R αx−αa+a |Kn(x, t)| dt ≤ 1 α +∞R αx−αa+a µa R x

|p (u)| |Kn−1(u, t − αx + αu)| du

dt +1 α +∞R αx−αa+a µa R x

|p (u)| |Kn−1(u, t + αx − αu)| du

dt + 1 +∞R αx−αa+a à a R x |q (u)|t−αx+αuR t+αx−αu |Kn−1(u, ξ)| dξdu ! dt + +∞R αx−αa+a µ+∞ R a

|p (u)| |Kn−1(u, t − αx + αa − a + u)| du

dt + +∞R αx−αa+a à (t+αx−αa+a)/2R a

|p (u)| |Kn−1(u, t + αx − αa + a − u)| du

! dt +α+ 2 +∞R αx−αa+a à +∞R a |q (u)|t−αx+αa−a+uR t+αx−αa+a−u |Kn−1(u, ξ)| dξdu ! dt +α− +∞R αx−αa+a µ+∞ R a

|p (u)| |Kn−1(u, t + αx − αa − a + u)| du

dt +α− +∞R αx−αa+a à (t−αx+αa+a)/2R a

|p (u)| |Kn−1(u, t − αx + αa + a − u)| du

! dt +α 2 +∞R αx−αa+a à (t−αx+αa+a)/2R a |q (u)| t−αx+αa+a−uR t+αx−αa−a+u |Kn−1(u, ξ)| dξdu ! dt < C n! a R x [2 |p (t)| + (1 + |t|) |q (t)|] σn(t) dt +C n! +∞R a [2 |p (t)| + (1 + |t|) |q (t)|] σn(t) dt. Thus +∞Z αx−αa+a |Kn(x, t)| dt ≤ Cσ n+1(x) (n + 1)! (2.28)

Remark: For simplicity, α was taken as α > 1. Other case can be treated in the same way.

Finally, let investigate correlation between the kernel function K (x, t) and co-efficients p (x) , q (x) and ρ (x) in the equation

−y00+ [2λp (x) + q (x)] y = λ2ρ (x) y. For 0 < x < a, e (x, λ) = α+R 2(x) eiλµ +(x) + α−R 3(x) eiλµ (x) + +∞R µ+(x) K (x, t) eiλtdt.

(14)

with µ+(x) < µ(x) < +∞. If we put e (x, λ) and e00(x, λ) instead of y ve y00 in (1.1) , we get; α+R00 2(x) + 2iλαα+R20 (x) − 2λα+p (x) R2(x) + 2ip (x) K (x, µ+(x)) −α+q (x) R 2(x) − 2αdK (x, µ +(x)) dx = 0 α−R00 3(x) − 2iλαα−R03(x) − 2λα−p (x) R3(x) − 2ip (x) K (x, µ−(x) − 0) +2ip (x) K (x, µ−(x) + 0) − αq (x) R 3(x) −2αdK (x, µ (x) − 0) dx + 2α dK (x, µ−(x) + 0) dx = 0 2K (x, t) ∂x2 − α2 2K (x, t) ∂t2 + 2ip (x) ∂K (x, t) ∂t = q (x) K (x, t) lim x+t→∞ ∂K (x, t) ∂x = 0, x+t→∞lim ∂K (x, t) ∂t = 0

In the case x > a, since µ+(x) = x and α = 1, then the same properties of the kernel function.can be easily obtained.

Hence, the proof is completed.

Acknowledgments

This work is supported by the Scientific Research Project Fund of Cumhuriyet Uni-versity under the project number F-287.

References

[1] V.A. Ambartsumyan,1929, ¨Uber eine Frage der Eigenwerttheorie, Z. Physik 53, 690-695.

[2] Povzner, A. V., 1948, On Differential Equations of Sturm-Liouville Type on a Half-Axis, Mat. Sb., 23.

[3] Marchenko V. A. (1950). Some Problems In The Theory of Second-Order Differential Operator, Dock. Akad. Nauk SSSR, 72 , 457-460

[4] Gelfand I. M. and Levitan B. M. (1951). On The Determination of a Differential Equation From Its Spectral Function , Izv. Akad. Nauk SSSR, SEr. Mat. 15 309-360; English transl. In Amer. Math. Soc. Transl. (2) 1 (1955)

[5] Marchenko V. A. (1952). Some Problems In The Theory of Linear Differential Oper-ators, Trudy Moskov. Mat. Obshch. 1 , 327-420

[6] Levitan, B. M., 1964, Generalized Translation Operators and some o its Applications, Jerusalem.

[7] Gasimov, M.G. and Levitan, B.M., 1964, About Sturm-Liouville Differential Opera-tors, Math. Sborn., 63 (105), No. 3.

[8] Naimark, M. A., 1967, Linear Differential Operators, Moscow, Nauka, (in Russian). [9] Gasimov M.G., Guseniov,G.Sh,1981, Determining of The Diffusion Operator From

(15)

[10] Amirov, R. Kh. and Yurko, V.A., 2001, On Differential Operators with a Singularity and Discontinuity Conditions Inside the Interval. Ukr. Math. Jour., V.53, No:11, pp. 1443-1458.

[11] Freiling G., Yurko V., (2001) Inverse Sturm Liouville Problems and Their Applica-tions, Nova Science Publishers,

[12] Akhmedova E.N.,2002,On Represantation of Solution of Sturm-Liouville Equation With Discontinious Coefficients, Proceedings of IMM of NAS of Azerbaijan v XVI, (XXIV) pp 5-9.

[13] Amirov, R. Kh., 2006, On Sturm-Liouville Operators with Discotinuity conditions inside an interval, J. Math. Anal. Appl., 317 , pp. 163-176.

[14] Huseynov Hidayet M., Osmanova Jalala A. ,2006, On Iost Solution of Sturm-Liouville Equation With Discontinuty Conditions,IMM of NAS of Azerbaijan, 9, Agayev str., AZ1141, Baku, Azerbaijan

[15] Karacan S. (2009). An Integral Representation of Solution of Diffusion Equation With Discontinuous Coefficient, Msc Thesis, Cumhuriyet Univercity, Sivas.

Referanslar

Benzer Belgeler

Bu araştırmalar, özellikle deneysel araştırma ortamlarında, aile katılımının matematik eğitimi üzerindeki olumlu etkisini göstermektedirler; fakat ailelerin günlük

In a trial conducted by Metcalfe (16) et al., rate of ath- erosclerotic renal artery disease in patients with PAD in ≥ 3 segments (43,4%) was found to be higher than in patients

In this thesis, we propose a new scatternet formation algorithm named as SF-DeviL (Scatternet Formation based on Device and Link Characteristics). SF- DeviL runs in a

To this end, mastering exciton flow at the nanoscale through near-field nonradiative energy transfer has proven vital to accomplish efficient light generation and light

“Şu Kürt Cemali olayını nasıl öğreneceğiz, biraz bilgi toplamak istiyorum.&#34;.. &#34;O lu

24 Mart 1931’de Mustafa Kemal Paşa'mn, Türk Ocaklarının Bilimsel Halkçılık ve Milliyetçilik ilkelerini yaymak görevi amacına ulaştığını ve CHP’nin bu

[r]

Bu çalışmada, yaş ve kuru tip yaşa bağlı makula dejenerasyonu (YBMD) hastalarında arteriyel sertliği kalp ayak bileği vaskuler indeks (cardio - ankle vascular