• Sonuç bulunamadı

Direct theorems of trigonometric approximation for variable exponent Lebesgue spaces

N/A
N/A
Protected

Academic year: 2021

Share "Direct theorems of trigonometric approximation for variable exponent Lebesgue spaces"

Copied!
15
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

https://doi.org/10.33044/revuma.v60n1a08

DIRECT THEOREMS OF TRIGONOMETRIC APPROXIMATION FOR VARIABLE EXPONENT LEBESGUE SPACES

RAMAZAN AKG ¨UN

Abstract. Jackson type direct theorems are considered in variable exponent Lebesgue spaces Lp(x)with exponent p(x) satisfying 1 ≤ ess inf

x∈[0,2π]p(x), ess supx∈[0,2π]p(x) < ∞, and the Dini–Lipschitz condition. Jackson type di-rect inequalities of trigonometric approximation are obtained for the modulus of smoothness based on one sided Steklov averages

Zvf (·) :=1 v

Z v

0

f (· + t) dt

in these spaces. We give the main properties of the modulus of smoothness Ωr(f, v)p(·):= k(I − Zv)rf kp(·) (r ∈ N)

in Lp(x), where I is the identity operator. An equivalence of the modulus of smoothness and Peetre’s K-functional is established.

1. Introduction

The main purpose of this work is to obtain a Jackson type direct theorem for functions in generalized Lebesgue spaces Lp(·) with variable exponent p (x) : [0, 2π) → [1, ∞), satisfying the Dini–Lipschitz condition and

1 ≤ p := ess infx∈[0,2π)p (x) ≤ ess supx∈[0,2π)p (x) =: P < ∞.

The main difficulty related to Lp(·) theory is that the spaces Lp(·) are, in general, not translation invariant, see e.g. [10, Proposition 3.6.1]. This inadequacy and the structure of Lp(·) cause some additional problems. For example Young’s Convolu-tion inequality and Cavalieri’s equality do not hold in the spaces Lp(·). Maximal, Poinc´are, and Sobolev inequalities do not hold in a modular form in Lp(·) either. Interpolation is not so useful in Lp(·). Solutions of the p (·)-Laplace equation are not scalable.

To obtain a Jackson type inequality in Lp(·)we can not use the classical modulus of smoothness ωr(f, ·)p because the classical translation taf (x) := f (x + a) of

2010 Mathematics Subject Classification. Primary 42A10; Secondary 41A17.

Key words and phrases. Lebesgue spaces with variable exponent; K-functional; Steklov mean;

Best approximation.

This work was supported by Balikesir University Research Project “A modulus of smoothness in Lp(x)” in 2019.

(2)

f (·), where a ∈ R, may not be in the class Lp(·) even if f is in Lp(·), see e.g. [10, Proposition 3.6.1]. So the classical modulus of smoothness ωrmay not be suitable for functions f ∈ Lp(·). Instead of using the classical translation operator f 7→ t

af , a ∈ R, we will consider the one sided Steklov average

Zvf (x) := 1 v Z v 0 tuf (x) du, v > 0; Z0f := f

in Lp(·) [22, 23, 2, 24]. Under some condition on p (x) Sharapudinov [22, 23] ob-tained that the family of operators {Zvf }0<v≤1 is uniformly bounded on Lp(·) (see Theorem 1.1 below).

Let T := [0, 2π) and let E be the class of Lebesgue measurable functions p (x) : T → [1, ∞) such that 1 ≤ p ≤ P < ∞. The variable exponent p (x) is said to satisfy the Dini–Lipschitz property on T ([22]) if there exists a (Dini–Lipschitz) constant A > 0, depending only on p (x), such that

|p (x) − p (y)| ln 2π |x − y|−1≤ A < ∞, (1.1) for all x, y ∈ T with x 6= y. We will denote by P the class of those exponents

p ∈ E that satisfy the Dini–Lipschitz property (1.1) on T. We define the variable

exponent Lebesgue space Lp(·)as the collection of 2π-periodic Lebesgue measurable functions f : T → R having the norm

kf kp(·):= inf ( α > 0 : Z T f (x) α p(x) dx ≤ 1 ) < ∞, (1.2)

where p ∈ E . The space Lp(·)is a Banach space. If p ∈ P, p0(x) := p (x) / (p (x) − 1)

for p (x) > 1, and p0(x) := ∞ for p (x) = 1, then H¨older’s inequality Z T |f (x) g (x)| dx ≤  1 + 1 p− 1 P  kf kp(·)kgkp0(·)= H kf kp(·)kgkp0(·)

holds when f ∈ Lp(·)and g ∈ Lp0(·). We know that

kf kp(·)≤ (2π + 1) kf kq(·)= D kf kq(·) (1.3) for p ∈ E and 1 ≤ p (x) ≤ q (x) ≤ ¯q := ess supx∈Tq (x) < ∞ a.e. on T.

Theorem 1.1. If p ∈ P, f ∈ Lp(·), and 0 < v ≤ 1, then

kZvf kp(·)≤ kZvkLp(·)→Lp(·)kf kp(·), (1.4) where kf kp(·) is the Luxemburg norm (1.2) of f and

kZvkLp(·)→Lp(·) ≤ B :=  136

25 A

(2π + 1)ln 2A +P. (1.5)

Inequality (1.4) was obtained in [22, 23]; (1.5) can be proved similarly.

After this result one can define modulus of smoothness. For p ∈ P, f ∈ Lp(·), and 0 < v ≤ 1, we set

(3)

For r = 1 see [24]. Note that modulus of smoothness is the main notion in the approximation theory and it is used in many of the approximation results such as Jackson type direct theorems, Salem–Stechkin type inverse theorems, Marchaud type inequalities, etc. First of all the set of trigonometric polynomials is a dense subset ([23, Theorems 6.1 and 6.2]) of Lp(·)when p ∈ P. This allows us to consider approximation problems in Lp(·). Jackson type inequalities in Lp(·) were investi-gated by several mathematicians. For example in [14] Israfilov and Testici obtained the following estimate:

If f ∈ Lp(·), p ∈ P, then En(f )p(·):= inf t∈Πn kf − tkp(·)= O (1) sup 0≤h≤1/n 1 h Z h 0 (I − tu)rf (·) du p(·) (1.7)

holds for n ∈ N, with constant depending only on p, where Πn is the class of

trigonometric polynomials of degree not greater than n.

For p ∈ ˆP := {p ∈ P : 1 < ess infx∈Tp (x)} see also [13]. In [2] the author proved that If f ∈ Lp(·), r > 0, p ∈ ˆP, then En(f )p(·)= O (1) sup 0≤hi, t≤1/n (I − Φh1) · · · I − Φhbrc (I − Φt) {r} f p(·)

holds for n ∈ N, with constant depending only on p, r, where

Φhf (x) := 1 h Z x+h/2 x−h/2 f (t) dt,

brc := max {n ∈ N : n ≤ x}, {r} := r−brc, I is the identity operator, and (I − Φt){r} is the fractional binomial series expansion of I − Φt.

Here, and in what follows, A = O (1) B means that A/B is less than or equal to some constant, depending on essential parameters only.

In [24, 28] Sharapudinov and Volosivets considered the following type of modulus of smoothness of order r ∈ N:

sup

0≤vi≤δ

k(I − Zv1) · · · (I − Zvr) f kp(·) in the right hand side of (1.7):

If f ∈ Lp(·), p ∈ P, then ([24, r = 1], [28, r ≥ 1]) En(f )p(·)= O (1) sup

0≤vi≤δ

k(I − Zv1) · · · (I − Zvr) f kp(·) (1.8) holds for n, r ∈ N, with constant depending only on p, r.

In the present work we will consider a more natural and smaller modulus of smoothness:

(4)

for f ∈ Lp(·)and p ∈ P. Our result, given below, refines the Jackson type estimates (1.7) and (1.8).

Theorem 1.2. We suppose that p ∈ P, f ∈ Lp(·)

, and r ∈ N. In this case we have inequalities En(f )p(·)≤ CΩr  f, 1 n  p(·) , (1.9) n Y s=1 Es(f )p(·) !1/n ≤C 2 (2e [1 + B])r B Ωr  f, 1 n  p(·) , (1.10) where C = 2Bhmaxn216BHPr−1 j=0B j , 2 [1 + 108BH + 432BH ln 2]oi r .

For the constant exponent case p (x) = p, 1 ≤ p ≤ ∞, the Lp modulus of smoothness (1.6) was considered by Trigub in 1968 [27] for r = 1, 1 ≤ p ≤ ∞, and by Ditzian and Ivanov [11] for r ∈ N, 1 ≤ p ≤ ∞. In the case r = 1, p ∈ P, a Jackson type inequality was obtained in [24] by Sharapudinov (see (1.8) and [28]). For the constant exponent case p (x) = p, in Lpthe inequality (1.10) was obtained by Natanson and Timan (see [21]) for r ∈ N, p = ∞.

Let X be a Banach space with norm k·kX. By Xrwe denote the class of functions f ∈ X such that f(r−1)is absolutely continuous and f(r)∈ X. When r ∈ N, p ∈ P,

and X = Lp(·) we will denote Wr p(·):= X

r.

The following second type Jackson inequality holds:

Theorem 1.3. Suppose that r, k, n ∈ N, p ∈ P, and f ∈ Wp(·)r . Then the following inequality holds: nrEn(f )p(·)≤ C  B  1 + D (2π)1p−1 rk  f(r), 1 n  p(·) .

One of the results of this paper is the following theorem, which contains an equivalence of Ωrand Peetre’s K-functional.

Theorem 1.4. If r ∈ N, p ∈ P, f ∈ Lp(·), then the equivalence k(I − Zv)rf kp(·)≈ inf  kf − gkp(·)+ vr g (r) p(·): g ∈ W r p(·)  (1.11) holds for v > 0.

If A (t) = O (B (t)) and B (t) = O (A (t)), we will write A (t) ≈ B (t). Corollary 1.5. If k ∈ N, p ∈ P, f ∈ Lp(·), thenk(f, λv)p(·)= O (1) (1 + bλc) kk(f, v)p(·), v, λ > 0, andk(f, v)p(·) vk = O (1) Ωk(f, δ)p(·) δk , 0 < δ ≤ v,

(5)

The rest of the present work is organized as follows. In Section 2 we give upper estimates for the operator norm of Steklov and Jackson operators. Section 3 contains the main properties of the modulus of smoothness Ωr and some integral operators. In Section 4 we give a transference result. In Section 5 we give the proof of the equivalence of the modulus of smoothness Ωrand Peetre’s K-functional Kr. Finally, Section 6 contains the proof of the refined Jackson inequality and other proofs.

In what follows, letters c, p, A, B, C, . . . will stand for certain positive constants and these will not change in different places.

2. Upper estimates for the operator norm of Steklov and Jackson operators

Theorem 2.1 ([23]). If p ∈ P, ϑ > 0, 1 ≤ λ < ∞, |τ | ≤ πλ−ϑ, then the family of operators {Sλ,τ}1≤λ<∞, defined by

Sλ,τf (x) = λ

Z x+τ +1/(2λ)

x+τ −1/(2λ)

f (u) du,

is uniformly bounded (in λ and τ ) in Lp(·):

kSλ,τf kp(·)≤ kSλ,τkLp(·)→Lp(·)kf kp(·) (2.1) with

kSλ,τkLp(·)→Lp(·) ≤ B. (2.2)

We point out that (2.1) was obtained in [23] and (2.2) can be obtained in the same way.

Let p ∈ P, f ∈ Lp(·), 0 < v ≤ 1. We note that Zvf (·) = 1 v Z v 0 tuf (·) du = S1 v, v 2f (·) . Let n ∈ N and Dnf (x) := 1 π Z T t−uf (x)J2,bn 2c+1(u) du ∈ Πn

be the Jackson operator (polynomial) where J2,n is the Jackson kernel

J2,n(x) := 1 κ2,n  sin(nx/2) sin(x/2) 4 , κ2,n:= 1 π Z π −π  sin(nt/2) sin(t/2) 4 dt. It is known ([12, p. 147]) that 3 2√2n 3 ≤ κ2,n≤ 5 2√2n 3.

(6)

The Jackson kernel J2,nsatisfies the relations 1 π R TJ2,n(u) du = 1, |J2,n(u)| ≤ 2 √ 2 3 π 4, n−3/4 ≤ u ≤ π,

maxu∈T|J2,n(u)| ≤ π2−1 4 n, 1 π Rπ 0 uJ2,n(u) du ≤ 1 2n.              (2.3)

The next theorem was obtained in [24].

Theorem 2.2. If p ∈ P and f ∈ Lp(·), then the sequence of Jackson operators {Dnf }1≤n<∞ is uniformly bounded (in n) in Lp(·):

kDnf kLp(·) ≤ kDnkLp(·)→Lp(·)kf kLp(·), where kDnkLp(·)→Lp(·) ≤ E := π 4 32 ln 23P4A  68 25 4A3P" 45π5D 16 +H  15π5 D 16 P 3 #1P + 2 √ 2D −4  (2π)1P. 3. Modulus of smoothness By Theorem 1.1 we have (I − Zv)kf p(·)≤ (1 + B) k kf kp(·).

For k ∈ N we define the modulus of smoothness of f ∈ Lp(·), p ∈ P, ask(f, v)p(·):= (I − Zv) k f p(·), v > 0. From [28, (3.2) and Corollary 2] we have

Lemma 3.1. Let p ∈ P, k ∈ N, and 0 ≤ v ≤ 1. Then (I − Zv) k f p(·)≤ B · 2 −1v (I − Zv) k−1 f0 p(·), f ∈ W 1 p(·), and (I − Zv) k f p(·)≤ B k · 2−kvk f (k) p(·), f ∈ W k p(·) hold. 4. Transference result

Here we state a variant of the transference result obtained in [5, Theorem 14]. Let p ∈ P, f ∈ Lp(·), G ∈ Lp0(·), and kGkp0(·)= 1. Note that the dual of Lp(·) is Lp0(·). For any ε > 0 there exists an h

1≤ 1 such that

(7)

(see [5, (18)]). Everywhere in this work, this h1 will be fixed. We define Ff(u) :=      hΦh1f (· + u) , Gi = R TΦh1f (x + u) |G (x)| dx, for −h1≤ u ≤ h1, Ff(h1) for h1< u ≤ π, Ff(−h1) for π ≤ u < −h1. (4.1) Lemma 4.1 ([5, Lemma 13]). If p ∈ P, f ∈ Lp(·), then the function F

f(u) defined in (4.1) is uniformly continuous on [−h1, h1] =: Ih1.

Theorem 4.2. Let p ∈ P and f, g ∈ Lp(·). If kFgkC[I

h1] ≤ c kFfkC[Ih1] , then

kgkp(·)≤ 3cBH kfkp(·). We define Peetre’s K-functional

Kr(f, v, X)X:= inf g∈Xr n kf − gkX+ vr g(r) X o , v > 0, and Kr(f, v, p (·)) := Kr f, v, Lp(·)  Lp(·) for r ∈ N, p ∈ P, v > 0, and f ∈ L p(·).

Proposition 4.3 ([5, Corollary 20]). If 0 < h ≤ v ≤ 1 and f ∈ C [T], the class of

functions continuous on T, then

k(I − Zh) f kC[T]≤ 72 k(I − Zv) f kC[T]. (4.2)

Lemma 4.4. Let 0 < h ≤ v ≤ 1, p ∈ P, and f ∈ Lp(·). Then 1

3k(I − Zh) f kp(·)≤ 72BH k(I − Zv) f kp(·). (4.3) 5. Approximation by Jackson operators

Proposition 5.1 ([24]). For every n ∈ N, p ∈ P, f ∈ W1

p(·), the inequality En(f )p(·)≤ kf − Dnf kp(·)≤ B n1 f (1) p(·) holds. Theorem 5.2. If p ∈ P, f ∈ Lp(·) , and n ∈ N, then kf − Dnf kp(·)≤ B [216H + 2 [1 + 108BH + 432BH ln 2] + 216EH] Ω1  f,1 n  p(·) . (5.1) To find an equivalence between the modulus of smoothness Ωr(f, δ)p(·) and the K-functional Kr(f, δ, p (·))p(·) we consider the operator (see [20, 24]) defined for f ∈ Lp(·), p ∈ P, as (Rvf ) (x) := 2 v Z v v/2 1 h Z h 0 f (x + t) dt ! dh, x ∈ T, v > 0.

(8)

Note that for 0 < v ≤ 1, p ∈ P we know that kRvf kp(·)≤ B kfkp(·), hence f − Rvf ∈ Lp(·)for f ∈ Lp(·). We set Rrvf := (Rvf )

r . Lemma 5.3. Let 0 < v, p ∈ P and f ∈ Lp(·). Then

k(I − Rv) f kp(·)≤ 216HB k(I − Zv) f kp(·).

Proof. If f ∈ Lp(·), we can use the generalized Minkowski integral inequality and Lemma 4.4 to obtain k(I − Rv) f kp(·)= 2 v Z v v/2 1 h Z h 0 (f (x + t) − f (x)) dt ! dh p(·) = 2 v Z v v/2 (Zhf (x) − f (x)) dh p(·) ≤ 2 v Z v v/2 kZhf − f kp(·)dh ≤ 216HB kZvf − f kp(·) 2 v Z v v/2 dh = 216HB k(I − Zv) f kp(·).  Remark 5.4. Note that the function Rvf is absolutely continuous ([24]) and differentiable a.e. on T.

Lemma 5.5. Let 0 < v ≤ 1, p ∈ P, and f ∈ W1

p(·). Then d dxRvf (x) = Rv d dxf (x) and d dxZvf (x) = Zv d dxf (x) , a.e. on T. (5.2)

Proof. The proof is the same as the proof of Lemma 24 of [5]. 

Lemma 5.6. Let 0 < v ≤ 1, p ∈ P, and f ∈ Lp(·) be given. Then

v d dxRvf (x) p(·) ≤ 2 [1 + 108BH + 432BH ln 2] k(I − Zv) f kp(·). (5.3) Proof. For f ∈ Lp(·) by [24, p. 426] we know that

κ := v 2 d dxRvf (x) p(·) ≤ Zvf (x) − f (x) − 1 2 Zv/2f (x) − f (x)  p(·) + Z v v/2 1 h  Zhf (x) − f (x) − v 2h Zh/2f (x) − f (x)  dh p(·) and hence κ ≤ k(I − Zv) f kp(·)+ 1 2 I − Zv/2 f p(·) + Z v v/2 1 h  |Zhf (x) − f (x)| + v 2h Zh/2f (x) − f (x)  dh p(·) .

(9)

One can find by Lemma 4.4 and the generalized Minkowski integral inequality: κ ≤ k(I − Zv) f kp(·)+ 1 2 I − Zv/2 f p(·) + Z v v/2 1 h|Zhf (x) − f (x)| dh p(·) + Z v v/2 1 h Zh/2f (x) − f (x) dh p(·) ≤ (1 + 108BH) k(I − Zv) f kp(·)+ Z v v/2 1 h h kZh− f kp(·)+ Zh/2− f p(·) i dh ≤ (1 + 108BH) k(I − Zv) f kp(·)+ 144BH kZvf − f kp(·) Z v v/2 1 hdh ≤ (1 + 108BH + 432BH ln 2) k(I − Zv) f kp(·) 

Lemma 5.7. Let 0 < v ≤ 1, r − 1 ∈ N, p ∈ P, and f ∈ Lp(·) be given. Then dr dxrR r vf (x) = d dxRv dr−1 dxr−1R r−1 v f (x) , x ∈ T.

Proof. The proof is the same as the proof of Lemma 26 of [5]. 

Proof of Theorem 1.4. Let r = 1, p ∈ P, and f ∈ Lp(·). Since K1(f, v, p (·))p(·)≤ kf − Rvf kp(·)+ v d dxRvf (x) p(·) ,

from Lemma 5.3 and (5.3) we find

K1(f, v, p (·))p(·)≤ 2 (1 + 108BH + 432BH ln 2) k(I − Zv) f kp(·). From Lemma 3.1, for g ∈ Wp(·)1 ,

Ω1(f, v)p(·)≤ Ω1(f − g, v)p(·)+ Ω1(g, v)p(·)≤ (1 + B) kf − gkp(·)+ B 2v kg

0k

p(·), and taking infimum on g ∈ Wp(·)1 in the last inequality we get

Ω1(f, v)p(·)≤ (1 + B) K1(f, v, p (·))p(·)

and the equivalence of k(I − Zv) f kp(·) with K1(f, v, p (·))p(·) is established. Now we will consider the case r > 1. For r = 2, 3, . . . we consider the operator (see [2]) Ar v:= I − (I − Rrv) r =Xr−1 j=0(−1) r−j+1r j  Rr(r−j)v . From the identity I − Rr

v= (I − Rv)Pr−1j=0Rjv we find k(I − Rr v) gkp(·)≤   r−1 X j=0 Bj  k(I − Rv) gkp(·) ≤  216BH r−1 X j=0 Bj  k(I − Zv) gkp(·)

(10)

when 0 < v ≤ 1, p ∈ P, and g ∈ Lp(·). Since kf − Ar vf kp(·) = k(I − R r v) r f kp(·), a recursive procedure gives

kf − Ar vf kp,ω= k(I − R r v) r f kp(·)≤ · · · ≤  216BH r−1 X j=0 Bj   r k(I − Zv) r f kp(·).

On the other hand, using Lemmas 5.7 and 5.3 recursively,

vr dr dxrR r vf p(·) = vr−1v d dxRv dr−1 dxr−1R r−1 v f p(·) ≤ 2 (1 + 108BH + 432BH ln 2) vr−1 (I − Zv) dr−1 dxr−1R r−1 v f p(·) ≤ . . . ≤ [2 (1 + 108BH + 432BH ln 2)]r−1v d dxRv(I − Zv) r−1 f p(·) ≤ [2 (1 + 108BH + 432BH ln 2)]rk(I − Zv)rf kp(·). Thus Kr(f, v, p (·))p(·)≤ kf − A r vf kp(·)+ v r dr dxrA r vf (x) p(·) ≤ 2  max    216BH r−1 X j=0 Bj, 2 (1 + 108BH + 432BH ln 2)      r k(I − Zv) r f kp(·).

For the reverse of the last inequality, when g ∈ Wp(·)r , from Lemma 3.1: Ωr(f, v)p(·)≤ (1 + B) r kf − gkp(·)+ Ωr(g, v)p(·) ≤ (1 + B)rkf − gkp(·)+ 2−rBrvr g (r) p(·); (5.4) taking infimum on g ∈ Wr p(·) in (5.4) we get Ωr(f, v)p(·)≤ (1 + B) r Kr(f, v, p (·))p(·), and hence Ωr(f, v)p(·)≈ Kr(f, v, p (·))p(·). (5.5) 

(11)

6. Proofs of the results 6.1. Proof of the transference result.

Proof of Theorem 4.2. Let p ∈ P and f ∈ Lp(·). In this case, kFgkC[I h1] ≤ c kFfkC[Ih1] = c Z T Φh1f (x + u) |G (x)| dx C[I h1] = c max u∈Ih1 Z T Φh1f (x + u) |G (x)| dx ≤ cH max u∈Ih1h1f (· + u)kp(·)kGkp0(·)≤ cHB kfkp(·), by Theorem 2.1.

On the other hand, for any ε, η > 0 and appropriately chosen G ∈ Lp0(·) with

hg, Gi =R

Tg (x) G (x) dx ≥

1

3kgkp(·)− ε, kGkp0(·)= 1, one can find

kFgkC[I h1] ≥ |Fg(0)| ≥ Z T Φh1g (x) |G (x)| dx > Z T g (x) |G (x)| dx − η Z T |G (x)| dx ≥ 1 3kgkp(·)− ε − ηH k1kp(·). Since ε, η > 0 are arbitrary we have

kFgkC[I h1] ≥ 1 3kgkp(·), ε, η → 0 +, and hence 1 3kgkp(·)≤ kFgkC[Ih1] ≤ cHB kf kp(·).

This gives the required result. 

Proof of Lemma 4.4. Let 0 < h ≤ v ≤ 1, p ∈ P, and f ∈ Lp(·). In this case, by (4.2) and Lemma 4.1, max u∈Ih1 F(I−Zh)f(u) = max u∈Ih1 Z T Φh1(I − Zh) f (x + u) |G (x)| dx = max u∈Ih1 (I − Zh) Z T Φh1f (x + u) |G (x)| dx = max

u∈Ih1|(I − Zh) Ff(u)|

(4.2)

≤ 72 max

u∈Ih1|(I − Zv) Ff(u)| = 72 max u∈Ih1 (I − Zv) Z T Φh1f (x + u) |G(x)| dx ≤ 72 max u∈Ih1 Z T Φh1(I − Zv) f (x + u) |G(x)| dx = 72 max u∈Ih1 F(I−Zv)f(u)

(12)

≤ 72H max

u∈Ih1h1(I − Zv) f (x + u)kp(·)kGkp0(·) ≤ 72HB k(I − Zv) f kp(·).

On the other hand, for any ε, η > 0 and appropriately chosen G ∈ Lp0(·) with

hf, Gi ≥ 1

3kf kp(·)− ε and kGkp0(·)= 1, one can get

max

u∈Ih1|(I − Zh) Ff(u)| ≥ |(I − Zh) Ff(0)| ≥ (I − Zh) Z T Φh1f (x) |G (x)| dx = Z T Φh1(I − Zh) f (x) |G (x)| dx > Z T (I − Zh) f (x) |G (x)| dx − ηH k1kp(·) ≥1 3k(I − Zh) f kp(·)− ε − ηH k1kp(·). Since ε, η > 0 are arbitrary we obtain

max

u∈Ih1|(I − Zh) Ff(u)| ≥ 1

3k(I − Zh) f kp(·) and hence

1

3k(I − Zh) f kp(·)≤ maxu∈Ih1|(I − Zh) Ff(u)| ≤ 72HB k(I − Zv) f kp(·).  6.2. Proof of Jackson’s inequalities.

Proof of Theorem 1.2. Let n, r ∈ N. For g ∈ Wp(·)r we have by Theorem 1.3 that En(f )p(·)≤ En(f − g)p(·)+ En(g)p(·)≤ kf − gkp(·)+ B nr g (r) p(·). Taking infimum in the last inequality with respect to g ∈ Wp(·)r , one can get, by (5.5), En(f )p(·)≤ BKr(f, 1/n, p (·))p(·) ≤ 2B  max    216BH r−1 X j=0 Bj, 2 [1 + 108BH + 432BH ln 2]      rr  f,1 n  p(·) = CΩr  f,1 n  p(·) .

At this stage, we will use the method given by Natanson and Timan [21] to obtain (1.10). By Corollary 1.5 we have, for ρ ≤ n,

r  f,1 ρ  p(·) ≤ [1 + B]rC B  1 +n ρ rr  f,1 n  p(·)

(13)

and hence n Y ρ=1r  f,1 ρ  p(·)n Y ρ=1 [1 + B]rC B  1 +n ρ rr  f,1 n  p(·) = [1 + B]rC B Ωr  f, 1 n  p(·) !n n Y ρ=1  1 +n ρ r .

Using Stirling’s formula we have n Y ρ=1  1 + n ρ r ≤ 2rer and consequently n Y ρ=1r  f,1 ρ  p(·) !1/n ≤ (2e [1 + B])rC B Ωr  f, 1 n  p(·) .

From Theorem 1.2 and the property En(f )p(·)↓ as n ↑, we find n Y ρ=1 Eρ(f )p(·) !1/nn Y ρ=1 CΩr  f,1 ρ  p(·) !1/n ≤ (2e [1 + B])rC2B−1Ωr  f,1 n  p(·)

and the result (1.10) follows. 

Proof of Theorem 1.3. Suppose that Θn ∈ Πn, En(f0)p(·) = kf0− Θnkp(·), and β/2 is the constant term of Θn, namely,

β = 1 π Z T Θn(t) dt = 1 π Z Tn(t) − f0(t)) dt. We get |β/2| ≤ 1 2πkf 0− Θ nk1≤ D 2πkf 0− Θ nkp(·)= D 2πEn(f 0) p(·). Furthermore, kf0− (Θ n− β/2)kp(·)≤ En(f0)p(·)+ kβ/2kp(·) ≤ En(f0)p(·)+ D (2π) 1 p−1E n(f0)p(·) =1 + D (2π)p1−1  En(f0)p(·). We set un∈ Πn so that u0n= Θn− β/2. Then

En(f )p(·)= En(f − un)p(·)≤ B nkf 0− (Θ n− β/2)kp(·) ≤ B1 + D (2π)p1−1 1 nEn(f 0) p(·).

(14)

The last inequality gives En(f )p(·)≤ h B  1 + D (2π)p1−1 ir 1 nrEn  f(r) p(·). Using Theorem 1.2 we obtain

nrEn(f )p(·)≤ C h B  1 + D (2π)1p−1 irr  fr,1 n  p(·) . 

Proof of Theorem 5.2. From Proposition 5.1, Lemma 5.3, and Theorem 2.2 we get

kf − Dnf kp(·)= f − R1/nf + R1/nf − DnR1/nf + DnR1/nf − Dnf p(·)f − R1/nf p(·)+ R1/nf − DnR1/nf p(·)+ Dn(R1/nf − f ) p(·) ≤ 216BHΩ1  f, 1 n  p(·) +B n (R1/nf )0 p(·)+ E R1/nf − f p(·) ≤ B [216H + 2 (1 + 108BH + 432BH ln 2) + 216EH] Ω1  f,1 n  p(·) and (5.1) follows.  Acknowledgements

The author is indebted to the referees for their valuable suggestions and com-ments.

References

[1] R. Akg¨un, Polynomial approximation in weighted Lebesgue spaces, East J. Approx. 17 (2011), no. 3, 253–266. MR 2953079.

[2] R. Akg¨un, Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent, Ukrainian Math. J. 63 (2011), no. 1, 1–26. MR 2958823.

[3] R. Akg¨un, Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth, Georgian Math. J. 18 (2011), no. 2, 203–235. MR 2805977. [4] R. Akg¨un, Approximation by polynomials in rearrangement invariant quasi Banach function

spaces, Banach J. Math. Anal. 6 (2012), no. 2, 113–131. MR 2945992.

[5] R. Akg¨un, Nikol’ski˘ı, Jackson and Ul’yanov type inequalities with Muckenhoupt weights, arXiv:1709.02928v2 [math.CA].

[6] R. Akg¨un and V. Kokilashvili, On converse theorems of trigonometric approximation in weighted variable exponent Lebesgue spaces, Banach J. Math. Anal. 5 (2011), no. 1, 70–82. MR 2738521.

[7] R. A. Bandaliev, Application of multidimensional Hardy operator and its connection with a certain nonlinear differential equation in weighted variable Lebesgue spaces, Ann. Funct.

Anal. 4 (2013), no. 2, 118–130. MR 3034935.

[8] S. O. Chaichenko, Best approximations of periodic functions in generalized Lebesgue spaces,

Ukrainian Math. J. 64 (2013), no. 9, 1421–1439. MR 3104875.

[9] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic

Anal-ysis, Birkh¨auser/Springer, 2013. MR 3026953.

[10] L. Diening, P. Harjulehto, P. H¨ast¨o and M. R˚uˇziˇcka, Lebesgue and Sobolev Spaces with

Variable Exponents, Lecture Notes in Mathematics 2017, Springer, 2011. MR 2790542.

[11] Z. Ditzian and K. G. Ivanov, Strong converse inequalities, J. Anal. Math. 61 (1993), 61–111. MR 1253439.

(15)

[12] V. K. Dzyadyk and I. A. Shevchuk, Theory of Uniform Approximation of Functions by

Polynomials, De Gruyter, 2008. MR 2447076.

[13] A. Guven and D. M. Israfilov, Trigonometric approximation in generalized Lebesgue spaces

Lp(x), J. Math. Inequal. 4 (2010), no. 2, 285–299. MR 2761228.

[14] D. M. Israfilov and A. Testici, Approximation problems in the Lebesgue spaces with variable exponent, J. Math. Anal. Appl. 459 (2018), no. 1, 112–123. MR 3730430.

[15] D. M. Israfilov and E. Yirtici, Convolutions and best approximations in variable exponent Lebesgue spaces, Math. Rep. (Bucur.) 18(68) (2016), no. 4, 497–508. MR 3592374. [16] S. Z. Jafarov, S. M. Nikolskii type inequality and estimation between the best approximations

of a function in norms of different spaces. Math. Balkanica (N.S.) 21 (2007), no. 1-2, 173–182. MR 2350727.

[17] S. Z. Jafarov, Ul’yanov type inequalities for moduli of smoothness, Appl. Math. E-Notes 12 (2012), 221–227. MR 3003875.

[18] H. Ko¸c, Simultaneous approximation by polynomials in Orlicz spaces generated by quasicon-vex Young functions, Kuwait J. Sci. 43 (2016), no. 4, 18–31. MR 3756955.

[19] Y. Kolomoitsev, On moduli of smoothness and averaged differences of fractional order, Fract.

Calc. Appl. Anal. 20 (2017), no. 4, 988–1009. MR 3684879.

[20] N. X. Ky, Moduli of mean smoothness and approximation with Ap-weights, Ann. Univ. Sci.

Budapest. E¨otv¨os Sect. Math. 40 (1997), 37–48. MR 1632805.

[21] G. I. Natanson and M. F. Timan, The geometric means of the sequence of best approxima-tions. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1979, vyp. 4, 50–52, 123. MR 0564575.

[22] I. I. Sharapudinov, On the uniform boundedness in Lp(p = p(x)) of some families of convo-lution operators, Math. Notes 59 (1996), no. 1-2, 205–212. MR 1391844.

[23] I. I. Sharapudinov, Some problems in approximation theory in the spaces Lp(x)(E). (Russian)

Anal. Math. 33 (2007), no. 2, 135–153. MR 2333023.

[24] I. I. Sharapudinov, Approximation of functions in Lp(·) by trigonometric polynomials, Izv.

Math. 77 (2013), no. 2, 407–434. MR 3097572.

[25] I. I. Sharapudinov, On direct and inverse theorems of approximation theory in variable Lebesgue and Sobolev spaces, Azerb. J. Math. 4 (2014), no. 1, 55–72. MR 3167901. [26] T. N. Shakh-Emirov, On uniform boundedness of some families of integral convolution

op-erators in weighted variable exponent Lebesgue spaces, Izv. Sarat. Univ. (N.S.) Ser. Mat.

Mekh. Inform. 14 (2014), no. 4(1), 422–427.

[27] R. M. Trigub, Linear summation methods and absolute convergence of Fourier series. (Rus-sian) Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 24–49. MR 0223818.

[28] S. S. Volosivets, Approximation of functions and their conjugates in variable Lebesgue spaces,

Sb. Math. 208 (2017), no. 1-2, 44–59. MR 3598764.

[29] Y. E. Yildirir and D. M. Israfilov, Approximation theorems in weighted Lorentz spaces,

Carpathian J. Math. 26 (2010), no. 1, 108–119. MR 2676725.

Ramazan Akg¨unB

Balıkesir University, Faculty of Arts and Sciences, Department of Mathematics, C¸ a˘gi¸s Yerle¸skesi, 10145, Balıkesir, T¨urkiye.

rakgun@balikesir.edu.tr

Received: December 7, 2017 Accepted: September 11, 2018

Referanslar

Benzer Belgeler

[17] determined fatigue properties of ductile iron which were applied on four different grades austem- pered heat treatment under bending fatigue test.. They observed that the

For these reasons, this study investigates accessibility needs of elderly women in relation to their existing home performance, and as a result, it provides an importance-

HC: healthy controls; ADHD: attention-deficit hyperactivity disorder; CCN: cognitive control network; DMN: default mode network; SN: salience network; PFC: prefrontal cortex;

Our study with the retinoid derivative 17 on 11 different breast cancer cells and a comparative analysis of RAR and RXR gene expression reveal the importance of RXRs in breast

İnan (2006) Anasınıfı çocuklarının duygu ve düşüncelerini ifade etmelerinde çocuk resimlerinin önemi (6 Yaş Grubu) isimli çalışmada çocukların duygu ve

Amaç: Elektif septorinoplasti cerrahisi uygulanan hastalarda, cerrahi insizyon öncesi iv deksketoprofen trometamol ve asetaminofen uygulamasının, ameliyat sonrası ağrı

(Kayısı) ve Persica vulgaris Miller (Şeftali) bitkisi polenlerinin in vitro çimlenmesi ve tüp uzunluğu üzerine etkileri üzerine yaptığımız bu çalışmada, kayısı

ÜNAK Tıp Grubu, Türkiye’de tıp enformasyonu ve tıp kütüphaneciliğinin lokomotifi olarak sağlık profesyonellerinin, sağlık yayıncılarının ve sağlık eğitimcileri