• Sonuç bulunamadı

DOG1 pozitifliği tanıda yüksek özgüllüğe sahiptir. DOG1, klinik olarak GİST şüphesi olan, tümör c-kit ekpresyonu negatif olan hem erken hem de ileri evre hastaların tanısında önemli bir araç olarak görülmektedir. DOG1 boyanması ile prognoz arasında gösterilmiş herhangi bir çalışma bulunmazken, bizim çalışmamızda ileri evre hastalarda DOG1 negatif olmasıyla kısa sağkalımla sınırda bir anlamlılık saptanmıştır, ancak bu kontrollü çalışmalarla valide edilmelidir.

Mitoz sayısının >10 olmasının primer cerrahi sonrası takipli erken evre hastalarda kötü prognostik faktör olarak belirlenmiştir.

Sadece hücre siklusunda M safhasını gösteren mitotik indeks yerine; G1, G2, S ve M fazında da proliferasyonu işaret eden Ki-67 proliferasyon indeksinin kullanımı daha geniş bakış açısı sağlayabileceği ve mitozun 50 BBA’nında değerlendirilmesindeki standartizasyon sorunlarından dolayı Ki-67’nin pratiklik kazandırabileceği hipotetik olarak mantıklı görülmektedir. Çalışmamızda Ki-67 proliferasyon indeksinin prognozla anlamlı bir ilişki saptanmamasına rağmen; rekurrens risk skorunu gösteren mitotik indeks ile korelasyon göstermektedir. Her ne kadar cerrahi sonrası rekurrens skorlarında Ki-67’nin skorlama sistemine dahil edilmesi sisteme pratiklik kazandırabileceği düşünülse de bu konuda bir iddiada bulunmak için daha fazla sayıda hastada Ki-67 ekspresyonu bakılmalı ve diğer rekurrens ön gördüren faktörlerle birlikte değerlendirilmelidir. Mevcut verilerle, biz şu an için NIH 2002 konsensusu içerisinde yer alan proliferasyonu gösteren mitotik indeks yerine Ki-67’nin kullanılmasını önermemekteyiz.

KAYNAKLAR

1. Hirota S, Isozaki K, Moriyoma Y, et al. Gain of function mutations of c-kit in human gastrointestinal stromal tumors Science 1198,279(5350): 577-80

2. Fisher C. Pathology of Gastointestinal Stromal Tumours. July. 2003. (http://www.royalmarsden.

nhs.uk) Erişim tarihi:22.12.2004

3. Park JK, Choi SH, Lee S, Min KO, Yun SS, Jeon HM. Malignant Gastrointestinal StromalTumor of the Gallbladder. J Korean Med Sci, 2004; 19: 763-7.

4. I. Espinosa, C. H. Lee, M. K. Kim et al. “A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors,” American Journal of Surgical Pathology, vol. 32, no. 2, pp. 210–218, 2008.

5. R. B. West, C. L. Corless, X. Chen et al. “The novel marker,DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status,” American Journal of Pathology, vol. 165, no. 1, pp. 107–113, 2004.

6. Noguchi T, Sato T, Takeno S, Uchida Y, Kashima K, Yokoyama S, Muller W. Biological analysis of gastrointestinal stromal tumors. Oncol Rep, 2002; 9: 1277-1282.

7. Sakurai S, Fukayama M, Kaizaki Y, Saito K, Kanazawa K, Kitamura M, Iwasaki Y, Hishima T, Hayashi Y, Koike M. Telomerase activity in gastrointestinal stromal tumors. Cancer, 1998; 83:

2060-6.

8. Nagasako Y, Misawa K, Kohashi S, Hasegawa K, Okawa Y, Sano H, Takada A, Sato H.

Evaluation of malignancy using Ki-67 labeling index for gastric stromal tumor. Gastric Cancer, 2003;

6: 168-72.

9. Rudolph P, Gloeckner K, Parwaresch R, Harms D, Schmidt D. Immunophenotype, proliferation, DNA ploidy, and biological behavior of gastrointestinal stromal tumors: a multivariate clinicopathologic study. Hum Pathol, 1998; 29: 791-800.

10. Panizo-Santos A, Sola I, Vega F, de Alava E, Lozano MD, Idoate MA, Pardo-Mindan J.

Predicting Metastatic Risk of Gastrointestinal Stromal Tumors: Role of Cell Proliferation and Cell Cycle Regulatory Proteins. Int J Surg Pathol, 2000; 8: 133-144.

11. Raut CP, Morgan JA, Ashley SW. Current issues in gastrointestinal stromal tumors: incidence, molecular biology, and contemporary treatment of localized and advanced disease. Curr Opin Gastroenterol. 2007;23(2): 149-158

12. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib respons in patients with metastatic gastrointestinal stromal tumor J Clin Oncol. 2003;21 (23).4342-9

13. Corless CL, Heinrich MC. Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev. Pathol. 2008;3:557-86

14. Rubin JL, Sanon M, Taylor DC, et al. Epidemiology, survival and costs of localized gastrointestinal stromal tumors. Int J Gen Med. 2011;4:121-30

15. Agaimy A, Wunsch PH, Hofstaedter F, et al. Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c- KIT mutations. Am J surg Pathol.

2007;31(1):113-20

16. Kaawanowa K, Sakuma Y, Sakurai S, et al. High incidence of microscopic gastrointestinal stromal tumors in the stomach. Hum Pathol. 2006;37 (12):1527-35

17. Cassier PA, Ducimetiere F, Lurkin A, et al. A prospective epidemiological study of new incident GISTs during two consecutive years in Rhone Alpes region: incidence and molecular distribution of GIST in a European region. Br J Cancer 2010;103(2):165-70

18. Tryggvason G, Kristmundsson T, Orvar K, et al. Clinical study on gastrointestinal stromal tumors (GIST) in iceland,1990-2003. Dig Dis Sci. 2007;52 (9): 2249-53

19. Nilsson B, Bumming P, Meis-Kindblom JM, et al. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era-a population-based study in western Sweden. Cancer. 2005;103(4) :821-9

20. Janeway KA, Kim SY, Lodish M, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA. 2011;108(1):314-8 21. Miettinen M, Fetsch JF, Sobin LH, et al. Gastrointestinal stromal tumors in patients with

neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol.

2006;30 (1):90-618.

22. Pappo AS, Janeway KA. Pediatric gastrointestinal stromal tumors. Hematol Oncol Clin North Am.

2009;23(1):15–34, vii.

23. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. The protooncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the Mouse W locus. Nature; 1988;335 (6185); 88–89

24. Gaal J, Stratakis CA, Carney JA, et al. SDHB immunohistochemistry: a useful tool in the diagnosis of Carney-Stratakis and Carney triad gastrointestinal stromal tumors. Mod Pathol.

2011;24(1):147–51.

25. Gold JS, Dematteo RP. Combined surgical and molecular therapy: the gastrointestinal stromal tumor model. Ann Surg 2006;244:176-84.

26. M. Miettinen and J. Lasota, “Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis,” Archives of Pathology and Laboratory Medicine, vol. 130, no. 10, pp. 1466–1478, 2006

27. G. D. Demetri, M. vonMehren, C. R. Antonescu et al. “NCCN task force report: Update on the management of patients with gastrointestinal stromal tumors,” JNCCN Journal of the National Comprehensive Cancer Network, vol. 8, Supplement 2, pp. S1–S44, 2010.

28. Carney JA. Gastric stromal sarcoma, pulmonary chondroma and extra-adrenal paraganglioma (carney triad): natural history, adrenocortical component, and possible familial occurence. Mayo Clin Proc. 1999;74(6): 543-52

29. Heinrich MC, Blanke CD, Druker BJ, Corless CL. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 2002;20:

1692–1703

30. Heinrich MC, Rubin BP, Longley BJ, Fletcher JA. Biology and genetic aspects of gastrointestinal stromal tumors. KIT activation and cytogenetic alterations. Hum. Pathol. 2002;33;

484–495

31. Blume-Jensen P, Claesson-Welsh L, Siegbahn A, Zsebo KM, Westermark B, Heldin CH.

Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. EMBO J. 1991;10; 4121–4128,

32. Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev. Reprod. 2000;5; 143–152

33. Geissler EN, Ryan MA, Housman DE. The dominant-white spotting (W) locus of the mouse encodes the c-kit protooncogene. Cell 1988;55; 185–192

34. Herbst R., Shearman MS, Obermeier A, Schlessinger J, Ullrich A. Differential effects of W mutations on p145c-kit tyrosine kinase activity and substrate interaction. J. Biol. Chem. 1992;267;

13210–13216

35. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W ⁄ kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1995;373 (6512):

347–349

36. Kluppel M, Huizinga JD, Malysz J, Bernstein A. Developmental origin and Kitdependent development of the interstitial cells of Cajal in the mammalian small intestine. Dev. Dyn. 1998;211;

60–71

37. Torihashi S, Horisawa M, Watanabe Y. c-Kit immunoreactive interstitial cells in the human gastrointestinal tract. J. Auton. Nerv. Syst. 1999;75; 38–50

38. Nakahara M, Isozaki K, Hirota S, Miyagawa J, Hase-Sawada N, Taniguchi M, Hase Nishida T, Kanayama S, Kitamura Y, Shinomura Y, Matsuzawa Y. A novel gain-offunction mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology 1998;115; 1090–1095

39. Hirota S, Okazaki T, Kitamura Y, O’Brien P, Kapusta L, Dardick I. Cause of familial and multiple gastrointestinal autonomic nerve tumors with hyperplasia of interstitial cells of Cajal is germline mutation of the c-kit gene. Am. J. Surg. Pathol. 2000;24; 326–327

40. Taniguchi M, Nishida T, Hirota S, et al. Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res 1999; 59:4297.

41. Bucher P, Villiger P, Egger JF, Buhler LH, Morel P. Management of gastrointestinal stromal tumors: from diagnosis to treatment. Swiss Med Wkly; 2004;134: 145-153

42. Kitamura Y, Hirota S, Nishida T. Gastrointestinal stromal tumours (GIST): A model for molecule-based and treatment of solid tumours. Cancer Sci 2003;94: 315–20

43. P. Laperouse, D. Raines, K. Diamond et al. “Gastrointestinal stromal tumors: a case report and review of the literature,” The Journal of the Louisiana State Medical Society, vol. 160, no. 3,pp.

128–134, 2008.

44. DeMatteo RP, Lewis JJ, Leung D, et al. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 2000; 231:51.

45. Chou FF, Eng HL, Sheen-Chen SM. Smooth muscle tumors of the gastrointestinal tract: analysis of prognostic factors. Surgery 1996; 119:171.

46. Pink D, Schoeler D, Lindner T, et al. Severe hypoglycemia caused by paraneoplastic production of IGF-II in patients with advanced gastrointestinal stromal tumors: a report of two cases. J Clin Oncol 2005; 23:6809.

47. Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 2002; 33:459

48. Emory TS, Sobin LH, Lukes L, et al. Prognosis of gastrointestinal smooth-muscle (stromal) tumors: dependence on anatomic site. Am J Surg Pathol 1999; 23:82.

49. Liegl B, Hornick JL, Lazar AJ. Contemporary pathology of gastrointestinal stromal tumors.

Hematol Oncol Clin North Am 2009; 23:49.

50. Reith JD, Goldblum JR, Lyles RH, Weiss SW. Extragastrointestinal (soft tissue) stromal tumors:

an analysis of 48 cases with emphasis on histologic predictors of outcome. Mod Pathol 2000;

13:577.

51. Miettinen M, Monihan JM, Sarlomo-Rikala M, et al. Gastrointestinal stromal tumors/smooth muscle tumors (GISTs) primary in the omentum and mesentery: clinicopathologic and immunohistochemical study of 26 cases. Am J Surg Pathol 1999; 23:1109.

52. J. Y. Blay, S. Bonvalot, P. Casali et al. “Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20–21 March 2004, under the auspices of ESMO,” Annals of Oncology, vol. 16, no. 4, pp. 2005; 566–578

53. Wang WL, Hornick JL, Mallipeddi R, et al. Cutaneous and subcutaneous metastases of

55. Dematteo RP, Gold JS, Saran L, et al. Tumor mitotic rate, size, and location independently predict recurrence after resection of primary gastrointestinal stromal tumor (GIST). Cancer.

2008;112(3):608–15.

56. Gasparotto D, Rossi S, Bearzi I, et al. Multiple primary sporadic gastrointestinal stromal tumors in the adult: an underestimated entity. Clin Cancer Res 2008; 14:5715.

57. Janeway KA, Liegl B, Harlow A, et al. Pediatric KIT wild-type and platelet-derived growth factor receptor alpha-wild-type gastrointestinal stromal tumors share KIT activation but not mechanisms of genetic progression with adult gastrointestinal stromal tumors. Cancer Res. 2007;67(19):9084–8.

58. Gill AJ, Chou A, Vilain R, et al. Immunohistochemistry for SDHB divides gastrointestinal stromal tumors (GISTs) into 2 distinct types. Am J Surg Pathol. 2010;34(5):636–44.

59. Agaram NP, Wong GC, Guo T, et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer. 2008;47(10):853–9.

60. Agaimy A, Terracciano LM, Dirnhofer S, et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol. 2009;62(7):613–6.

61. Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites.

Semin Diagn Pathol 2006; 23:70.

61. M. Miettinen and J. Lasota, “Gastrointestinal stromal tumors:pathology and prognosis at different sites,” Seminars in Diagnostic Pathology, 2006;vol. 23, no. 2, pp. 70–83

62. Hornick JL, Fletcher CD. The role of KIT in the management of patients with gastrointestinal stromal tumors. Hum Pathol. 2007;38(5):679–87.

63. Turner MS, Goldsmith JD. Best practices in diagnostic immunohistochemistry: spindle cell neoplasms of the gastrointestinal tract. Arch Pathol Lab Med. 2009;133(9):1370–4

64. Palazzo L, Landi B, Cellier C, et al. Endosonographic features predictive of benign and malignant gastrointestinal stromal cell tumours. Gut 2000; 46:88.

65. Watson RR, Binmoeller KF, Hamerski CM, et al. Yield and performance characteristics of endoscopic ultrasound-guided fine needle aspiration for diagnosing upper GI tract stromal tumors.

Dig Dis Sci 2011; 56:1757.

66. Gayed I, Vu T, Iyer R, et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med 2004; 45:17.

67. Kamiyama Y, Aihara R, Nakabayashi T, et al. 18F-fluorodeoxyglucose positron emission tomography: useful technique for predicting malignant potential of gastrointestinal stromal tumors.

World J Surg 2005; 29:1429.

68. Miettinen M, Makhlouf H, Sobin LH, et al. Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before

69. K.M. Kim, D.W. Kang, W. S. Moon et al. “PKCtheta expression in gastrointestinal stromal tumor,” Modern Pathology, 2006;vol. 19, no. 11, pp. 1480–1486

70. W.B.Ou, M. J. Zhu, G. D. Demetri, C. D. M. Fletcher, and J. A.Fletcher, “Protein kinase C-theta regulates KIT expression and proliferation in gastrointestinal stromal tumors,” Oncogene, 2008;vol.

27, no. 42, pp. 5624–5634

71. A.Motegi, S. Sakurai, H. Nakayama, T. Sano, T. Oyama, and T. Nakajima, “PKC theta, a novel immunohistochemical marker for gastrointestinal stromal tumors (GIST), especially useful for identifying KIT-negative tumors,” Pathology International, 2005;vol. 55, no. 3, pp. 106–112 71. Christopher B. Tan,1 Wanqing Zhi,1 Ghulamullah Shahzad,1 and PaulMustacchia2,

Gastrointestinal Stromal Tumors: A Review of Case Reports, Diagnosis, Treatment, and Future Directions ISRN Gastroenterology Volume 2012, Article ID 595968, 16 pages

72. Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: a consensus approach. Int J Surg Pathol 2002; 10:81

73. Chun HJ, Byun JY, Chun KA, et al. Gastrointestinal leiomyoma and leiomyosarcoma: CT differentiation. J Comput Assist Tomogr 1998; 22:69.

74. Levy AD, Remotti HE, Thompson WM, et al. Gastrointestinal stromal tumors: radiologic features with pathologic correlation. Radiographics 2003; 23:283.

75. Ghanem N, Altehoefer C, Furtwängler A, et al. Computed tomography in gastrointestinal stromal tumors. Eur Radiol 2003; 13:1669.

76. Burkill GJ, Badran M, Al-Muderis O, et al. Malignant gastrointestinal stromal tumor:

distribution, imaging features, and pattern of metastatic spread. Radiology 2003; 226:527.

77. Hatch GF 3rd, Wertheimer-Hatch L, Hatch KF, et al. Tumors of the esophagus. World J Surg 2000; 24:401.

78. Connolly EM, Gaffney E, Reynolds JV. Gastrointestinal stromal tumours. Br J Surg 2003;

90:1178.

79. Huang HY, Li CF, Huang WW, et al. A modification of NIH consensus criteria to better distinguish the highly lethal subset of primary localized gastrointestinal stromal tumors: a subdivision of the original high-risk group on the basis of outcome. Surgery 2007; 141:748.

80. Singer S, Rubin BP, Lux ML, et al. Prognostic value of KIT mutation type, mitotic activity, and histologic subtype in gastrointestinal stromal tumors. J Clin Oncol 2002; 20:3898.

81. Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the stomach: a clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 2005; 29:52.

82. Miettinen M, Lasota J. Gastrointestinal stromal tumors--definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 2001:438:1-12

83. Miettinen M, Makhlouf H, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. Am J Surg Pathol 2006; 30:477.

84. American Joint Committee on Cancer. American Joint Committee on Cancer Staging Manual, 7th, Edge SB, Byrd DR, Compton CC, et al (Eds), Springer, New York 2010. p.175.

85. Rutkowski P, Nowecki ZI, Michej W, et al. Risk criteria and prognostic factors for predicting recurrences after resection of primary gastrointestinal stromal tumor. Ann Surg Oncol 2007;

14:2018.

86. Hohenberger P, Ronellenfitsch U, Oladeji O, et al. Pattern of recurrence in patients with ruptured primary gastrointestinal stromal tumour. Br J Surg 2010; 97:1854.

87. Antonescu CR, Sommer G, Sarran L, et al. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res 2003; 9:3329.

88. Wang L, Vargas H, French SW. Cellular origin of gastrointestinal stromal tumors: a study of 27 cases. Arch Pathol Lab Med 2000; 124:1471.

89. Debiec-Rychter M, Dumez H, Judson I, et al. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2004; 40:689.

90. National Comprehensive Cancer Network (NCCN) guidelines. Available at: www.nccn.org (Accessed on May 15, 2012).

91. Demetri GD, Benjamin RS, Blanke CD, et al. NCCN task force report: optimal management of patients with gastrointestinal stromal tumor (GIST)- Update of NCCN Clinical Practice Guidelines.

J Natl Comp Cancer Net 2007; 5(2 suppl):S-1.

92. Yamaguchi U, Nakayama R, Honda K, et al. Distinct gene expression-defined classes of gastrointestinal stromal tumor. J Clin Oncol 2008;26:4100.

93. Piccinni G, Marzullo A, Angrisano A, et al. Endoscopic resection of benign very low-risk gastric gastrointestinal stromal tumors. Is it enough? Eur J Gastroenterol Hepatol 2007;19:177-9.

94. Crosby JA, Catton CN, Davis A, et al. Malignant gastrointestinal stromal tumours of the small intestine: a review of 50 cases from a prospectivedatabase. Ann Surg Oncol 2001;8:50-9.

95. Katoh T, Itoh Y, Mohri T, Suzuki H. Endoscopic enucleation of gastrointestinal stromal tumors of the stomach: Report of five cases. World J Gastroenterol 2008;14:2609-11.

96. Eisenberg BL, Judson I. Surgery and imatinib in the management of GIST: Emerging approaches to adjuvant and neoadjuvant therapy. Ann Surg Oncol 2004;11:465-75.

97. Neuhaus SJ, Clark MA, Hayes AJ, et al. Surgery for gastrointestinal stromal tumour in the post-imatinib era. ANZ J Surg 2005;75:165-72.

98. Nowain A, Bhakta H, Pais S, et al. Gastrointestinal stromal tumors: Clinical profile, pathogenesis, treatment strategies and prognosis. J Gastroenterol Hepatol 2005;20:818-24.

99. Pierie JP, Choudry U, Muzikansky A, et al. The effect of surgery and grade on outcome of gastrointestinal stromal tumors. Arch Surg 2001;136:383-9.

100. Catena F, Di Battista M, Fusaroli P, et al. Laparoscopic treatment of gastric GIST: report of 21 cases and literature's review. J Gastrointest Surg 2008;12:561-8.

101. Novitsky YW, Kercher KW, Sing RF, Heniford BT. Long-term outcomes of laparoscopic resection of gastric gastrointestinal stromal tumors. Ann Surg 2006;243:738-45.

102. Dematteo RP, Heinrich MC, El-Rifai WM, Demetri G. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol 2002;33:466-77.

103. Demetri G. Identification and treatment of chemoresistant inoperable or metastatic GIST:

experience with the selective tyrosine kinase inhibitor imatinib mesylate (STI571). Eur J Cancer 2002;38:(Suppl 5)52-9.

104. Raut CP, Posner M, Desai J, et al. Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J Clin Oncol

105. Andtbacka RHI, Ng CS, Scaife CL, et al. Surgical resection of gastrointestinal stromal tumors after treatment with imatinib. Ann Surg Oncol 2007;14:14-24.

106. Seidal T, Edvardsson H. Expression of c-kit (CD117) and Ki67 provides information about the possible cell of origin and clinical course of gastrointestinal stromal tumours. Histopathology, 1999;

34: 416-424.

107. Nakamura N, Yamamoto H, Yao T, Oda Y, Nishiyama K, Imamura M, Yamada T, Nawata H, Tsuneyoshi M. Prognostic significance of expressions of cell-cycle regulatory proteins in gastrointestinal stromal tumor and the relevance of the risk grade. Hum Pathol, 2005; 36: 828-37 107. Nakamura N, Yamamoto H, Yao T, Oda Y, Nishiyama K, Imamura M, Yamada T, Nawata H,

Tsuneyoshi M. Prognostic significance of expressions of cell-cycle regulatory proteins in gastrointestinal stromal tumor and the relevance of the risk grade. Hum Pathol, 2006; 37: 503.

108. Wang X, Mori I, TangW, Utsunomiya H, Nakamura M, Nakamura Y, Zhou G, Kakudo K.

Gastrointestinal stromal tumors: clinicopathological study of Chinese cases. Pathol Int, 2001; 51:

701-6.

109. Carrillo R, Candia A, Rodriguez-Peralto JL, Caz V. Prognostic significance of DNA ploidy and proliferative index (MIB-1 index) in gastrointestinal stromal tumors. Hum Pathol, 1997;28: 160-5.

110. Brainard JA, Goldblum JR. Stromal tumors of the jejunum and ileum: a clinicopathologicstudy of 39 cases. Am J Surg Pathol, 1997; 21: 407-16.

111. Ricardo Artigiani NetoI, Angela Flavia LogulloII, João Norberto StávaleIII, Laércio Gomes LourençoIV. Ki-67 expression score correlates to survival rate in gastrointestinal stromal tumors (GIST)Acta Cirúrgica Brasileira - Vol. 27 (5) 2012 - 319

112. Borislav Belev, Iva Brčić, Juraj Prejac, Zrna Antunac Golubić, Damir Vrbanec, Jadranka Božikov, Ivan Alerić, Role of Ki-67 as a prognostic factor in gastrointestinal stromal tumors World J Gastroenterol 2013 January 28; 19(4): 523-527

113. Hartzell C, Putzier I, Arreola J. Calcium-activated chloride channels. Annu. Rev. Physiol. 2005;

67; 719–758.

114. Eggermont J. Calcium-activated chloride channels: (un)known, (un)loved? Proc. Am. Thorac. Soc.

2004;1; 22–27.

115. Frings S, Reuter D, Kleene SJ. Neuronal Ca2+ -activated Cl – channels – homing in on an elusive channel species. Prog. Neurobiol. 2000; 60; 247–289

116. Huang X, Godfrey TE, Gooding WE, McCarty KS Jr, Gollin SM. Comprehensive genome and transcriptome analysis of the 11q13amplicon in human oral cancer and synteny to the 7F5 ampliconin murine oral carcinoma. Genes Chromosom. Cancer 2006;45;1058–1069.

117. Rock JR, Harfe BD. Expression of TMEM16 paralogs during murine embryogenesis. Dev. Dyn.

2008; 237; 2566–2574.

118. West RB, Corless CL, Chen X et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am. J. Pathol.

2004;165; 107–113.

119. Wong NACS, Shelley-Fraser G. Specificity of DOG1 (K9 clone) and protein kinase C theta (clone 27) as immunohistochemical markers of gastrointestinal stromal tumour. Histopathology 2010;57;

250–258

120. Miettinen M, Wang Z-F, Lasota J. DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors. A study of 1840 cases. Am. J. Surg. Pathol. 2009; 33; 1401–1408.

121. Yang DY, Cho H, Koo JY et al. TMEM16A confers receptoractivated calcium-dependent chloride conductance. Nature 2008;455; 1210–1215.

122. Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 2008; 134; 1019–1029

123. Kindblom LG, Remotti HE, Aldenborg F. et al. Gastrointestinal pacemaker cell tumor (GIPACT):gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol, 1998;152: 1259-1269.

124. Tazawa K, Tsukada K, Makuuchi H, Tsutsumi Y. An immunohistochemical and clinicopathological study of gastrointestinal stromal tumors. Pathol Int, 1999; 49: 786-98.

125. Strickland L, Letson GD, Muro-Cacho CA. Gastrointestinal stromal tumors. Cancer Control.

2001; 8: 252-261.

126. Fujimoto Y, Nakanishi Y, Yoshimura K, Shimoda T. Clinicopathologic study of primary malignant gastrointestinal stromal tumor of the stomach, with special reference to prognostic factors: analysis of results in 140 surgically resected patients. Gastric Cancer, 2003; 6: 39-48.

127. Hasegawa T, Matsuno Y, Shimoda T, Hirohashi S. Gastrointestinal stromal tumor: consistent CD117 immunostaining for diagnosis, and prognostic classification based on tumor size and MIB-1

127. Hasegawa T, Matsuno Y, Shimoda T, Hirohashi S. Gastrointestinal stromal tumor: consistent CD117 immunostaining for diagnosis, and prognostic classification based on tumor size and MIB-1

Benzer Belgeler