• Sonuç bulunamadı

Araştırmanın tamamı ele alındığında, süte SB ilavesinin, CA, YYO, BBY, kaba yem, toplam yem (kaba + buzağı başlangıç) ve günlük ortalama yem tüketimlerini etkilemediği saptanmıştır. Ancak 21 - 35. günler arasında süte SB ilavesinin GCAA’nı artırdığı saptanmıştır. Araştırmada ayrıca, SB ilavesinin buzağılarda serum IgA, GH seviyeleri üzerine istatistiki olarak önemli etkiler yaratırken, serum BHBA, AST ve ALT üzerinde herhangi bir etki yapmadığı ortaya çıkmıştır. Bunlara ilaveten, dışkıda yapılan E.coli var/yok analizi neticesinde SB takviyesinin buzağı dışkılarında, E.coli baskısını % 33.33 nispetinde azalttığı gözlenmiştir.

Sonuç olarak, süte 7-21. günlerde 3 g/gün, 21-49. günlerde 5 g/gün SB ilavesinin sütten kesim öncesi buzağılarda bağışıklık, büyüme ve gübre E.coli baskısı üzerine olumlu etki ettiği bilgilerine ulaşılmıştır. Sağlıklı bir buzağı performansının sütten kesim sonrası ve hayatın ilerleyen dönemlerindeki üretime de yansıyacağı aşikârdır. Buradan hareketle, sağlıklı ve güçlü bir sürünün başlangıcındaki sütten kesim öncesi dönemde buzağı sütüne SB ilavesi tavsiye edilebilir.

96 KAYNAKLAR

Abecia, L., Martín García, A.I., Molina Alcaide, E., Newbold, C. J, Yanez Ruiz, D.R.

2013. Nutritional intervention at early life to manipulate rumen microbial colonization and methane output by calves post-weaning. J. Anim. Sci, 91, 4832-4840.

Abhishek, S., Biswadeep, J. 2014. Organic acids as rumen modifiers. International Journal of Science and Research, 3(11); 2262-2266.

Aksu, G., Genel, F., Koturoğlu, G., Kurugöl, Z., Kütükçüler, N., 2006. Serum immunoglobulin (IgG, IgM, IgA) and IgG subclass concentrations in healthy children: a study using nephelometric technique. Turk. J. Pediatr, 48, 9-24.

Akyıldız, A.R. 1984. Yemler Bilgisi Laboratuvar Kılavuzu. Ankara Üniversitesi Z. F.

Yayını. No: 895, 213s., Ankara.

Alais, C. 1984. Science du Lait. Principes des Techniques Laitie`res (Science of Milk.

Priniples of Dairy Technology). Paris: Socie´te´ d’Edition et de Promotion Agro-Alimentaire, Industrielle et Commerciale, 42 rue du Louvre, 75001 Paris (France).814 p.

Albayrak, H., Kabu, M. 2016. Determining serum haptoglobin and cytokine concentrations in diarrheic calves. F.Ü. Sağ. Bil. Vet. Derg, 30(2);113-117.

Allen, M.S. 2014. Drives and limits to feed intake in ruminants. Anim. Prod. Sci, 54, 1513–1524.

Almujalli, A.M., El-Deeb, W.M., Eljalii, E.M., Fouda, T.A., AlBlwy, M. 2015. Clinical, biochemical and bacteriological ınvestigation of pneumonia in calves with special reference to alpha-1-acid glycoprotein response. Int J. Vet. Health.

Sci. Res, 3(5); 60-63

Anderson, K.L., Nagaraja, T.G., Morrill, J.L., Avery, T.B., Galitzer, S.J., Boyer, J.E.

1987. Ruminal microbial development in conventionally or early weaned calves. J. Anim. Sci, 34, 1215-1226.

Annison, E.F., Leg, R.A., Lindsay, D.B., White, R.R., 1963. The metabolism of acetic acid, propionic acid and butyric acid in sheep. J. Biol. Chem, 88, 248-252.

Anonim 2014. Web sitesi. https://docplayer.biz.tr/14279568-Yemlerin-sindirilebilirliginin-belirlenmesinde-kullanilan-metotlar.html. Erişim tarihi:

15.10.2019.

Anonim. 2019a. http://www.muratgorgulu.com.tr/altekran.asp?id=140. Erişim tarihi 01.10.2019.

Anonim. 2019b. Türkiye İstatistik Enstitüsü Hayvancılık İstatistikleri Raporu. Ankara.

http://www.tuik.gov.tr/UstMenu.do?metod=temelist. Erişim tarihi: 24.05.2020.

97

Anonim.2019c. http://www.setbir.org.tr/wp-content/uploads/SUT_VE_ETTE_2017 2018_SETBIR_ARALIK_2017.pdf. Erişim tarihi (01.10.2019).

Anonim 2019d. http://www.calfnotes.com/pdffiles/CN055.pdf. Erişim tarihi 13.12.2019 Anonymus. Lang, B. 2008. Colostrum for the Dairy Calf. Factsheets. 08-001.Erişim

Adresi: http://www.omafra.gov.on.ca/english/livestock/veal/facts/08-001.htm. Erişim Tarihi: 09.01.2020.

Anonymus 2015. Evaluation of Sodium Butyrate and concentrate crude protein level on the performance of artificially reared beef calves to 12 weeks.

https://www.bonanzacalf.ie/wp-content/uploads/2018/10/Evaluation-of sodium-butyrate-and-concentrate-crude-protein-level-on-the-performance of-artificially-reared-beef-calves-to-12-weeks-by-JR-Ramsey.pdf. Erişim Tarihi:

03.03.2020.

Apodaca, G., Katz, L.A., Mostov, K.E.1994. Receptor mediated trancytosis of IgA in MDCK cells is via apical recycling endosomes. J. Cell Biol, 125, 67–86.

Araujo, G., Terré, M., Mereu, A., Ipharraguerre, I.R., Bach, A. 2015. Effects of supplementing a milk replacer with sodium butyrate or tributyrin on performance and metabolism of Holstein calves. Animal Production Science, 56(11); 1834-1841.

Armstrong, D.T., Hansel, W. 1956 The effect of age and plane of nutrition on growth hormone and thyrotropic hormone content of pituitary glands of Holstein heifers. J. Anim. Sci, 15, 640-649.

Asahina T, Nakagiri K, Shiotsuka Y, Etoh T, Fujino R, Suzuki, N, McMahon, C.D, Takahashi, H. 2018. Physiological responses of japanese black calves to supplementation with sodium butyrate in milk replacer. Food. Nutr. J, 3: 183.

Aschenbach, J.R., Bilk, S., Tadesse, G. 2009. Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep. Am J Physiol Gastrointest Liver Physiol, 296, G1098–G1107.

Baldwin, R.L., Jesse, B.W. 1992. Developmental changes in glucose and butyrate metabolism by isolated sheep ruminal cells. J. Nutr, 122, 1149-1153.

Baldwin, R.L. 1998. Use of isolated ruminal epithelial cells in the study of rumen metabolism. J. Nutr,128, 293–296.

Baldwin, R.L., McLeod, K.R. 2000. Effects of diet forage: concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro. J. Anim. Sci, 78, 771-783.

Baldwin, R.L, McLeod, K.R., Klotz, J.L., Heitmann, R.N. 2004. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J. Dairy. Sci, 87, 55-65.

98

Barcelo, A., Claustre, J., Moro, F., Chayvialle, J.A., Cuber, J.C., Plaisancié, P., 2000.

Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut, 66, 218-224.

Barrington, G.M., McFadden, T.B., Huyler, M.T., Besser, T.E. 2001. Regulation of colostrogenesis in cattle. Livest. Prod. Sci, 70, 95–104.

Bauman, D.E., McCutcheon, S.N. 1986. The effects of growth hormone and prolactin on metabolism. Pages 436-455 in L. P. Milligan, W. L. Grovum, and A.

Dobson, eds. Proc. Sixth Int. Symp. Ruminant Physiol. Control of digestion and metabolism in ruminants. Prentice-Hall, Englewood Cliffs, NJ.

Bayissa, H., Yudai, I., Toshihisa, S., Michael, S. 2019. Effects of pulse-dose ruminal infusion of butyrate on plasma glucagon-like peptide 1 and 2 concentrations in dairy calves. J.Dairy. Sci, 102 (3); 2254-2265.

Beauchemin, K.A., Rode, L.M. 1997. Minimum versus optimum concentrations of fiber in dairy cow diets based on barley silage and concentrates of barley or corn. J.

Anim. Sci, 80, 1629-1639.

Beauvieux, M.C., Tissier, P., Gin, H. 2001. Butyrate impairs energy metabolism in isolated perfused liver of fed rats. J. Nutr, 131, 1986–1992.

Beharka, A.A., Nagraja, T.G., Morrill, J.L., Kennedy, G.A., Klemm, R.D. 1998. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves. J. Dairy Sci., 81, 1946-1955.

Berends, H., Van Reenen, C.G., Stockhofe Zurwieden, N., Gerrits, W.J. 2012. Effects of early rumen development and solid feed composition on growth performance and abomasal health in veal calves. J. Dairy Sci., 95, 3190-3199.

Bergman, E.N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Review, 70(2); 567-590.

Bilal, T., Keser, O., Abaş, İ. 2008. Esansiyel yağların hayvan beslemede kullanılması.

Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 5(1); 41-50.

Blottie`re, H.M., Buecher, B., Galmiche, J.P. 2003. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc. Nutr. Soc, 62, 101–106.

Bull, L.S., Bush, L.J., Friend, J.D., Harris, B.Jr., Jones, E.W. 1965. Incidence of ruminal parakeratosis in calves fed different rations and its relation to volatile fatty acid absorption. J. Dairy. Sci, 48, 1459-1466.

Butler, J. E. 1983. Bovine immunoglobulins: An augmented review. Vet. Immunol.

Immunopathol, 4:43–152.

Butler, J.E. 1998. Immunoglobulin diversity, B-cell and antibody repertoire development in large farm animals. Rev. Sci. Tech, 17: 43–70.

99

Cavini, S., Iraira, S., Siurana, A., Foskolos, A., Ferret, A., Calsamiglia, S. 2015. Effect of sodium butyrate administered in the concentrate on rumen development and productive perfor- mance of lambs in intensive production system during the suckling and the fattening periods. Small Ruminant Res., 123, 212–217.

Ceballos, L.S., Morales, E.R., de la T orre Adarve, G., Castro, J.D., Martínez, L.P., Sanz Sampelayo, M.R. 2009. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Comp. Anal., 22, 322–329.

Chang,S.S., Lohakare, J.D., Singh, N.K., Kwon, E.G., Nejad, J.G., Sung, K.I., Hong, S.K. 2013. Limiting concentrate during growing period affect performance and gene expression of hepatic gluconeogenic enzymes and visfatin in korean native beef calves. Asian-Australas. J. Anim. Sci. 26(2); 202-210.

Chanter, N., Hall, G.A., Bland, A.P., Hayle, A.J .,Parsons, K.R. 1984. Dysentery in calves caused by an atypical strain of Escherichia coli. Vet Microbiol, 12:

241–253.

Church, D.C. 1975. Digestive Physiology and Nutrition of Ruminants. Digestive Physiology. 1: 215.

Church D.C. 1988. The Ruminant Animal: Digestive Physiology and Nutrition.

Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 564.

Claus, R., Gunthner, D., Letzguss, H. 2007. Effects of feeding fat-coated butyrate on mucosal morphology and function in the small intestine of the pig. J Anim Physiol Anim Nutr (Berl), 91, 312–318.

Connor, E.E., Baldwin, R.L., Li, C., LiR, W., Chung, H. 2013. Gene expression in bovine rumen epithelium during weaning identifies molecular regulators of rumen development and growth. Funct. Integr. Genomics, 13, 33–142.

Connor, E.E., Baldwin, R.L., Walker, M.P., Ellis, S.E., Li, C., Kahl, S., Chung H., Li, R.W. 2014. Transcriptional regulators transforming growth factor-β1 and estrogen-related receptor-α identified as putative mediators of calf rumen epithelial tissue development and function during weaning. J. Dairy Sci., 97, 4193–4207.

Coverdale, J.A., Tyler, H.D., Quigley, J.D., Brumm, J.A. 2004. Effect of various levels of forage and form of diet on rumen development and growth in calves. J.

Dairy. Sc., 87, 2554-2562.

Cox-Ganser, J.M., Jung, G.A., Pushkin, R.T., Reid, R. L. 1994. Evaluation of Brassicas in grazing systems for sheep: II. Blood composition and nutrient status.

Journal of Animal Science, 72, 1832–1841.

Curl, S.E., Fennell, M.A., Zinn, D.W., Albin, R.C. 1968. Growth and development of the bovine as related to certain endocrine factors. J. Anim. Sci., 27, l0l l-1014.

Davarmanesh, A.R., Fathi Nasri, M.H., Kalantari Firouzabad, A.R., Montazer-Torbatı, M. B. 2015. Effect of Ca-butyrate and Oleobiotec (a flavouring agent)

100

supplemented starter on the performance of Holstein dairy calves. J. Agr. Sci, 153, 1506-1513.

Davis, C.L., Drackley, J.K. 1998. The Development, Nutrition, and Management of the Young Calf. Lowa State University Press. Ames, IA.

Del-Castillo, J.R., Muniz, R., Sulbaran.Carrasco, M.C.1994. Cellular metabolism of colonocytes. In Short Chain Fatty Acids, 180–194.

Diebold, G., Eidelsburger, U. 2006. Acidification of diets as an alternative to antibiotic growth promoters. Antimicrobial Growth Promoters, 311-327.

Eidelsburger, U. 1997. Optimierung der Futterqualität ist nur ein Teilaspekt.

(Optimising feed quality) Schweinewelt January, 18-21.

Etherton, T.D., Kensinger, R.S. 1984. Endocrine regulation of fetal and postnatal meat animal growth. J. Anim. Sci., 59, 511-528.

Ettle, T., Mentschel, K., Roth, F.X. 2004. Effect of organic acids on dietary self-selection by the piglet. Proceedings of the Society of Nutrition Physiology, 13: 125.

Ferreira, L.S., Bittar, C.M. 2011. Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin. Animal, 5:2, 239-245.

Fonty, G., Senaud, J., Jouany, J.P., Gouet, P. 1988. Establishment of ciliate protozoa in the rumen of conventional and convention alized lambs: influence of diet and management conditions. Can. J. Microbiol, 34, 235-241.

Gaggia, F., Mattarelli, P., Biavati, B. 2010. Probiotics and prebiotics in animal feding for safe food production. Int. J. Food. Microbiol, 141, 515-528.

Galfi, P., Bokori, J. 1990. Feeding trial in pigs with a diet containing sodium n-butyrate.

Acta Vet. Hung, 38, 3-17.

Galfi, P., Gabel, G., Martens, H., 1993. Influences of extracellular matrix components on the growth and differentiation of ruminal epithelial cells in primary culture. Res. Vet. Sci, 54, 102-109.

Ganapathy, V., Thangaraju, M., Gopal, E. 2008. Sodiumcoupled monocarboxylate transporters in normal tissues and in cancer. AAPS J, 10, 193–199.

Gao, Z., Yin, J., Zhang, J. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58, 1509–1517.

Garcia, M., Greco, L.F., Favoreto, M.G., Marsola, R.S., Martins, L.T., Bisinotto, R.S., Shin, J.H., Lock, A.L., Block, E., Thatcher, W.W., Santos, J.E.P., Staples, C.R. 2014. Effect of supplementing fat to pregnant nonlactating cows on colostral fatty acid profile and passive immunity of the newborn calf. J. Dairy Sci, 97, 392–405.

101

Gill, R.K., Saksena, S., Alrefai, W.A. 2005. Expression and membrane localization of MCT isoforms along the length of the human intestine. Am J Physiol Cell Physiol, 289, C846–C852.

Goncalves, P., Martel, F. 2013. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab, 14: 994-1008.

Gorka, P., Kowalski, Z.M., Pietrzak, P., Kotunia, A., Kiljanczyk, R., Flaga, J., Holst, J.J., Guilloteau, P., Zabielski, R. 2009. Effect of sodium butyrate supplementation in milk replacer and starter diet on rumen development in calves. J. Physiol. Pharmacol, 60(3); 47-53.

Gorka, P., Kowalski ,Z. M., Pietrzak, P., Kotunia, A., Jagusiak, W., Holst , J. J., Guilloteau, R., Zabielski , R. 2011a. Effect of method of delivery of sodium butyrate on rumen development in newborn calves. J. Dairy Sci., 94, 5578–

5588.

Gorka, P., Kowalski, Z. M., Pietrzak, P., Kotunia, A., Jagusiak, W., Zabielski ,R.

2011b. Is rumen development in newborn calves affected by different liquid feeds and small intestine development? J. Dairy Sci., 94, 3002–3013.

Govil, K., Yadav, D.S., Patil, A.K., Nayak, S., Baghel, R.P.S., Yadav, P.K., Malapure, C.D., Thakur. D. 2017. Feeding management for early rumen development in calves. Journal of Entomology and Zoology Studies, 5(3); 1132-1139.

Graham, C., Simmons, N.L. 2005. Functional organization of the bovine rumen epithelium. Am. J. Physiol. Regul. Integr. Comp. Physiol, 288, R173–R181.

Greenwood, R.H., Morrill, J.L., Titgemeyer, E.C., Kennedy, G.A. 1997. A new method of measuring diet abrasion and its effect on the development of the fore stomach. J. Dairy Sci., 80, 2534-2541.

Guerrero, G.A. 2015. Feeding strategies to improve performance and health of Holsteincalves.https://www.tdx.cat/bitstream/handle/10803/308311/gag1de1.

pdf?sequence. Erişim tarihi:28.09.2018.

Guilloteau, P., Toullec, R., Sauvant, D. 1979. Utilisation des prote´ines par le veau pre´ruminant a` l’engrais. VIIInfluence du remplacement des prote´ines du lait par celles du soja ou de la fe´ve´role sur l’e´vacuation gastrique (Use of proteins by the preruminant calf for fattening. VII- Influence of replacement of milk proteins by those of soyabean or faba bean on gastric emptying). Ann Zootech, 28, 1–17.

Guilloteau, P., Toullec, R., Patureau.Mirand, P. 1981. Importance of the abomasum in digestion in the preruminant calf. Reprod Nutr Dev, 21, 885–899.

Guilloteau, P., Biernat, M., Wolinski, J. 2002. Gut regulatory peptides and hormones of the small intestine. In Biology of Intestine in Growing Animals, 271–324.

Guilloteau, P., Rome, V., Le Normand L., Savary, G., Zabielski, R. 2004. Is a Na-butyrate a growth factor in the preruminant calf ? Preliminary result. J. Anim.

Feed. Sci, 13(1); 393-396.

102

Guilloteau, P., Zabielski, R. 2005. Digestive secretions in preruminant and ruminant calves and some aspects of their regulation. In Calf and Heifer Rearing,159–

189.

Guilloteau, P., Zabielski, R., Blum, J.W. 2009a. Gastrointestinal tract and digestion in the young ruminant: Ontogenesis, Adaptations, Consequences and manipulations. J. Physiol. Pharmacol, 60(3); 37-46.

Guilloteau, P., Zabielski, R., David, J.C., Blum, J.W., Morisset, J. A., Biernat M., Woliński, J., Laubitz, D., Hamon, Y. 2009b. Sodium-butyrate as a growth promoter in milk replacer formula for young calves. J. Dairy Sci., 92, 1038-1049

Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R. And Van Immerseel, F. 2010a. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews, 23, 366-384.

Guilloteau, P., Savary, G., Jaguelin, Y., Rome, V., Normand, L., Zabielski, R. 2010b.

Dietary sodium butyrate supplementation increases digestibility and pancreatic secretion in young milk fed calves. J. Dairy Sci., 93, 5842–5850.

Gupta, N., Martin, P.M., Prasad, P.D. 2006. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter.

Life Sci., 78, 2419–2425.

Güçlü Kocaoğlu B., Kara, K. 2009. Ruminant beslemede alternatif yem katkı maddelerinin kullanımı: 1. Probiyotik, Prebiyotik ve Enzim. Erciyes Üniviversitesi Veteriner Fakültesi Dergisi, 6(1); 65-75.

Gürsoy, O., Kınık, Ö., Gönen, İ. 2005. Probiyotikler ve gastrointestinal sağlığa etkileri.

Türk Mikrobiyoloji Cemiyeti Dergisi, 35(2); 136-148.

Harada E., Kato S., 1983. Effect of short-chain fatty acids on the secretory response of the ovine exocrine pancreas. Amer. J. Physiol. - Gastrointest. L. 7, G284-G290.

Hass, R., Bushe, R., Luciano, L., Reale, E., Engelhardt, W.V. 1997. Lack of butyrate is associated with induction of Bax and subsequent apoptosis in the proximal colon of guinea pig. Gastroenterology, 112, 875-881.

Hasselmann, L., Münchow, H., Rühle, J., Nattermann, H. 2003. Influence of formic acid, sorbic acid and hydrochloride acid on selected gastrointestinal and microbiological parameters in early weaned piglets. Proceedings of the Society of Nutrition Physiology, 12: 78.

Hebeler, D., Kulla, S., Winkenwerder, F., Kamphues, J., Zentek, J., Amtsberg, G. 2000.

Influence of a formic acid potassiumformate complex on chyme composition as well as on the intestinal microflora of weaned piglets. Proceedings of the Society of Nutrition Physiology, 9: 63.

Hegardt, F.G. 1999. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: A control enzyme in ketogenesis. Biochem. J, 338, 569–582.

103

Heinrichs, J. 2005. Rumen development in the dairy calf. Adv. Dairy. Technol, 17, 179-187.

Hellweg, P., Tats, D., Männer, K., Vahjen, W., Zentek, J. 2006. Impact of potassium diformate on gut flora of weaned piglets. Proceedings of the Society of Nutritional Physiology, 15: 63.

Hiltz, R.L., Laarman, A.H. 2019. Effect of butyrate on passive transfer of immunity in dairy calves. J. Dairy Sci., 102 (5); 4190-4197.

Hsueh, C.J., Wang, J.H., Dai, L., Liu, C.C. 2011. Determination of alanine aminotransferase with an electrochemical nano ir-C Biosensor for the screening of liver diseases. Biosensors, 1: 107–117.

Hu, Z., Guo, Y. 2007. Effects of dietary sodium butyrate supplementation on the intestinal morphological structure, absorptive function and gut flora in chickens. Anim. Feed. Sci. Tech, 132, 240-249.

Huang, X., Yang, K.C., Hyung-Soon, I., Oktay, E.Y., Hak-Sung, K. 2006. Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT). Det Tech Sens, 6: 756–782.

Irvin, R., Trenkle, L.1971. Influence of age, breed, and sex on plasma hormones in cattle. J. Anim. Sci., 32: 292-295.

Ishikawa, T., Nanjo, F. 2009. Dietary cycloinulooligosaccharides enhance intestinal immunoglobulin a production in mice. Biosci Biotech Bioch, 73:677-682.

Jacobasch, G., Schmiedl, D., Kruschewski, M. 1999. Dietary resistant starch and chronic inflammatory bowel diseases. Int J Colorectal Dis, 14, 201–211.

Janke, B.H., Francis, D.H., Collins, J.E., Libal, M.C., Zeman, D.H., Johnson, D.D.

1989. Attaching and effacing Escherichia coli infections in calves, pigs, lambs, and dogs. J. Vet Diagn Invest, 1: 6–11.

Jaster, E.H., Mccoy, G.C., Tomkıns, T., Davıs, C.L. 1990. Feeding acidified or sweet milk replacer to dairy calves. J. Dairy Sci., 73: 3563-3566.

Jiao, J., Li, X., Beauchemin, K.A., Tan, Z., Tang, S., Zhou, C. 2015. Rumen development process in calves as affected by supplemental feeding v.

grazing: age-related anatomic development, functional achievement and microbial colonisation. British. J. Nutrition, 113, 888-900.

Jones, C., Heinrichs, J. 2007. Early weaning strategies. The Pennsylvania State University, Collage of Agricultural Sciences, Cooperative Extension. DAS, 07-117.

Kaiko, G.E., Ryu, S.H., Koues, O.I. 2016. The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell, 167:1137.

Kaneko, J.J., Harvey, W., Bruss, M.L. 1997. Clinical Biochemistry of Domestic Animals, 5th edn. Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto. 890-891.

104

Kato, S.I., Sato, K., Chida, H., Roh, S.G., Ohwada, S., Sato, S., Guilloteau, P., Katoh, K. 2011. Effects of na-butyrate supplementation in milk Formula on plasma concentrations of gh and insulin, and on rumen papilla development in calves.

J. Endocrinol, 211, 241–248.

Keller, D. G., Smith, Y. G., Coulter, G. H. And King, G. J. 1979. Serum growth hormone concentration in Hereford and Angus calves: effects ofbreed, sire, sex, age, age ofdam, and diet. Can. J. Anim. Sci., 59, 367-373.

Kelly, C.J., Zheng, L., Campbell, E.L. 2015. Crosstalk between microbiota derived short chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe, 17: 662-671.

Keys, J.E., Pearson, R.E., Fulton, L.A. 1976. Fermentation of mastitic milk from antibiotic treated cows. J. Dairy Sci., 59, 1746-1751.

Keys, J.E., Pearson, R.E., Weınland, B. 1979. Starter culture, temperature, and antibiotic residue in fermentation of mastitic milk to feed dairy calves. J.

Dairy Sci., 62, 1408-1414.

Khan, M. A., Lee, H.J., Lee, W.S., Kim, H.S., Kim, S.B., Ki, K.S., Park, S.J., Ha, J.K., Choi, YJ. 2007a. Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves. J. Dairy. Sci, 90, 5259–5268.

Khan, M.A., Lee, H.J., Lee, W.S., Kım, H.S., Kım, S.B., Ki, K.S., Ha, J.K., Lee, H.G., Choi, Y.J. 2007b. Preand post-weaning performance of Holstein female calves fed milk through step-down and conventional methods. J. Dairy Sci., 90, 876–885.

Kim, M., Qie, Y.Q., Park, J. 2016. Gut microbial metabolites fuel host antibody responses. Cell host microbe, 20:202-214.

Kirchgessner, M., Roth, F. X. 1988. Ergotrope Effekte durch organische Säuren in der Ferkelaufzucht und Schweinemast. Übers. Tierernährg. 10: 93–108

Kitade, K., Takahashi, K., Yonekura, S., Katsumata, N., Furukawa, G., Osuga, S., Nishita, T., Katoh, K., Obara, Y. 2002 Effects of nutritional conditions around weaning on carbonic anhydrase activity of the parotid gland and ruminal and abomasal epithelia of Holstein calves. J. Comp. Physiol, 172B, 379–385.

Klein, R.D., Kincaid, R.L., Hodgson, A.S., Harrison, J.H., Hillers, J.K., Cronrath, J.D.

1987. Dietary fiber and early weaning on growth and rumen development of calves. J. Dairy Sci., 70, 2095-2104.

Klotz, J.L., Heitmann, R.N. 2006. Effects of weaning and ionophore supplementation on selected blood metabolites and growth in dairy calves. J. Dairy Sci., 89, 3587–3598.

Kluge, H., Broz, J., Eder, K. 2004. Studies on the influence of benzoic acid as a feed additive on growth performance, digestibility of nutrients, nitrogen balance,

105

microflora and parameters of the microbial metabolism in the gastrointestinal tract of weaned piglets. Tagung für Schweine und Geflügelernährung Halle (Saale) Germany, 42-45.

Knowles, T.G., Edwards, J.E., Bazeley, K.J., Brown, S.N., Butterworth, A., Warrıss R.D. 2000. Changes in the blood biochemical and haematological profile of neonatal calves with age. The Veterinary Record, 147(21); 593-598.

Kotunia, A., Wolinski, J., Laubitz, D. 2004. Effect of sodium butyrate on the small intestine development in neonatal piglets fed [correction of feed] by artificial sow. J. Physiol. Pharmacol, 55 (2); 59–68.

Krishnan, S., Ramakrishna, B.S. 1998 Butyrate and glucose metabolism in isolated colonocytes in the developing rat colon. J Pediatr Gastroenterol Nutr, 26, 432–436.

Kristensen, N.B., Harmon, D.L. 2004. Effect of increasing ruminal butyrate absorption on splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers. J. Anim. Sci., 82, 3549–3559.

Kuzinski J., Zitnan R., Albrecht E., V ier gutz T., Schweigel Röntgen M. 2012.

Modulation of vH+-ATPase is part of the functional adaptation of sheep rumen epithelium to high-energy diet. J. Physiol. Regul. Integr. Comp.

Physiol, 303(9); R909-20.

Kühne, S., Hammon, H.M., Bruckmaier, R.M., Morel, C., Zbinden, Y., Blum , J. W.

2000. Growth performance, metabolic and endocrine traits, and absorptive capacity in neonatal calves fed either colostrum or milk replacer at two levels.

J. Anim. Sci, 78, 609–620.

Laarman, A.H., Ruiz Sanchez, A.L., Sugino, T., Guan, L.L., Oba, M. 2012. Effects of feed- ing a calf starter on molecular adaptations in the ruminal epithelium and liver of Holstein dairy calves. J. Dairy Sci., 95, 2585–2594.

Laborde, J.M. 2008. Effects of probiotics and yeast culture on rumen development and growth of dairy calves. Ph. D. Thesis. Faculty of the Louisiana State University and Agricultural and Mechanical College, USA.

Lane, M.A., Jesse, B.W., 1997. Effect of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep. J. Dairy. Sci, 80, 740-746

Lane, M.A., Baldwin, R.L., Jesse B.W. 2000. Sheep rumen metabolic development in response to age and dietary treatments. J. Anim. Sci., 78, 1990–1996.

Lane, M.A., Baldwin, R.L., Jesse, B.W. 2002. Developmental changes in ketogenic enzyme gene expression during sheep rumen development. J. Anim. Sci., 80, 1538–1544.

Laukoetter, M.G., Bruewer, M., Nusrat, A. 2006. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol, 22, 85-89.

106

Le-Gall, M., Gallois, M., Se`ve, B. 2009. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. Br. J. Nutr, 102, 1285–1296.

Lesmeister, K.E., Tozer, P.R., Heinrichs, A.J. 2004a. Development and analysis of a rumen tissue sampling procedure. J. Dairy Sci, 87, 1336-1344.

Lesmeister, K.E., Heinrichs, A.J. 2004b. Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves. J. Dairy Sci, 87, 3439-3450.

Li, R.W., Connor, E.E., Li, C., Baldwin, R.L., Sparks, M.E. 2012. Characterization of the rumen microbiota of pre ruminant calves using metagenomic tools.

Environmental Microbiology, 14, 129-139.

Macpherson, A.J., Uhr, T. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science, 303, 1662-1665.

Malhi, M., Gui, H., Yao, L., Aschenbach, J.R., Gäbel, G., Shen, Z. 2013. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion. J. Dairy Sci., 96, 7603–7616.

Malmuthuge, N., Griebel, P.J., Guan, L.L. 2014. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of pre-weaned calves. Appl and Environ Microbiol, 80, 2021–2028.

Manns, J.G., Boda, J.M. 1967. Insulin release by acetate, propionate, butyrate and glucose in lambs and adult sheep. Am. J. Physiol, 212, 747-755.

Mantis, N.J., Rol, N., Corthesy, B. 2011. Secretory IgA’s complex roles in immunity and mucosal homeostasis. Mucosal Immunol, 4, 603–611.

Manzanilla, E.G., Nofrarias, M., Anguita, M. 2006. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim Sci., 84, 2743–2751.

Mariadason, J.M., Kilias, D., Catto.Smith, A. 1999. Effect of butyrate on paracellular permeability in rat distal colonic mucosa ex vivo. J Gastroenterol Hepatol, 14, 873–879.

Martina, K., Ježek, J. 2012. Values of Blood Variables in Calves, In: A Bird's-Eye View of Veterinary Medicine. Carlos, C., Marin, Perez. (eds). eBook (PDF) ISBN:

978-953-51-6810-2.

Martin, W.G., Ramsey, H.A., Matrone, G., Wise, G.H. 1959. Responses of young calves to a diet containing salts of volatile fatty acids. J. Dairy Sci, 42, 1377- 1386.

Martin, L.J., Dumon, H.J., Champ, M.M. 1998. Production of short chain fatty acids from resistant starch in a pig model. J. Sci. Food. Agri., 77, 71–80.

Benzer Belgeler