• Sonuç bulunamadı

Relationships between Mahler Expansion and Higher Order q-Daehee Polynomials

N/A
N/A
Protected

Academic year: 2022

Share "Relationships between Mahler Expansion and Higher Order q-Daehee Polynomials"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Konuralp Journal of Mathematics

Research Paper

https://dergipark.org.tr/en/pub/konuralpjournalmath e-ISSN: 2147-625X

Relationships between Mahler Expansion and Higher Order q-Daehee polynomials

U˘gur Duran1*and Mehmet Ac¸ıkg¨oz1

1Department of the Basic Concepts of Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, TR-31200 Hatay, Turkey

2Department of Mathematics, Faculty of Science and Arts, Universityof Gaziantep, TR-27310 Gaziantep, Turkey

*Corresponding author

Abstract

In this paper, multifarious formulas for p-adic gamma function by means of their Mahler expansion and higher order q-Volkenborn integral on Zpare investigated. Then, some higher order q-Volkenborn integrals of p-adic gamma function in terms of both the higher order q-Daehee polynomials and higher order q-Daehee polynomials of the second kind are derived. Moreover, diverse higher order q-Volkenborn integrals of the derivative of p-adic gamma function associated with the Stirling numbers of the both kinds and the q-Bernoulli polynomials of order k are acquired.

Keywords: q-numbers; p-adic numbers; p-adic gamma function; Mahler expansion; Bernoulli polynomials; Daehee polynomials; Stirling numbers of the first kind; Stirling numbers of the second kind.

2010 Mathematics Subject Classification: 05A10, 05A30, 11B65, 11S80, 33B15

1. Introduction

The usual Daehee polynomials Dm(y) are given by (cf. [13]) log (1 + t)

t (1 + t)y=

m=0

Dm(y)tm

m!. (1.1)

When y = 0 in (1.1), we attain Dm(0) := Dmcalled m-th Daehee number, see [2-4, 6, 10, 12, 13, 18, 20] for more details.

Let Z be the set of all integers, Q be the field of rational numbers, Zpbe the ring of the p-adic integers, Qpbe the field of the p-adic numbers, and Cpbe the p-adic completion of an algebraic closure of Qp, where p be a fixed prime number (cf. [1-20]). Let N= N ∪ {0}

and N = {1, 2, 3, · · · }.

The familiar p-adic Haar distribution µ0and the Volkenborn integral I0( f ) of a function f∈ UD Zp, Cp =  f

f: Zp→ Cpis uniformly differentiable function , respectively, are given by (cf. [2-4, 6, 8-10, 12-17, 18-20])

µ0 z+ pmZp = 1/pm (1.2)

and I0( f ) =

Z

Zp

f(y) dµ0(y) = lim

m→∞

1 pm

pm−1

y=0

f(y) (1.3)

which yields the Daehee polynomials Dm(y) and Daehee numbers Dm, for m ∈ N, as follows Dm(y) =

Z

Zp

(y + z)m0(z) and Dm= Z

Zp

(z)m0(z) ,

Email addresses:mtdrnugur@gmail.com (U˘gur Duran), acikgoz@gantep.edu.tr (Mehmet Ac¸ıkg¨oz)

(2)

where (y)m= y (y − 1) (y − 2) · · · (y − m + 1) with (y)0= 1 and (cf. [2-4, 6, 10, 12, 13, 18, 20]). The following relation is valid:

(y)m=

m

k=0

S1(m, k) yk, (1.4)

where S1(m, k) are called the Stirling numbers of the first kind (see [1-4, 6, 7, 10, 12, 13, 18, 20]).

The notation q may be varyingly considered as indeterminate, complex number q ∈ C with 0 < |q| < 1, or p-adic number q ∈ Cpwith

|q − 1|p< pp−11 so that qy= exp (y log q) for |y|p≤ 1, where |.|pindicates the p-adic norm on Cpnormalized by |p|p= 1/p.

The q-extension of the Volkenborn integral of a function f ∈ U D Zp, Cp is defined by (cf. [2-4, 6, 8, 12, 18])

Iq( f ) = lim

m→∞

1 [pm]q

pm−1 y=0

f(y) qy= Z

Zp

f(y) dµq(y) . (1.5)

Suppose that f1(y) = f (y + 1). Then, we see that qIq( f1) = (q − 1) f (0) +q− 1

log qf0(0) + Iq( f ). (1.6)

For k ∈ N and m ∈ N0, the higher order q-Daehee numbers D(k)m,qand polynomials D(k)m,q(y) are defined by (cf. [4]) D(k)m,q =

Z

Zp

· · · Z

Zp

(y1+ · · · + yk)mq(y1) · · · dµq(yk) , (1.7) D(k)m,q(y) =

Z

Zp

· · · Z

Zp

(y1+ · · · + yk+ y)mq(y1) · · · dµq(yk) . (1.8)

When k = 1, it is obvious that limq→1D(1)m,q:= Dmand limq→1D(1)m,q(y) := Dm(y).

For k ∈ N and m ∈ N0, the higher order q-Daehee numbers bD(k)m,qand polynomials bD(k)m,q(y) of the second kind are introduced by (cf. [4]) Db(k)m,q =

Z

Zp

· · · Z

Zp

(−y1− · · · − yk)mq(y1) · · · dµq(yk) , (1.9)

Db(k)m,q(y) = Z

Zp

· · · Z

Zp

(−y1− · · · − yk+ y)mq(y1) · · · dµq(yk) . (1.10) The Daehee numbers and polynomials in conjuction with their diverse generalizations have been recently studied by many mathematicians, cf.

[2-4, 6, 10, 12, 13, 18, 20]. For example, Araci [1] considered degenerate q-Daehee polynomials with weight α and the degenerate q-Daehee polynomials of higher order with weight α by using q-Volkenborn integrals on Zpand then he derived some summation formulae and properties. Jang et al. [10] defined the degenerate Daehee polynomials of the third kind and developed several novel identities and relations between the degenerate Daehee polynomials of the third kind and the Korobov polynomials. Cho et al. introduced the Daehee numbers and polynomials of order k and provided their some identities and relationships. Simsek and Yardimci [20], by utilizing generating functions and p-adic Volkenborn integral, derived diverse properties of the Bernstein basis functions, the Apostol-Daehee numbers and polynomials, Apostol-Bernoulli polynomials, some special numbers including the Stirling numbers, the Euler numbers, the Daehee numbers, and the Changhee numbers. By using functional equations and an integral equation of their partial differential equations and the generating functions, they gave a recurrence relation for the Apostol-Daehee polynomials in [20].

In this paper, we investigate multifarious formulas for p-adic gamma function by means of their Mahler expansion and higher order q-Volkenborn integral on Zp. Then, we derive some higher order q-Volkenborn integrals of p-adic gamma function in terms of both the higher order q-Daehee polynomials and higher order q-Daehee polynomials of the second kind. Moreover, we acquire diverse higher order q-Volkenborn integrals of the derivative of p-adic gamma function associated with the Stirling numbers of the both kinds and the q-Bernoulli polynomials of order k.

2. Higher Order q-Daehee Polynomials Associated with Mahler Theorem

The p-adic gamma function is defined as follows Γp(y) = lim

m→y(−1)m

j<m

(p, j)=1

j y∈ Zp , (2.1)

where m approaches y through positive integers. The p-adic gamma function in conjuction with its diverse extensions have been studied and progressed broadly by many mathematicians, cf. [5, 6, 8, 9, 11, 14, 16, 17, 19].

For y ∈ Zp. let my =y(y−1)···(y−m+1)

m! (m ∈ N) with y0 = 1.

For y ∈ Zpand m ∈ N, the functions y → my form an orthonormal base of the space C Zp→ Cp with respect to the Euclidean norm k·k, which satisfies the following equality (see [6, 8, 9, 16, 19])

 y m

0

=

m−1

j=0

(−1)m− j−1 m− j

y j



. (2.2)

An extension for continuous maps of a p-adic variable using the special functions as binomial coefficient polynomial is investigated by Mahler [15], which implies that for any f ∈ C Zp→ Cp, there exist unique elements a0, a1, a2, . . . of Cpsuch that

f(y) =

m=0

am

 y m

 .

(3)

The base

m : m ∈ N is termed as Mahler base of the space C Zp→ Cp , and the components {am: m ∈ N} in f (y) = ∑m=0am y m are termed Mahler coefficients of f ∈ C Zp→ Cp.

The Mahler expansion with coefficients of the p-adic gamma function Γpis provided (cf. [19]) as follows.

Theorem 2.1. For y ∈ Zp, let Γp(y + 1) = ∑m=0am y

m be Mahler series of Γp. Then its coefficients satisfy the following identity:

m=0

(−1)m+1am

ym

m!=1 − yp 1 − y exp

 y+yp

p



. (2.3)

We give the following theorem.

Theorem 2.2. For y, yi∈ Zpwhere i∈ {1, 2, . . . k}, we have Z

Zp

· · · Z

Zp

Γp(y1+ · · · + yk+ y + 1) dµq(y1) · · · dµq(yk) =

m=0

am

D(k)m,q(y)

m! , (2.4)

where amis provided by Theorem2.1.

Proof. Let y, yi∈ Zpwhere i ∈ {1, 2, . . . k}. By using the relation y1+ym2 =(y1+ym!2)m and Theorem2.1, we get Z

Zp

· · · Z

Zp

Γp(y1+ · · · + yk+ y + 1) dµq(y1) · · · dµq(yk)

= Z

Zp

· · · Z

Zp

m=0

am

(y1+ · · · + yk+ y)m

m! dµq(y1) · · · dµq(yk)

=

m=0

am

1 m!

Z

Zp

· · · Z

Zp

(y1+ · · · + yk+ y)mq(y1) · · · dµq(yk) , which is the desired result (2.4) via the formula (1.8).

We here analyze an outcome of the Theorem2.2as follows.

Remark 2.3. Taking y = 0 in Theorem2.2means the following relation Z

Zp

· · · Z

Zp

Γp(y1+ · · · + yk+ 1) dµq(y1) · · · dµq(yk) =

m=0

am

D(k)m,q

m! , (2.5)

where amis provided by Theorem2.1.

Let m ∈ N0and k ∈ N. Cho et al. [4] gave the following correlation:

D(k)m,q(y) =

m

u=0

S1(m, u) B(k)u,q(y) , (2.6)

where B(k)u,q(y) denotes the u-th Bernoulli polynomials of order k defined by B(k)u,q(y) =

Z

Zp

· · · Z

Zp

(y1+ · · · + yk+ y)uq(y1) · · · dµq(yk) (u ∈ N0) . (2.7)

As a result of Theorem2.2and relation (2.6), one other higher order q-Volkenborn integrals of the p-adic gamma function by means of the q-Bernoulli polynomials of order k is given below.

Remark 2.4. Let y, yi∈ Zpwhere i∈ {1, 2, . . . k}. We acquire Z

Zp

· · · Z

Zp

Γp(y1+ · · · + yk+ y + 1) dµq(y1) · · · dµq(yk) =

m=0 m

u=0

am

S1(m, u) m! B(k)u,q(y) . We give the following theorem.

Theorem 2.5. For y, yi∈ Zpwhere i∈ {1, 2, . . . k}, we have Z

Zp

· · · Z

Zp

Γ0p(y1+ · · · + yk+ y + 1) dµq(y1) · · · dµq(yk) =

m=0 m−1

j=0

am

(−1)m− j−1D(k)j,q(y) (m − j) j! . Proof. By Theorem2.1, we acquire

Z

Zp

· · · Z

Zp

Γ0p(y1+ · · · + yk+ y + 1) dµq(y1) · · · dµq(yk)

= Z

Zp

· · · Z

Zp

m=0

am

y1+ · · · + yk+ y m

0

q(y1) · · · dµq(yk)

=

m=0

am Z

Zp

· · · Z

Zp

y1+ · · · + yk+ y m

0

q(y1) · · · dµq(yk)

(4)

and using (2.2), we derive

Z

Zp

· · · Z

Zp

Γ0p(y1+ · · · + yk+ y + 1) dµq(y1) · · · dµq(yk)

=

m=0 m−1

j=0

am

(−1)m− j−1 m− j

Z

Zp

· · · Z

Zp

y1+ · · · + yk+ y j



q(y1) · · · dµq(yk)

=

m=0

m−1

j=0

am

(−1)m− j−1 m− j

D(k)j,q(y) j! .

A special consequence of Theorem2.5is stated below.

Remark 2.6. Let yi∈ Zpwhere i∈ {1, 2, . . . k} . We have Z

Zp

· · · Z

Zp

Γ0p(y1+ · · · + yk+ 1) dµq(y1) · · · dµq(yk) =

m=0 m−1

j=0

am

(−1)m− j−1D(k)j,q (m − j) j! . A relation between Γp(y) and bD(k)m,q(y) is provided by the following theorem.

Theorem 2.7. For y, yi∈ Zpwhere i∈ {1, 2, . . . k}, we have Z

Zp

· · · Z

Zp

Γp(−y1− · · · − yk− y + 1) dµq(y1) · · · dµq(yk) =

m=0

am

Db(k)m,q(y) m! , where amis provided by Theorem2.1.

Proof. For y, yi∈ Zpwhere i lies in{1, 2, . . . k}, by utilizing the relation −y1m−y2 =(−y1m!−y2)m and Theorem2.1, we get Z

Zp

· · · Z

Zp

Γp(−y1− · · · − yk+ y + 1) dµq(y1) · · · dµq(yk)

= Z

Zp

· · · Z

Zp

m=0

am

(−y1− · · · − yk+ y)m

m! dµq(y1) · · · dµq(yk)

=

m=0

am

1 m!

Z

Zp

· · · Z

Zp

(−y1− · · · − yk+ y)mq(y1) · · · dµq(yk) , which means the asserted result (1.10).

An outcome of Theorem2.7is stated below.

Remark 2.8. Letting y = 0 in Theorem2.7reduces the following relation Z

Zp

· · · Z

Zp

Γp(−y1− · · · − yk+ 1) dµq(y1) · · · dµq(yk) =

m=0

am

Db(k)m,q

m! , where amis given by Theorem2.1.

Let m ∈ N0and k ∈ N. Cho et al. [4] gave the following correlation:

Db(k)m,q(y) =

m u=0

(−1)m−uS1(m, u) B(k)u,q(−y) ,

which yields the following result with the help of Theorem2.7.

Remark 2.9. For y, yi∈ Zpwhere i∈ {1, 2, . . . k}, we acquire Z

Zp

· · · Z

Zp

Γp(−y1− · · · − yk+ y + 1) dµq(y1) · · · dµq(yk) =

m=0

m u=0

(−1)m−uam

S1(m, u)

m! B(k)u,q(−y) . We observe that

(−z)m = (−z) (−z + 1) · · · (−z − m + 1)

= (−1)mz(z − 1) · · · (z + m − 1)

= (−1)m

m

u=0

S2(m, u) zu, where S2(m, u) called the Stirling numbers of the second kind (cf. [7, 20]) is given by

(et− 1)u

u! =

m≥0

S2(m, u)tm m!.

We lastly state one other higher q-Volkenborn integrals of the derivative of the p-adic gamma function by means of the Stirling numbers of the second kind and the q-Bernoulli polynomials of order k.

(5)

Theorem 2.10. For y, yi∈ Zpwhere i∈ {1, 2, . . . k}, we have Z

Zp

· · · Z

Zp

Γ0p(−y1− · − yk− y + 1) dµq(y1) · · · dµq(yk) =

m=0 m−1

j=0 j

u=0

S2( j, u) am

(−1)m−1 m− j

B(k)j,q(−y) j! . Proof. Via Theorem2.1, we get

Z

Zp

· · · Z

Zp

Γ0p(−y1− · · · − yk+ y + 1) dµq(y1) · · · dµq(yk)

= Z

Zp

· · · Z

Zp

m=0

am

−y1− · · · − yk+ y m

0

q(y1) · · · dµq(yk)

=

m=0

am Z

Zp

· · · Z

Zp

−y1− · · · − yk+ y m

0

q(y1) · · · dµq(yk) and utilizing (2.2) and (2.7), we derive

Z

Zp

· · · Z

Zp

Γ0p(−y1− · · · − yk+ y + 1) dµq(y1) · · · dµq(yk)

=

m=0 m−1

j=0

am

(−1)m− j−1 m− j

Z

Zp

· · · Z

Zp

−y1− · · · − yk+ y j



q(y1) · · · dµq(yk)

=

m=0

m−1 j=0

am

(−1)m− j−1 (m − j) j!

Z

Zp

· · · Z

Zp

(−y1− · · · − yk+ y)jq(y1) · · · dµq(yk)

=

m=0 m−1

j=0

am

(−1)m− j−1 (m − j) j!

Z

Zp

· · · Z

Zp

(−1)j

j

u=0

S2( j, u) (y1+ · · · + yk− y)uq(y1) · · · dµq(yk)

=

m=0 m−1

j=0 j

u=0

S2( j, u) am

(−1)m−1 m− j

B(k)j,q(−y) j! .

3. Conclusion and Observations

In the present paper, several relations for p-adic gamma function by means of their Mahler expansion and higher order q-Volkenborn integral on Zphave been derived. Then, some higher order q-Volkenborn integrals of p-adic gamma function in terms of both the higher order q-Daehee polynomials and higher order q-Daehee polynomials of the second kind have been acquired. Moreover, multifarious higher order q-Volkenborn integrals of the derivative of p-adic gamma function associated with the Stirling numbers of the both kinds and the q-Bernoulli polynomials of order k have been investigated. Some results attained in this paper reduce to the results in the paper [6].

References

[1] S. Araci, E. A˘gy¨uz, M. Acikgoz, On a q-analog of some numbers and polynomials, J. Inequal. Appl., 19, 2015 doi: 10.1186/s13660-014-0542-y.

[2] S. Araci, Construction of degenerate q-Daehee polynomials with weight α and its applications, Fundam. J. Math. Appl., 4 (1) 2021, 25-32., [3] S. Araci, M. Acikgoz, U. Duran, On weighted q-Daehee numbers and polynomials, Indagationes Mathematicae, 30 (2), 2019, 365-374.

[4] Y.K. Cho, T. Kim, T. Mansour, S.-H. Rim, Higher order q-Daehee polynomials, J. Comput. Anal. Appl., 19 (1), 2015, 167-173.

[5] J. Diamond, The p-adic log gamma function and p-adic Euler constant, Trans. Amer. Math. Soc., 233, 1977, 321-337.

[6] U. Duran, M. Acikgoz, On p-adic gamma function related to q-Daehee polynomials and numbers, Proyecciones J. Math. 38 (4), 2019 799-810.

[7] B. N. Guo, F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, Anal. Appl., 19 (1), 2015, 167-173.

[8] ¨O. C¸ . Havara and H. Menken, On the Volkenborn integral of the q-extension of the p-adic gamma function, J. Math. Anal., 8 (2), 2017, 64-72.

[9] ¨O. C¸ . Havare and H. Menken, The Volkenborn integral of the p-adic gamma function, Int. J. Adv. Appl. Funct., 5 (2), 2018, 56-59.

[10] L.-C. Jang, W. Kim, H.-I. Kwon, T. Kim, On degenerate Daehee polynomials and numbers of the third kind, J. Comput. Appl. Math., 364, 2020, 112343.

[11] Y. S. Kim, q-analogues of p-adic gamma functions and p-adic Euler constants, Comm. Korean Math. Soc., 13 (4), 1998, 735–741.

[12] T. Kim, S.-H. Lee, T. Mansour and J.-J. Seo, A note on q-Daehee polynomials and numbers, Adv. Stud. Contemp. Math., 24 (2), 2014, 155-160.

[13] D. S. Kim and T. Kim, Daehee numbers and polynomials, Appl. Math. Sci., 7 (120), 2013, 5969-5976.

[14] N. Koblitz, p-adic numbers, p-adic analysis, and Zeta functions (Springer-Verlag, New York Inc, 1977).

[15] K. Mahler, An interpolation series for continuous functions of a p-adic variable, J. Reine Angew. Math., 199, 1958, 23-34.

[16] H. Menken, A. K¨or¨ukc¸¨u, Some properties of the q-extension of the p-adic gamma function, Abst. Appl. Anal., Volume 2013, Article ID 176470, 4 pages.

[17] Y. Morita, A p-adic analogue of the Γ-function, J. Fac. Sci., 22 (2), 1975, 255-266.

[18] H. Ozden, I. N. Cangul, Y. Sımsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math., 18 (1), 2009, 41-48.

[19] A. M. Robert, A course in p-adic analysis (Springer-Verlag New York, Inc., 2000).

[20] Y. Simsek, A. Yardimci, Applications on the Apostol-Daehee numbers and polynomials associated with special numbers, polynomials, and p-adic integrals, Adv. Difference Equ., 308, 2016, Article no: 308: 2016.

Referanslar

Benzer Belgeler

Motivated by the generalizations in () of the classical Bernoulli and Euler polynomials, we introduce and investigate here the so-called generalized two-dimensional q-Bernoulli

At the end of this sudy, we explained the integral representation of

[20]-[27] Kim et al introduced a new notion for the q-Genocchi numbers and polyno- mials, studied on basic properties and gaves relationships of the q-analogues of Euler and

Moreover, improved q-exponential function creates a new class of q-Bernoulli numbers and like the ordinary case, all the odd coefficient becomes zero and leads

The properties of q- Bernoulli, q-Euler and q-Genocchi numbers and polynomials are investigated at (Mahmudov and Momenzadeh, 2014) by using q- improved exponential

Al-Salam [1] introduced the first q- extension of Bernoulli numbers and polynomials and gave many of their properties.. The q-extensions of Bernoulli numbers and polynomials have

Discrete version of the Hermite polynomials is also important and has enormous applications in several problems on theoretical and mathematical physics, e.g., in the

Moreover, some relationships for the generalized q-Stirling numbers of the second kind of order v and unified Apostol-type q-Genocchi, q-Euler and q-Bernoulli polynomials of order α