• Sonuç bulunamadı

Bazı tipten kısmi türevli denklemlerin çözümlerinin davranışı

N/A
N/A
Protected

Academic year: 2021

Share "Bazı tipten kısmi türevli denklemlerin çözümlerinin davranışı"

Copied!
68
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

T.C.

SAKARYA ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

BAZI TİPTEN KISMİ TÜREVLİ DENKLEMLERİN ÇÖZÜMLERİNİN DAVRANIŞI

YÜKSEK LİSANS TEZİ

Sema BAYRAKTAR

Enstitü Anabilim Dalı : MATEMATİK

Enstitü Bilim Dalı : UYGULAMALI MATEMATİK Tez Danışmanı : Doç. Dr. Şevket GÜR

Haziran 2014

(2)
(3)

ii

7(ù(..h5

%X WH]LQ KD]ÕUODQPDVÕ VUHFLQGH GHUV DúDPDVÕQGD \DQÕPGD RODQ VD\JÕGH÷HU KRFDP

'Ro 'U (OPDQ +D]DU¶D KHP DUDúWÕUPD KHP GH \D]ÕP NÕVPÕQGD EDQD KHU WUO

IHGDNkUOÕ÷ÕJ|VWHUHQELOJLVLYHWHFUEHVL\OHEHQLKHU]DPDQ\|QOHQGLUHQYHEDQDKHU

WUO RODQD÷Õ VD÷OD\DQ 6DNDU\D hQLYHUVLWHVL )HQ (GHEL\DW )DNOWHVL 0DWHPDWLN

$QDELOLP 'DOÕ |÷UHWLP \HVL GH÷HUOL 'DQÕúPDQ +RFDP 'Ro 'U ùHYNHW *U¶e VRQVX]WHúHNNUOHULPLVXQDUÕP

(4)

iii

ødø1'(.ø/(5

7(ù(..hR«««««««««««««««««««««««««««.... ii

ødø1'(.ø/(5««««««««««««««««««««««««««... iii 6ø0*(/(59(.,6$/70$/$5/ø67(6ø««««««««««.««« v g=(7 ««««««««««««««««««««««««««««««.... vi

SUMMARY««««««««««««««««««««««««««««.. vii

%g/h0

*ø5øù ... 1

%g/h0

TEMEL TANIM VE KAVRAMLAR«««««««««««««««..««6

%g/h0

'(1ø= 3/$7)250/$5,1,1 'ø1$0øöø1ø 7$1,0/$<$1  '(5(&('(1

/ø1((5 2/0$<$1 %ø5 '$/*$ '(1./(0ø1ø1 8=81 =$0$1

'$95$1,ù,««««««««««««««««««««««««««...««11

*LULúYH3UREOHPLQLIDGHVL««««««««««««««««««11

%g/h0

36(8'23$5$%2/,&'(1./(0/(5ø1dg=h0/(5ø1ø13$7/$0$6,. 28

*LULúYH3UREOHPLQLIDGHVL««««««««««««...««« 28

(5)

iv

%g/h0

/ø1((5 2/0$<$1 '$/*$ '(1./(0ø ødø1 dg=h0/(5ø1 */2%$/

'$95$1,ù,««««««««««««««««««.«««««««««48

*LULúYH3UREOHPLQLIDGHVL«««««««««««««««««... 48

%g/h0

6218d/$59(g1(5ø/(5«««««««««««««««««««.. 56

KAYNAKLAR«««««««««««««««««««««««««««57

g=*(d0øù««««««««««««««««««««««««..«««« 60

(6)

v

6ø0*(/(59(.,6$/70$/$5/ø67(6ø

’ ' 2 : /DSODFHRSHUDW|U

’ : *UDGLDQWRSHUDW|U

: : Rn¶GHG]JQVÕQÕUDVDKLSVÕQÕUOÕE|OJH

,

u x t : Bilinmeyen fonksiyon

2 1

0

ȍ  1 ȍ 

H H H : : 6REROHYX]D\Õ

u v, : uvdx

:

³

LP

u : :

˜ P

˜ :

˜2

(7)

vi

g=(7

$QDKWDU NHOLPHOHU d|]PQ SDWODPDVÕ DVLPSWRWLN GDYUDQÕú GDOJD GHQNOHPL

pseudoparabolic denklem.

%XWH]E|OPGHQROXúPDNWDGÕU

%LULQFL E|OPGH NÕVPL GLIHUDQVL\HO GHQNOHPOHULQ GDYUDQÕúÕQGDQ EDKVHGLOHUHN WH]H

JLULú\DSÕOPÕúWÕU

øNLQFLE|OPGHWH]GHNXOODQÕODQWHPHOWDQÕPYHNDYUDPODUYHULOPLúWLU

hoQF E|OPGH OLQHHU ROPD\DQ ELU GDOJD GHQNOHPLQLQ X]XQ VUHOL GDYUDQÕúÕ

LQFHOHQPLúWLU

'|UGQF E|OPGH SVHXGRSDUDEROLF GHQNOHPOHULQ o|]POHULQLQ SDWODPDVÕ

LQFHOHQPLúWLU

%HúLQFLE|OPGHLVHOLQHHUROPD\DQGDOJDGHQNOHPLLoLQo|]POHULQJOREDOGDYUDQÕúÕ

LQFHOHQPLúWLU

AlWÕQFÕE|OPGHLVHWH]oDOÕúPDVÕQGDQHOGHHGLOHQVRQXoODUEHOLUWLOPLúWLU

(8)

vii

BEHAVIOR OF SOLUTIONS OF SOME TYPES OF PARTIAL DIFFERENTIAL EQUATIONS

SUMMARY

Key Words: Blow-up of Solution, Asymptotic Behavior, Wave Equation This thesis is consists of six chapters.

In the first chapter, it is mentioned about behavior of solution for partial differential equations and there is introduction to the thesis.

In the second chapter, main definitions and concepts used in the thesis are given.

In the third chapter, it is concerned nonlinear wave equation long-time behavior.

In the forth chapter, it is concerned with blow-up of solution to pseudobolic equations.

In the fifth chapter, it is concerned stabilization of the energy and continuous dependence of solution to nonlinear wave equation.

Finally in the sixth chapter, the results are stated gained through the study of thesis.

(9)

Equation Section 1

%g/h0*ø5øù

6D\ÕVDO\|QWHPOHULQ \DGDDQDOL]LQ DPDFÕPDWHPDWLNVHOSUREOHPOHULQo|]PLoLQ

X\JXQ YH GR÷UX VRQXo YHUHQ WHNQLNOHU JHOLúWLUPHNWLU d|]P LVWHQHQ SUREOHPL

WDQÕPODPDN IRUPOH HWPHN YH o|]P LoLQ NXOODQÕODFDN HQ X\JXQ \|QWHPL VHoPHN

DQDOL]L\DSDQNLúLQLQDPDFÕGÕU$GLGLIHUDQVL\HOGHQNOHPOHUNÕVPLWUHYOLGLIHUDQVL\HO

GHQNOHPOHUVD\ÕVDOLQWHJUDV\RQVHULKHVDSODPDODUÕJLELELUoRNSUREOHPWUYDUGÕU

%L] EX SUREOHP WUOHULQGHQ NÕVPL WUHYOL GLIHUDQVL\HO GHQNOHPOHUL HOH DODFD÷Õ]

%LOLQGL÷L]HUHSUREOHPOHULQo|]PKHU]DPDQYDUROPD\DELOLU%XGXUXPGDo|]P

EXOXQPDVDGDSUREOHPLQ\DNODúÕNo|]PHOGHHGLOHELOLU

%LU RWRPRELOL oDOÕúWÕUGÕ÷ÕQÕ]GD YH\D DPSXO DoWÕ÷ÕQÕ]GD ELUoRN úH\ ROXU %XQODUÕQ

ED]ÕODUÕ VLVWHPLQ EDúODPDVÕQÕQ HúVL] SDUoDVÕGÕU %X JHoLFL úH\OHU VDGHFH EDúODPD

VÕUDVÕQGD ROXU YH GDKD VRQUD VLVWHP NDUDUOÕ GXUXPD JHoHU 6LVWHPOHULQ GDYUDQÕúÕQÕ

EDúODWPDN oRN |QHPOL RODELOLU DPD ED]HQ VLVWHPLQ X]XQ VUHOL GDYUDQÕúÕQÕ \D GD

NDUDUOÕ KDOLQL DUDúWÕUPDN LVWH\HELOLUL] gUQH÷LQ f n

IRQNVL\RQX J|] |QQH

DOÕQGÕ÷ÕQGD n oRN E\N ROGX÷XQGD IRQNVL\RQXQ |]HOOLNOHULQL DoÕNODPDN LoLQ

GDYUDQÕúÕ LQFHOHQLU f n

n23n ROGX÷XQGD n oRN E\NVH 3n terimi n ile 2 NÕ\DVODQGÕ÷ÕQGD |QHPVL] KDOH JHOLU f n

fonksiyonunun no f LoLQ n2¶\H

DVLPSWRWLNRODUDNHúGH÷HUROGX÷XV|\OHQLU

'DYUDQÕú LQFHOHPHVL D\QÕ ]DPDQGD ELOJLVD\DU ELOLPLQGHNL DOJRULWPDODUÕQ DQDOL]LQGH

YHUL NPHOHULQH oRN E\N JLULúOHU X\JXODQGÕ÷ÕQGD DOJRULWPDQÕQ SHUIRUPDQVÕQÕ HOH

DOÕUNHQ ND]D DQDOL]LQGH EHOOL ]DPDQ YH PHNkQGDNL oRN VD\ÕGDNL ND]D VD\ÕODUÕQÕ

modelleyerek ND]DQÕQQHGHQLQLWHVSLWHGHUNHQGHNXOODQÕOÕr.

øON GDYUDQÕú LQFHOHPHOHUL  \ÕOÕQGD 0LOQH :( WDUDIÕQGDQ DUDOÕ÷Õ VÕQÕUVÕ] RODQ

VRQOX GH÷HU SUREOHPLQLQ GDYUDQÕúÕQÕ LQFHOHPHVL\OH EDúODPÕúWÕU >@ \LQH 

(10)

\ÕOÕQGD )RUG :% XoD÷ÕQ X]DN NÕVÕPODUÕQGDNL LQWHJUDO IRQNVL\RQODUÕQ GDYUDQÕúÕQÕ

incelemLúWLU [31].

)LOWUDV\RQ WHRULVL WHUPRGLQDPLNOHU YH KLGURGLQDPLNOHULQ oHúLWOL SUREOHPOHULQGHNL

oDOÕúPDODUGDJ|UQHQOLQHHUROPD\DQSVHXGRSDUDEROLFGHQNOHPOHU >@

, ,

, 0,

t t

u  '  ' u v u f x u ’u v! (1.1)

IRUPXQGDGÕU  ¶LQOLQHHUKDOL¶WH6/6REROHY>@WDUDIÕQGDQoDOÕúÕOPÕúWÕU%X

\]GHQ  IRUPXQGDNLEXGHQNOHP6REROHYWLSLGHQNOHPRODUDNDGODQGÕUÕOÕU6$

Galpern [13], M ve L OLQHHUHOLSWLNRSHUDW|UOHUROPDN]HUH

Mut Lu f (1.2)

IRUPXQGDNLGHQNOHPLoLQ&DXFK\SUREOHPLoDOÕúPÕúWÕU5(6KRZDOWHU>@ M ve L LNLQFLGHUHFHHOLSWLNRSHUDW|UOHUROPDN]HUH  OLQHHUSVHXGRSDUDEROLFGHQNOHPLQL

DUDúWÕUPÕúWÕU 6KRZDOWHU YH 7LQJ >@  \ÕOÕQGDNL 3VHXGRSDUDEROLF SDUWLDO

GLIIHUHQWLDO HTXDWLRQV DGOÕ PDNDOHVLQGH   GHQNOHPL LoLQ EDúODQJÕo VÕQÕU GH÷HU

probleminLQ ]D\ÕI o|]PQQ YDUOÕN WHNOLN YH G]JQO÷Q DUDúWÕUPÕúODUGÕU

*HUoHNWHQ>@  SVHXGRSDUDEROLFGHQNOHPLQLONPDNDOHVLRODUDNDGODQGÕUÕODELOLU

Lineer olmayan pseudoparabolic denklemlerin ilk makalesi

t

,

M t u L t u f t u (1.3)

IRUPXQGDNL GLIHUDQVL\HO RSHUDW|U GHQNOHPL LoLQ EDúODQJÕo GH÷HU SUREOHPLQLQ VÕIÕU

o|]PQQ YDUOÕN YH WHNOL÷LQLQ ELOLQGL÷L GXUXPGD 6KRZDOWHU >@ WDUDIÕQGDQ

\D]ÕOPÕúWÕU/LQHHUROPD\DQSVHXGRSDUDEROLFGHQNOHPOHULQJHQLúELUVÕQÕIÕQÕNDSVD\DQ

OLQHHUROPD\DQGLIHUDQVL\HORSHUDW|UGHQNOHPOHULoLQ&DXFK\SUREOHPLQLQWHNOL÷LYH

JOREDO YDUOÕ÷ÕQ VLVWHPDWLN oDOÕúPDVÕ 6KRZDOWHU YH 7LQJ >@¶LQ PDNDOHVLQGH YH

*DMHZVNL*U|JHU=DFKDULDV>@¶LQNLWDEÕQGD\D]ÕOPÕúWÕU

(11)

3

 ¶LQ|QHPOL|UQHNOHULQGHQELUL

t xx xxt x x 0

u vu u  u uu (1.4)

Benjamin-Bona-Mahony-%UJHUV %%0%  GHQNOHPLGLU   GHQNOHPLQGH f ,

,

f b ’  ’u F u IRUPXQGDGÕU:DQJYH<DQJ>@WHNER\XWOX%%0%GHQNOHPL

LoLQSHUL\RGLNEDúODQJÕoVÕQÕUGH÷HUSUREOHPLLOHUHWLOHQ\DUÕJUXEXQVRQOXER\XWOX

JOREDO oHNLFLQLQ YDUOÕ÷ÕQÕ LVSDWODPÕúWÕU dHOHEL .DODQWDURY YH 3RODW >@   denkleminde f , f

b,’  ’u

F u

h x ROGX÷X GXUXPGD SHUL\RGLN EDúODQJÕo

VÕQÕUGH÷HUSUREOHPLLOHUHWLOHQ\DUÕJUXEXQVWHOoHNLFLVLYHJOREDOoHNLFLVLQLQYDUOÕN

SUREOHPLQLoDOÕúPÕúWÕU

$PLFN %RQD YH 6FKRQEHFN >@ EX GHQNOHP LoLQ &DXFK\ SUREOHPLQLQ L R2

veLf

R ¶GH o|]POHULQLQ DVLPSWRWLN GDYUDQÕúÕQÕ DUDúWÕUPÕúWÕU (OGH HGLOHQ EX

VRQXoODU

0, 0

m

t xx xxt x x

u vu u  u u u mt

IRUPXQGDNL GHQNOHPOHU LoLQ =KDQJ >@ WDUDIÕQGDQ JHOLúWLULOPLúWLU .DUFK >@ oRN

ER\XWOX %%0% GHQNOHPL LoLQ &DXFK\ SUREOHPLQLQ o|]POHULQLQ DVLPSWRWLN

GDYUDQÕúÕQÕDUDúWÕUPÕúWÕU

Stanislavova, Stefanov ve Wang [22], H1

R3 ¶WHoRNER\XWOX%%0%GHQNOHPLLoLQ

JOREDOoHNLFLQLQYDUOÕNSUREOHPLQLoDOÕúPÕúWÕU

.RUSXVRYYH6YHVKQLNRY>@DúD÷ÕGDNL%HQMDPLQ-Bona-Mahony-%UJHUVGHQNOHPL

LoLQ EDúODQJÕo VÕQÕU GH÷HU SUREOHPLQLQ o|]PQQ JOREDO \RNOX÷X LoLQ JHUHNOL

NRúXOODUÕEXOPXúWXU

1

3 0

t t x

u  '  ' u u uu u

(12)

/LQHHUROPD\DQSVHXGRSDUDEROLFGHQNOHPOHULQo|]POHULQLQSDWODPDVÕQGDLONVRQXo

/HYLQH>@WDUDIÕQGDQHOGHHGLOPLúWLU/HYLQH P ve A OLQHHUSR]LWLIRSHUDW|UOHUYH

F u , H +LOEHUW X]D\ÕQGD SRWDQVL\HO RSHUDW|U ROPDN ]HUH DúD÷ÕGDNL OLQHHU

ROPD\DQGLIHUDQVL\HORSHUDW|UGHQNOHPLoLQ&DXFK\SUREOHPLQLDUDúWÕUPÕúWÕU

t

Pu Au F u

%XVRQXo f ,

0

0, 2

s

f s s k

³

f W Wd t k ! (1.5)

ROGX÷X GXUXPGD  ut '  ' u ut f u

IRUPXQGDNL GHQNOHPOHU LoLQ EDúODQJÕo

VÕQÕU GH÷HU SUREOHPOHUL YH &DXFK\ SUREOHPL LoLQ o|]POHULQ SDWODPDVÕQÕQ JHUHNOL

NRúXOODUÕQÕYHULU

+DUDX[ YH =XD]XD >@  1DNDR >@   GHUHFH GDOJD GHQNOHPOHULQLQ o|]POHULQLQ

]D\ÕIODPD KÕ]ÕQÕQ NHVWLULPOHUL YH VÕIÕU o|]PQ DVLPSWRWLN NDUDUOÕOÕ÷Õ WHRUHPOHULQL

HOGHHWPLúOHUGLU'DKD \NVHNGHUHFHOLOLQHHUROPD\DQGDOJDGHQNOHPOHULQLQEHQ]HU

VRQXoODUÕGD0DUFDWL>@WDUDIÕQGDQHOHDOÕQPÕúWÕU.

2 , ȍ 

tt t t t

u  ' u E u u 'D u x t! (1.6)

, 0 0

, t

, 0 1

, ȍ

u x u x u x u x x (1.7)

 GHQNOHPLQLQVRO\DQÕQGDNLVRQWHULP f u

LOHGH÷LúWLULOHUHN¶GH:HEE>@

WDUDIÕQGDQ oDOÕúÕOPÕúWÕU :HEE   YH   LoLQ JOREDO JoO o|]PQ YDUOÕ÷ÕQÕ

f u ¶\DJ|UHG|UWNRúXODOWÕQGDn 1, 2,3LoLQLVSDWODPÕúWÕU>@¶GHnt4LoLQJOREDO

JoO o|]PQ YDUOÕ÷Õ ED]Õ YDUVD\ÕPODU DOWÕQGD HOGH HGLOPLúWLU %D]Õ YDUVD\ÕPODU

DOWÕQGD  YH  LoLQo|]POHULQDVLPSWRWLNGDYUDQÕúÕ5XQ]KDQJYH<DFKHQJ>@

WDUDIÕQGDQoDOÕúÕOPÕúWÕU

(13)

5

E|OPGH9.DODQWDURY YH$.XUWWDUDIÕQGDQ\ÕOÕQGD\D]ÕODQGHUHFHGHQ

OLQHHU ROPD\DQ ELU GDOJD GHQNOHPLQLQ X]XQ ]DPDQ GDYUDQÕúÕ LVLPOL oDOÕúPD >@ 

E|OPGH00H\YDFÕWDUDIÕQGDQ\ÕOÕQGD\D]ÕODQSVHXGRSDUDEROLFGHQNOHPOHULQ

o|]POHULQLQSDWODPDVÕLVLPOLoDOÕúPD >@GHWD\OÕELUúHNLOGHLQFHOHQHFHNWLU

*|UOG÷ JLEL  \ÕOÕQGDQ EX \DQD GHQNOHPOHULQ GDYUDQÕúÕ ]HULQH ELUoRN

DUDúWÕUPD\DSÕOPÕúWÕU*HQLúELUDODQDVDKLSRODQGDYUDQÕúLQFHOHPHVLQLQJQGHQJQH

DUDúWÕUPDODUÕDUWPDNWDLQFHOHPHDODQÕJHQLúOHPHNWHGLr.

(14)

%g/h07(0(/7$1,09(.$95$0/$5

7DQÕP

Rn

:  ELUE|OJHYH p SR]LWLIELUUHHOVD\ÕROVXQ : ]HULQGHWDQÕPODQPÕú

p

u x dx

:

³

 f

NRúXOXQXVD÷OD\DQ|OoOHELOLUuIRQNVL\RQODUÕVÕQÕIÕQDLp

: X]D\ÕGHQLU

1d  fp LoLQ]HULQGHNLQRUP

1

ȍ ȍ

,

p

p p p p

L p

u : § u dx· u u dx

¨ ¸

©

³

¹

³

úHNOLQGHWDQÕPODQÕU p LoLQ2 Lp

: +LOEHUWX]D\ÕGÕUYH]HULQGHNLLooDUSÕP

ȍ

, , , 2

u v

³

u x v x dx u vL :

ELoLPLQGHWDQÕPODQÕU

(úLWVL]OLN +|OGHUHúLWVL]OL÷L

1d p q,  f ve 1 1

p q 1olsun.

(15)

7

Bu durumda uL Up

,vL Uq

LoLQ

p q

L U

U L U

u x v x dxd u v

³

HúLWVL]OL÷LVD÷ODQÕU

(úLWVL]OLN <RXQJHúLWVL]OL÷L

, R 0

p q ! pozitif UHHOVD\ÕROVXQ g\OHNL

1 1

p q 1RODFDNúHNLOGH

, 0

a b t R LoLQ

1

p q

a b

p  q

ROPDOÕGÕU

, , 0

a b H

 ! ve q p

p1 ,1

  fp LoLQDúD÷ÕGDNLHúLWVL]OLNJHoHUOLGLU

2

1 1

2 1 1

, .

2 2

p

p

ab a b ab a bq

p q

H

H H

H

d  d  

(úLWVL]OLN &DXFK\-6FKZDU]HúLWVL]OL÷L

, n

x yR

x y˜ d x y

(úLWVL]OLN 3RLQFDUH-)ULHGULFKVHúLWVL]OL÷L Rn

:  VÕQÕUOÕELUE|OJHROVXQc : ! c( ) 0 ROPDN]HUH

(16)

1

u Wp

  : LoLQ

1

* q

Lp c W

u : d u :

RODFDNúHNLOGHc c p n( , )!0VDELWLYDUGÕU%XUDGD * np

p np ROPDOÕGÕU

(úLWVL]OLN 3RLQFDUH¶HúLWVL]OL÷L)

1

0 ȍ

u H

  ve C HúLWVL]OLNOHULOJLOLVDELWROPDN]HUH

u dC ’u

ROPDOÕGÕU

(úLWVL]OLN /DG\]KHQVND\DHúLWVL]OL÷L)

1

0 ȍ

u H

  ve C HúLWVL]OLNOHULOJLOLVDELWROPDN]HUH

1 1

2 2

u 4dC u ’u ROPDOÕGÕU

(úLWVL]OLN 6REROHYHúLWVL]OL÷L)

1

0 ȍ

u H

  ve qt , 2 C1 HúLWVL]OLNOHLOJLOLVDELWROPDN]HUH

q 1

u dC ’ ROPDOÕGÕU u

(17)

9

Lemma 2.1. (Lagnese, Haraux) E R:  oRartmayan fonksiyon olsun ve bir 0

T ! VDELWLQLQROGX÷XQXIDU]HGHOLPg\OHNL

,

t

E s ds TE t t R

f d   

³

Bu durumda

0 1 Tt,

E t dE e  t t T

ROPDNWDGÕU

Lyapunov $QODPÕQGD.DUDUOÕd|]POHU 7DQÕP

,

*

, dx f x y

dt

dy g x y dt

½°°

¾°

°¿

VLVWHPLQLQELUo|]PROVXQ(÷HULVWHQLOGL÷LNDGDUNoNELUH !0VD\ÕVÕQDNDUúÕQ

|\OHELUG G H

!0 bulunabiliyorsa ki;

0 0

0 0

x t x t y t y t

G G

 

 

.RúXOXQXVD÷OD\DQNH\IL

x t

,y t

o|]PLoLQ

(18)

, 0

x t x t

y t y t t t

H H

 

  t

VD÷ODQVÕQ %X GXUXPGD

x t

,y t

o|]P

* sisteminin Lyapunov DQODPÕQGD

NDUDUOÕ o|]PGU YH\D VDGHFH NDUDUOÕ o|]PGU GHQLU 7DQÕPGDQ DQODúÕODFD÷Õ

]HUHELUo|]PQNDUDUOÕROPDVÕLoLQKHUKDQJLELUt t0 DQÕQGDEXo|]PH\DNÕQ

RODQ EWQ o|]POHULQ t ! t0 GH÷HUOHULQGH GH EX o|]PH \DNÕQ NDOPDNWD GHYDP

etmelidir.

7DQÕP

x t ,y t

,

* VLVWHPLQLQNDUDUOÕo|]PROVXQ(÷HUNH\IL

x t

,y t

o|]P

lim 0

lim 0

t

t

x t x t y t y t

of

of





NRúXOXQX VD÷OÕ\RUVD EX KDOGH

x t

,y t

DVLPSWRWLN NDUDUOÕGÕU GHQLU %X

WDQÕPODUGDNL o|]P VLVWHPLQ GHQJH QRNWDVÕ VÕIÕU o|]P  LVH GHQJH QRNWDVÕ

NDUDUOÕGÕU YH\D DVLPSWRWLN NDUDUOÕGÕU GHQLU $\UÕFD YHULOHQ o|]PQ NDUDUOÕ ROXS

ROPDPDVÕt VD\ÕVÕQDED÷OÕGH÷LOGLUYH|]HORODUDN0 t0 DOÕQDELOLU 0

(19)

Equation Section 3

%g/h0   '(5(&('(1 /ø1((5 2/0$<$1 %ø5 '$/*$

'(1./(0ø1ø1 0$5,1( 5,6(5 (48$7,21  8=81=$0$1'$95$1,ù,

*LULúYH3UREOHPLQøIDGHVL

0, xx

0, , xx

, 0

u t u t u l t u l t (3.1)

VÕQÕUNRúXOODUÕDOWÕQGD

p 0

tt xxxx x x tx t t

mu ku ª¬a x u º¼ Ju bu u (3.2)

SUREOHPL HOH DOÕQVÕQ %XUDGD p m k b , , SR]LWLI VD\ÕODU J UHHO VD\Õ YH

1

> @

0,

a x C l ¶dir.

6ÕIÕUd|]PQ$VLPSWRWLN.DUDUOÕOÕ÷Õ

Teorem 3.1. Kabul edelim ki

i) , , p m k b SR]LWLIVD\ÕODUJ ELUUHHOVD\Õ

ii) a

˜ C1

> @

0,l ve  x

> @

0,l LoLQ c0 t0 ROGX÷X GXUXPGD a x

t c0 ve

2 2

0 0 0

kc l S d !

úDUWODUÕVD÷ODQVÕQ

(20)

Bu durumda (3.1)-  SUREOHPLQLQVÕIÕUo|]P 1

2 2

1/2

0 l

t uxx dx

u § u ·

¨  ¸

©

³

¹ normuna

J|UHJOREDODVLPSWRWLNNDUDUOÕGÕUYH  VÕQÕUNRúXOODUÕQÕVD÷OD\DQ  GHQNOHPLQLQ

KHUo|]P

>

1 / 2

2 0 2

2/ 2

0 0

, 0,1

( , ) ( , )

2 2 , 1, 1,

l l

t xx

p p

p

At p

u x t dx u x t dx

At p

m

t

d   

 

­ 

 d ®°

t  f

³ ³

°¯ (3.3)

HúLWVL]OL÷LQL VD÷ODU %XUDGD A , u|t 0, ut|t 0 EDúODQJÕo YHULOHULQH YH l c b p m, 0, , , ,J VD\ÕODUÕQDED÷OÕGÕU

øVSDW 3.1. ( , )u x t , (3.1) -  SUREOHPLQLQELUo|]PROVXQ

(3.2) denklemi ile ut oDUSÕOÕUVD

p 0

tt t xxxx t x x t tx t t t t

mu u ku u ª¬a x u º¼ u Ju u bu u u (3.4)

elde edilir.

(3.4) denklemindeki YHULOHUWHNWHNHOHDOÕQGÕ÷ÕQGD

1 2

tt t 2 t

u u u

t w w

t xxxx xxx t tx xxx xxx t tx xx txx xx

u u u u u u u u u u u u

x x x

w  w  w 

w w w

1 2

xxx t tx xx 2 xx

u u u u u

x t

w   w

w w

1

2

x x t x t tx x x t 2 x

a x u u a x u u u a x u a x u u a x u

x x t

w w w

 

ª º

¬ ¼ w w w

1

2

x t 2 x

a x u u a x u

x t

w  w

w w

(21)

13

1 2

tx t 2 t

u u u

x w w

elde edilir.

(OGHHGLOHQOHU  GHQNOHPLQGH\HULQH\D]ÕOGÕ÷ÕQGD

2

1 2

2 t xxx t tx xx 2 xx x x t

m u k u u u u k u a x u u

t x t

w  w   w  w

w w w w (3.5)

2

2 2

1 0

2 2

p

x t t

a x u u b u

t x

J 

w w

  

w w

ROPDNWDGÕU

(3.5) denklemi

0,l ]HULQGHLQWHJUHHGLOLUVH

2 2

0 0 0

0 0

| | |

2 2

l l

x l x l x l

t t xxx x tx xx x xx x t x

d m d k

u dx k u u k u u u dx a x u u

dt

³

  dt

³



2

2 0 2

0 0

1 | 0

2 2

l l

x l p

x t x t

d a x u dx u b u dx

dt

J 



³

 

³

olur.

 ¶GHNLVÕQÕUNRúXOODUÕQDED÷OÕRODUDN  GHQNOHPL

2 2 2 2

0 0

1 0.

2 2 2

l l

p

t xx x t

d m k

u u a x u dx b u dx

dt

ª º 

  

« »

¬

³

¼

³

(3.6)

ROPDNWDGÕU

(22)

(3.2) denklemi u LOHoDUSÕOÕUVD

p 0

tt xxxx x x tx t t

mu u ku uª¬a x u º¼ uJu u bu u u (3.7)

denklemi elde edilir.

 GHQNOHPLQGHNLYHULOHUWHNWHNHOHDOÕQGÕ÷ÕQGD

2

tt t t

u u u u u

t

w 

w

2

2

xxxx xxx x xxx xxx xx x xx xxx xx x xx

u u u u u u u u u u u u u u u u

x x x x

w  w §¨ w  ·¸ w  

w w ©w ¹ w

x x

x

x

x

x

2x

a x u u a x u u u a x u a x u u a x u

x x

w  w 

ª º

¬ ¼ w w

tx t t x

u u u u u u x

w 

w

ifadeleri meydana gelir.

(OGHHGLOHQOHU  GHQNOHPLQGH\HULQH\D]ÕOGÕ÷ÕQGD

t t2

xxx xx x

2xx

x

m u u u k u u u u ku a x u u

t x x

w w w

ª  º   

«w » w w

¬ ¼ (3.8)

x2 Ȗ

t Ȗ t x t t p 

a x u u u u u buu u x

  w  

w

ROPDNWDGÕU

(23)

15

(3.8) denklemi x¶HJ|UHintegre edilirse,

2 2

0 0 0

0 0 0

| | |

l l l

x l x l x l

t t xxx x x xx x xx x x

m d uu dx m u dx k uu k u u k u dx a x uu

dt

³



³

  

³



2

0

0 0 0

Ȗ _ 

l l l

x l p

x t x x t t t

a x u dx u u J u u dx b uu u dx



³

 

³



³

ifadesi elde edilir.

 VÕQÕUNRúXOODUÕQDED÷OÕRODUDNEXGHQNOHP

2 2

2

0 0

, , 0

l l

p

t t xx x x t t t

d m u u m u k u a x u dx u u b uu u dx

dt ª¬ º¼  

³

J 

³

(3.9)

ROPDNWDGÕU

(3.9) denklemi, G1 !0 LOHoDUSÕOÕS  GHQNOHPLQHHNOHQLUVH

2 2 2 2 2

1 1 1

0

1 ,

2 2 2

l

t xx x t t xx

d m k

u u a x u dx m u u m u k u

dt ª«   G º»G G

¬

³

¼

2

2

1 1 1

0 0 0

, 0

l l l

p p

x x t t t t

a x u dx u u b uu u dx b u dx

G G J G 



³

 

³



³

(3.10)

denklemi elde edilir.

2 2

2

1 1

0

1 ,

2 2 2

l

t xx x t

m k

E t u  u 

³

a x u dxGm u u (3.11)

olsun.

(24)

Bu durumda (3.10) denklemi

2 2

2

1 1 1 1 1

0

1 2

1

0 0

,

0

l

t xx x x t

l l

p p

t t

d E t m u k u a x u dx u u

dt

b u u dx b u dx

G G G G J

G  

   

  d

³

³ ³

(3.12)

úHNOLQGH\D]ÕODELOLU.ROD\OÕNODJ|VWHULOHELOLUNL

2

2 2

x 2 xx

u l u

dS (3.13)

GÕU%XUDGD

uux x ux2u uxx denklemi x¶HJ|UHLQWHJUHHGLOGLNWHQVRQUD

2

0 0 0

l l l

x x x xx

uu u dx uu dx

³ ³ ³

2 0

0 0

|

l l

l

x x xx

uu

³

u dx

³

uu dx

2

0 0

*

l l

x xx

u dx  uu dx

³ ³

elde edilir.

&DXFK\HúLWVL]OL÷LYH3RLQFDUH-)ULHGULFKVHúLWVL]OL÷LQGHQ >@VD\ID

2

2 2

2 0 0

l l

x

u dx l u dx dS

³ ³

(3.14)

\D]ÕODELOLU

(25)

17

* HúLWVL]OL÷L\DUGÕPÕ\OD

1 1 1 1

2 2 2 2

2 2 2 2 2

0 0 0 0

0 0 0

l l l l l l l

x xx xx xx xx

u dx uu dx u u dx u dx u dx l u dx u dx

S

§ · § · § · § ·

d d d©¨¨ ¸¸¹ ¨© ¸¹ d ¨© ¹¸ ©¨¨ ¸¸¹

³ ³ ³ ³ ³ ³ ³

ROGX÷XJ|UOU 6RQHúLWVL]OLNWHQ

1 1 2 2

2 2

0 0

l l

x xx

u dx l u dx S

§ ·

§ ·

d ¨ ¸

¨ ¸ ¨ ¸

©

³

¹ ©

³

¹

elde edilir.

 DúD÷ÕGDNLHúLWVL]OLNWHNXOODQÕOÕUVD

2 12 2 2 2 12 2 2 2

1 1 2

1 1

, 2 2 2 2

x t x t t x t xx

u u u u u G J u u G J l u

G J G J

d d  d  S (3.15)

ifadesi meydana gelir.

 HúLWVL]OL÷LQLNXOODQDUDN  GHQNOHPL

12 2 2 2 2

2

1 1 2 1 1

0

1 2

1

0 0

1

2 2

0

l

xx t x

l l

p p

t t

l

d E t k u m u a x u dx

dt

b u u dx b u dx

G G J G G

S

G  

§ · § ·

¨  ¸  ¨  ¸ 

© ¹

© ¹

  d

³

³ ³

(3.16)

úHNOLQGH\D]ÕOÕU

2 0

1 2 2

0 2 d

l G S

  J (3.17)

(26)

olsun. Bu durumda,

2 2 2 1

1 2 0

2 L Gk G J l

 S !

olur. 7HRUHP¶LQ LL NRúXOX\DUGÕPÕ\OD

2 0

0 2

d k c l  S

2 2 1

1 2 0, 1 0

2 k G J l

G G

S

§ ·

¨ ¸!

©  ¹ !

2 2 2 2

1 1

2 0, 2

2 2

l l

k G J k G J

S S

 ! !

2 2 2 2

2 2

0 0

2 2 0 2 2 2

1 1 2

2 2

, ,

0 k k c l k c l

l d l

S S

S S

S J

G J G

S

§ ·

 

  ¨ ¸

© ¹



2 0

1 2 2

2 d l G S

 J ROPDNWDGÕU

%XGXUXPGD  HúLWVL]OL÷LQGHQ

2 2 2 2

2

1 1 1

0

1 2

1

0 0

1 2

l

t t t xx x

l l

p p

t t

d E t m u m u m u L u a x u dx

dt

b u u dx b u dx

G G

G  

§ ·

d¨©  ¸¹    

 

³

³ ³

(3.18)

ifadesi elde edilir.

0

a x t c ROGX÷X LoLQ  GHQNOHPLQGHQ

(27)

19

2

2 2 2 2 0 2

0 2

0 0 0 0 0

l l l l l

xx x xx x xx

k u dx a x u dx k u dx c u dx k c l u dx S

§ ·

 t  t¨  ¸

© ¹

³ ³ ³ ³ ³

(3.19)

0 2

0 l

d

³

u dxxx

ROPDNWDGÕr.

2 2

2

0

1

2 2 2

l

t xx x

m k

E t u  u 

³

a x u dx

olsun.

%|\OHFH  \DUGÕPÕ\OD

2 0 2 min , 0 12

2 t 2 xx 2 2

d d

m m

E t t u  u t ­® ½¾ u

¯ ¿ (3.20)

ve a

. C1

> @

0,l ROGX÷XQGDQ  ¶GHQ

2 2

2

0

1

2 2 2

l

t xx x

m k

E t d u  u 

³

a x u dx

2 2 2

0

max

2 2 2

l

t xx x

m k a x

u u u dx

d  

³

2 2 2 1 2

2

2 2 2 0

l

t xx xx

l A

m k

u u u dx

d   S

³

2 2

2 1 2 1 2

2 max , 2 1

2 t 2 2 xx 2 2 2

l A l A

m k m k

u u u

S S

§ · ­ ½

d ¨  ¸ d ®  ¾

© ¹ ¯ ¿

ROPDNWDGÕU

(28)

Burada

> @

1 max0,

x l

A a x

 ¶GÕU

(3.6) denkleminden

2

0

0

l p t

d E t b u dx dt



³

 d (3.21)

elde HGLOLU %|\OHFH E t

ELU /\DSXQRY IRQNVL\RQGXU YH   GHQNOHPLQLQ VÕIÕU

o|]PNDUDUOÕGÕU

 HúLWVL]OL÷LQGHQ

2

0 0

0 0

t l p

E t E b

³³

ut  dxds bulunur.

0

E t t ROGX÷XQGDQ

2

0 0 t l 0

p t

u dxds E b

 d

³³

(3.22)

elde edilir.

^ `

1 min 1, , 1

D L kG olsun.

(÷HU

2

0 l

a x u dxx

³

QHJDWLIGH÷LOVH

(29)

21

2 2 2

1 0 l

t xx x

m u L u G

³

a x u dx

^

1

`

2 2

2

0

min 1, ,

l

t xx x

L k G §m u k u a x u dx·

t ¨   ¸

©

³

¹ (3.23)

1

2D E t t

ROGX÷XDoÕNWÕU

2 2

1 1

2 min 1, 0 2

2

D d l

k

G G J

S

­ § ·½

°  °

® ¨ ¸¾

° © ¹°

¯ ¿ olsun.

(÷HU

2

0 l

a x u dxx

³

negatifse

2 2 2 2 2 2

1 1 0

0 0

l l

t xx x t xx x

m u L u G

³

a x u dxtm u L u Gc

³

u dx

2

2 2 1 0 2

2 0 l

t xx xx

m u L u G c l u dx

t   S

³

2 2 2 2

2 1 1 0 2

1 2 2 2

t xx

l c l

m u Gk G J G u

S S

§ ·

¨   ¸

© ¹

2 2 2 2

2 0 1 2

1 2 2

t 2 xx

c l l

m u G k G J u

S S

ª § · º

« ¨  ¸ »

© ¹

¬ ¼

2 2 2

2 1 2

1 0 2

t 2 xx

d l

m u G G J u

S

ª º

«  »

¬ ¼

(30)

2 1 2 2 2

1 0 2

t 2 xx

l u d

m u G G J

S

§ ·

¨ ¸

© ¹

 

2 2

2 2

1 1

0 2

min 1,

2 t xx

d l m u k u

k

G G J

S

­ § ·½

° °

t ® ¨  ¸¾ 

° © ¹°

¯ ¿

2 2 2

2 2

0

2

l

t xx x

D §m u k u a x u dx· D E t

t ¨   ¸

©

³

¹

ifadesi elde edilir. %|\OHFH

2 2 2

1 3

0

2

l

t xx x

m u L u G

³

a x u dxt D E t (3.24)

GÕU%XUDGDD3 min

^

D D1, 2

`

¶GLU

 HúLWVL]OL÷L\DUGÕPÕ\OD  ¶GHQ

2 2 2 2

1 1

1

2 t t t xx

d E t m u m u m u L u

dt d§¨©G  ·¸¹   

1

2 1 1 2

0 0

0

l l l

p p

x t t

a x u dx b u u dx b u dx

G G  



³



³



³

ROPDNWDGÕU%XUDGDQ

2

1 2

1 3 1

0 0

2

l l

p p

t t t

d E t B u D E t b u u dx b u dx

dt d   G

³

 

³

 (3.25)

HúLWVL]OL÷LHOGHHGLOLU%XUDGD 1

1

B G m 2 m ¶dir.

(31)

23

 GHQNOHPLQLQWUHYLQHJDWLIWLU %X E t

¶QLQDUWPD\DQROGX÷XQX J|VWHULU %X

\]GHQ  HúLWVL]OL÷LQLQ t¶\HJ|UHLQWHJUHHGLOPHVL\OH

2

3 3 1 1

0 0 0

1 2

1

0 0 0 0

2 2 0

t t l

t

t l t l

p p

t t

D tE t D E s ds E E t B u dxds

bG u u  dxds b u u  dxds

d dª¬  º¼

 

³ ³³

³³ ³³

(3.26)

ROPDNWDGÕU

 ¶GDNLHúLWVL]OLNWHQ

2 1

3 1 1 1

0 0 0 0

2 0

t l t l

p

t t

D tE t d¬ªE E t º¼B

³³

u dxds b G

³³

u u  dxds (3.27)

ifadesi elde edilir.

Poincare-)ULHGULFKVHúLWVL]OL÷LYH  ¶WHNLHúLWVL]OLN\DUGÕPÕ\OD

4

2 2

4 xx

u l u

dS (3.28)

2 2 2 4

2 2 2 2

2 x 2 2 xx 4 xx

l l l l

u u u u

S S S S

§ ·

d d d

¨ ¸

© ¹

elde edilir. %XHúLWVL]OLNNXOODQÕODUDNE t1

tahmin edilebilir.

2 2

2

1 1

0

1 ,

2 2 2

l

t xx x t

m k

E t u  u 

³

a x u dxGm u u

2 2 0 2

1 0

2 2 2 ,

l

t xx x t

m k c

u u u dx G m u u

t  

³



(32)

2 2 0 2 2

2 1 ,

2 t 2 xx 2 xx t

c

m k l

u u u Gm u u

t   S 

2 0 2 2 1 1 2

2

1 2

2 2

2 t 2 xx t

c l m m

m u k u G u G u

S

§ ·

t  ¨  ¸ 

© ¹ 

2 0 2 1 2 1 2

2 t 2 xx 2 2 t

d m m

m u u G u G u

t   

1

2 0 1 4 4 2

1 1

2 t 2 xx

m ml

u d G u

G S

§ ·

t   ¨  ¸

© ¹ (3.29)

ROPDNWDGÕU

%|\OHFH 1 2 22 0 0 44

min 2 d ,1,d

l ml

S S

G J

­ ½

 ® ¾

¯ ¿ LoLQ

2 2

1 1 t xx

E t td u  u (3.30)

VD÷ODQÕU%XUDGD 1 1 0 1 4 4

1min ,

2

d m Gm d Gml S

­ ½

 

® ¾

¯ ¿¶GLU

%|\OHFH

1 0 1 1 0

E E t dE (3.31)

dir. u

0,t 0 ROGX÷XQGDQ

0

, ,

x

u x t

³

ux s t ds¶GLU

> @

0,

x l

  LoLQ

(33)

25

1 2 2

0 0 0

, , , ,

x l l

x x x

u x t u s t ds u x t ds l§ u x t dx·

d d d ¨ ¸

© ¹

³ ³ ³

1 1 1

2 2 2

2 2

2

0 0 0 0

0

, 1 1

l l l l l

x x x x

u x t dx u dx dx u dx l u dx

§ § · § · § · ·

¨ ˜ d¨ ¸ ¨ ¸ d ¨ ¸ ¸

¨ © ¹ © ¹ © ¹ ¸

¨ ¸

© ¹

³ ³ ³ ³ ³

olur. Bu durumda

> @

1 2 2

0,

0

max ,

l

x l u x t l ux dx



§ ·

d ¨ ¸

©

³

¹ (3.32)

HOGHHGLOLU%|\OHFH  ¶GHQqt1LoLQ

> @

1 1

2 2

0, 0 0

1 1

1

, qmax , q 2 ,

l q l

q

x l x

u x t dx l u x t l u x t dx

§ · § ·

¨ ¸ ¨ ¸

© ¹ © ¹



§ · § ·

d d

¨ ¸ ¨ ¸

¨ ¸ © ¹

©

³

¹

³

ROPDNWDGÕU%uradan

2 2

2

0 2

0

, ,

l l

q q

x

q

u x t dx l  § u x t dx·

d ¨ ¸

© ¹

³ ³

(3.33)

olur.

+|OGHU HúLWVL]OL÷L YH   HúLWVL]OL÷L NXOODQÕODUDN 2

0 0 t l

B

³³

u dxdst ve 1

1 0 0 t l

p

bG

³³

u ut  dxds terimleri hesaplanabilir.

Referanslar

Benzer Belgeler

is satisfied, then the polynomials are called orthogonal with respect to the weight function w(x) are the interval (a,b), m and n are degrees of polynomials.. There is an

Whenever in any country, community or on any part of the land, evils such as superstitions, ignorance, social and political differences are born, h u m a n values diminish and the

The four most abundant elements in living organisms, in terms of percentage of total number of atoms, are hydrogen, oxygen, nitrogen, and carbon, which together make up more than

Daha önce bu anlamda çalıĢılmamıĢ dördüncü mertebeden doğrusal olmayan parabolik kısmi diferansiyel denklem içeren bir Cauchy probleminin lokal ve global

Peter Ackroyd starts the novel first with an encyclopaedic biography of Thomas Chatterton and the reader is informed about the short life of the poet and the

Aşağıda verilen lineer olmayan dalga denklemi için başlangıç sınır değer problemi ilk olarak 1980 yılında Webb tarafından Canadian Journal of Mathematics

Bunun i¸cin ilk ¨ once bir eˇ grinin altındaki alanı yakla¸sık olarak nasıl hesaplayabileceˇ gimizi, daha sonra da Newton ile Leibniz’in birbirinden baˇ gımsız

Forchheimer eqations” [13] isimli makale detaylı olarak incelenmiştir. Bu makalede Brinkman Forchheimer denklemlerinin çözümlerinin Brinkman ve Forchheimer