• Sonuç bulunamadı

A Class of Transcendent Solution to Ernst System

N/A
N/A
Protected

Academic year: 2021

Share "A Class of Transcendent Solution to Ernst System"

Copied!
3
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

LETT:E:R~E AL 2qL'OVO CI~E~,-TO VOL. 44, X. 2 16 Settembre 1985

A Class of Transcendent Solutions to Ernst System.

~ I . H A L I L S O Y

~Tuclear .Engineering Department, King Abdulaziz University t2.0. Box 9027, Jeddah, Saudi Arabia

(ricevuto il 12 Aprile 1985) PACS. 04.20. - General relativity.

Summary. - We present a method t h a t generates a class of transcendent solutions to E r n s t system in Einstein-Maxwell theory of general relativity.

I n an earlier paper (~) we presented the general similarity integral to the E r n s t equations in Einstein-Maxwell theory if), where the similarity variables were arbitrary harmonic functions in cylindrical co-ordinates. I t has been shown later (3) t h a t b y em- ploying a particular independent variable the basic differential equation transforms into the type of Painleve's fifth transceudent, resulting therefore in a transcendental solution to Einstein-Maxwell equations. I n this paper we shall give criteria about how this class of transcendental solutions can be increased in number.

The powerful technique t h a t aided in complete similarity integral was based on the harmonic mappings, ~ : M -~ M', where

(1)

(2)

M : d s 2 = g~zdxzdx~= d ~ 2 + d z 2 + ~2d~v2 ( / ~ , v = 1 , 2 ) , M' : d s ' 2 = g,tB(~) dq)~ d~b B (A, B ~ 1, 2, 3, 4), ds'2 = ($~ + V~-- 1)-2{d~d$( 1 -- ~ ) + dv d~(1 -- ~$) + ~ / d ~ d$ + ~75 d~e d~/}.

Upon variation of the energy functional ( ~ the action)

f ~q~ c~q~B

(3) E [ r = gAR(q~) ~X~ ~X~ g'~]gl~d2x'

M

(1) 1VI. ttALILSOu Lett. Nuovo Cimento, 37, 231 (1983). (2) F . J . ERNST: P h y s . Rev., 168, 1415 (1968).

(3) ]3. LEAUTE a n d G. MARCIL~ACY: LetL Nuovo Cimenlo, 40, 102 (198~:). 88

(2)

A CLASS OF T R A N S C E N D E N T SOLUTION- TO E R N S T SYSTEM ~ 9

one obtains the pair of E r n s t equations (Ernst system)

(4)

{

( ~ $ + v # - l ) V ~ * = 2 v ~ ' ( $ v ~ + # v ~ ) , (~$ + v# - 1) v~v = 2 v v . ($ v~ + # v v ) .

I n ref. (~) we had integrated these equations under the assumption t h a t ~ is only a function of v which satisfied V~v = 0, i.e. v is harmonic. Employing nonharmonie variables transforms the problem n a t u r a l l y into a much complicated one (a). We show now t h a t when ~ depends on two independent harmonic functions the problem can be stated as a

Theorem. L e t @a be parametrized b y two harmonic functions v a n d ~ such t h a t

On(v, ~) is geodesic with respect to each of them independently. The field equations from the action principle then are satisfied, provided the constraint condition Vv- 9 V~ = 0 holds.

Proo]. The variational principle ~E[O] = 0 yields the covariant equation

(V/~ g~ 08xx~v

)

SOB O#c

~ + ~,~ a -- O.

Using the fact now t h a t # a = #a(v, ~), one obtains

+ ~ j Wv + ~ - W~ + g,~(v,~,~ + v,~,~) ( ~ + ~ ~ - ~ ] 0 .

Harmonicity a n d the geodesic condition makes all foregoing expressions vanish, whereas the last term is made vanish b y virtue of the constraint

(5) Vv. V~ = 0 .

Let us note that Kerr solution can be reformulated in terms of two harmonic func- tions in conform to the above theorem. Indeed, in prelate spheroidal co-ordinates x, y, eq. (5) reads

(x ~ - 1 ) v x ~ + (1 -- y 2 ) v ~ = O,

a n d is solved b y the harmonic pair of functions v = t g h - l x a n d ~ = t g h - l y . Although the expression for OA(V, 3) can be more general in terms of v a n d ~, we shall proceed b y making a particular, separable dependence, namely, On(v, ~ ) =

= ]a(v)exp [ic~]. I n this choice c is an arbitrary, real constant a n d the results of

ref. (1) will be obtained in the limit e = 0. I n order to formulate our objective i n a eovariant language, we consider the harmonic map, Ca. M0_+ M', between the mani- folds, M 0 : ds~ = exp [2v] dv ~ + d~ 2 + exp [2v] d~ 2, a n d M ' , given b y expression (2).

(3)

90 M. HALILSOY

Our f u r t h e r p a r a m e t r i z a t i o n will be

{ ~ ; = ~ = y c o s T e x p [i(~ + c~)~ , (6) r V = Y sin W e x p

[i(fl

+ c~)],

w h i c h casts t h e action f u n c t i o n a l into

(~2~ ~

q)4= ~ ,

(7)

,

]

+ y2(cos2 T . s + sin 2 T . fl,2) _ 4 y4 sin e 2 T ( a ' --

fl,)2 + c 2 y2 e2, ,

N o t e t h a t ~-dependence w a s h e s o u t f r o m t h e v a r i a t i o n a l principle, its overall effect being to b r i n g i n t o t h e action such a c - d e p e n d e n t t e r m . I t is r e a d i l y o b s e r v e d t h a t Y~, a n d fl e q u a t i o n s r e m a i n i n v a r i a n t a n d correspond to eqs. (10), (12) a n d (13) of ref. (1), r e s p e c t i v e l y . T h e y e q u a t i o n modifies due to t h e c-term, a n d reads as

[

k~] ' c2y(1 + y 2 )

(8)

y,,_ 2yy~ '2

_ + (y2_

1)2

y(a + b) ~--

-,-

exp [2v] = 0

y 2 _ 1 y 2

1

'

where, t h e c o n s t a n t / ~ , a a n d b arc t h e s a m e c o n s t a n t s b y i n t e g r a t i o n s a d o p t e d in ref. (1). C h a n g i n g v a r i a b l e s b y v = lncr a n d y 2 = y , t r a n s f o r m s this e q u a t i o n i n t o

2

[

k~]

y ' ~ + ~ Y ( ~ - ] ) ~ (a+b) ~-~-~ +

F +

=

y , + _ + 1 (9)

w h i c h is identified as a p a r t i c u l a r P a i n l e v e ' s fifth t r a n s c e n d e n t (5). Once Y (and t h e r e f o r e y) is k n o w n , all t h e r e m a i n i n g W, ~ a n d fl e q u a t i o n s can b e r e d u c e d to q u a d r a t u r e s , as f u n c t i o n s of y. F r o m t h e o n e - t o - o n e c o r r e s p o n d e n c e b e t w e e n t h e E r n s t s y s t e m a n d E i n s t e i n - M a x w e l l ' s t h e o r y , t h e foregoing solution p r o v i d e s a t r a n s c e n d e n t a l solution to t h e l a t t e r .

T h e c o n s t r a i n t c o n d i t i o n Vv. V~ = 0 ( = ve~ e + v ~ ) a d m i t s t h e simplest solution as v = log e, ~ = z, w h i c h corresponds to t h e solution of ref. (a). A n e w solution is g i v e n b y t h e choice of h a r m o n i c functions,

(10)

v = (0 ~ + z 2 ) - 8 9

~ = l o g

~ +

1 + 0 ~ ] j "

W e r e m a r k t h a t it is n o t clear a b o u t h o w large t h i s set of h a r m o n i c f u n c t i o n s satisfying t h e a b o v e c o n s t r a i n t is. I n t h e c o m p l e x p l a n e it is w e l l - k n o w n t h a t this reduces to t h e class of h a r m o n i c a n d c o n j u g a t e h a r m o n i c functions. F u r t h e r , t h e K e r r s o l u t i o n does n o t a d m i t such a t r a n s c e n d e n t M extension, since its ~b-function is n o t in t h e s e p a r a b l e f o r m w h i c h we h a v e assumed.

I n conclusion, we n o t e t h a t t h e foregoing p r o c e d u r e to o b t a i n t r a n s c e n d e n t a l solu- tions can d i r e c t l y be a d o p t e d in a n y c o m p l e t e l y i n t e g r a b l e systems t h a t are expressible in t e r m s of h a r m o n i c maps. T h e self-duM S U~ g a u g e field p r o b l e m is one such e x a m p l e .

Referanslar

Benzer Belgeler

Camlı bir bölmenin arkasında oturan hanım danışman derhal telefonla haber verdi İki dakika içinde çok iyi Fran­ sızca konuşan bir başka görevli hanım

Although Aniszewska [2] introduced the Bigeometric Multiplicative Runge-Kutta Method using a different definition for the bigeometric derivative with a limited Bigeometric

Using the device results in mono- cuspidalisation of the mitral valve by preserving the anterior leaflet and the subvalvular apparatus.. As the anterior leaflet contributes 70% of the

In case that ( and 7 happen to be geodesic with respect to both of the two harmonic functions v and 0, separately, a theorem was proved showing that the foregoing

4.16 shows simulated three phase transformer under nonlinear load with tuned harmonic filter from simulation power systems blocks elements, the circuit configurations of

Bonn küçük bir üniversite şehriyken harpten sonra Ba­ lı Almanyanın nıühiıu siyası merkezi olurvcrmiş- Birden şehrin nüfusu artmış, evler fc gelenleri

Modelde grup içi çatışma, gruplar arası çatışma ve kişilerarası çatışma değişkenlerinin örgütsel çatışmayı anlamlı bir biçimde

Ayrıntılı kaynak değerlendirmeleri sonucunda cerrahi, mekanik, otolitik, enzimatik ve biyolojik debridement uygulamalarından olguya uygun olan yöntemin seçimi ile