• Sonuç bulunamadı

L’Hospital’s Rule

N/A
N/A
Protected

Academic year: 2021

Share "L’Hospital’s Rule"

Copied!
16
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

lim x→a f (x ) g(x ) where both lim

x→af (x ) = 0 and xlim→ag(x ) = 0

is calledindeterminate form of type 00.

Often cancellation of common factors helps:

lim x→1 x2−x x21 =xlim→1 (x − 1)x (x − 1)(x + 1) =xlim→1 x x + 1 = 1 2

But not for examples like:

lim x→0 sin x x and xlim→1 ln x x − 1

(2)

A limit of the form lim x→a f (x ) g(x ) where both lim

x→af (x ) = ±∞ and xlim→ag(x ) = ±∞

is calledindeterminate form of type.

Often helps to divide by highest power of x in the denominator:

lim x→∞ x2−1 2x2+1 =xlim→∞ 1 −x12 2 +x12 = 1 2

But not for examples like:

lim

x→∞

ln x x − 1

(3)

Suppose f and g are differentiable and g (x ) 6= 0 near a, and

lim

x→a

f (x ) g(x )

is an indeterminate form of type00 or ∞. Then lim x→a f (x ) g(x ) =xlim→a f0(x ) g0(x )

if the limit on the right side exists or is −∞ or ∞.

(near a = on an open interval containing a except possibly a itself)

Before applying L’Hospital’s Rule it is important to verify that: lim

x→af (x ) = 0 and xlim→ag(x ) = 0

or

lim

(4)

Find lim x→1 ln x x − 1 We have lim x→1ln x = ln 1 = 0 and xlim→1(x − 1) = 0

and hence we can apply l’Hospital’s Rule:

lim x→1 ln x x − 1 = xlim→1 d dx ln x d dx(x − 1) = lim x→1 1 x  1 =xlim→1 1 x =1

(5)

Find lim x→0 sin x x We have lim

x→0sin x = 0 and xlim→0x = 0

Hence we can apply l’Hospital’s Rule:

lim x→0 sin x x = xlim→0 d dxsin x d dxx = lim x→0 cos x 1 =1

(6)

Find lim x→∞ ex x2 We have lim x→∞e x = and lim x→∞x 2=

Hence we can apply l’Hospital’s Rule:

lim x→∞ ex x2 = xlim→∞ d dxex d dxx2 = lim x→∞ ex 2x Again we have: lim x→∞e x = and lim x→∞2x =∞

So we can again use l’Hospital’s Rule:

lim x→∞ ex x2 =xlim→∞ ex 2x = xlim→∞ d dxex d dx2x = lim x→∞ ex 2 =∞

(7)

Find lim x→∞ ln x 3 √ x We have lim x→∞ln x =∞ and xlim→∞ 3 √ x =∞ Hence we can apply l’Hospital’s Rule:

lim x→∞ ln x 3 √ x = xlim→∞ d dx ln x d dx 3 √ x =xlim→∞ 1 x  1 3x −23 =xlim→∞ 3 3 √ x =0

(8)

Find

lim

x→π−

sin x 1 − cos x If we were to apply l’Hospital’s Rule:

lim x→π− sin x 1 − cos x = xlim→π− cos x sin x = −∞ However, this is wrong!

We have limx→π−(1 − cos x ) = 1 − (−1) = 2.

lim x→π− sin x 1 − cos x = 0 1 − (−1) =0

Before applying l’Hospital’s Rule, always check that the limit is an indeterminate form 00 or ∞.

(9)

L’Hospital’s Rule is valid for one-sided limits and limits at infinity: lim x→a− f (x ) g(x ) xlim→a+ f (x ) g(x ) xlim→∞ f (x ) g(x ) x→−∞lim f (x ) g(x )

(10)

A limit of the form

lim

x→a(f (x )g(x ))

where lim

x→af (x ) = 0 and xlim→ag(x ) = ±∞

is calledindeterminate form of type 0 ·∞.

We then rewrite the limit as:

lim

x→a(f (x )g(x )) = limx→a

f (x ) 1/g(x ) an indeterminate form of type 00, or as

lim

x→a(f (x )g(x )) = limx→a

g(x ) 1/f (x ) an indeterminate form of type ∞.

(11)

Evaluate the limit lim x→0+x ln x We have lim x→0+x = 0 and xlim→0+ln x = −∞

Thus we can choose for rewriting to:

lim x→0+ x 1/ ln x or xlim→0+ ln x 1/x We choose the 2nd since the derivatives are easier:

lim x→0+x ln x = limx→0+ ln x 1/x = xlim→0+ 1/x −1/x2 =xlim→0+(−x ) = 0

(12)

A limit of the form

lim

x→a(f (x ) − g(x ))

where lim

x→af (x ) =∞ and xlim→ag(x ) =∞

is calledindeterminate form of type∞ − ∞.

(13)

lim

x→(π/2)−(sec x − tan x )

Then limx→(π/2)−sec x =∞ and limx→(π/2)−tan x =∞

We use a common denominator:

lim

x→(π/2)−(sec x − tan x ) =x→(π/2)lim −

1 − sin x cos x

Now limx→(π/2)−(1 − sin x ) = 0 and limx→(π/2)−cos x = 0

Hence we can apply l’Hospital’s Rule:

lim

x→(π/2)−(sec x − tan x ) =x→(π/2)lim −

1 − sin x cos x = lim x→(π/2)− −cos x −sin x =0

(14)

A limit of the form

lim

x→a[f (x )] g(x )

is an indeterminate form

I of type 00 if limx→af (x ) = 0 and limx→ag(x ) = 0

I of type∞0 if limx→af (x ) =∞ and limx→ag(x ) = 0

I of type 1∞ if limx→af (x ) = 1 and limx→ag(x ) =∞

Each of these cases can be treated by writing the limit as:

lim x→a[f (x )] g(x )= lim x→ae ln([f (x )]g(x )) = lim x→ae g(x ) ln f (x )=elimx→a(g(x ) ln f (x ))

(15)

Evaluate the limit

lim

x→0+x

x

Then limx→0+x = 0.

We write the limit as: lim x→0+x x = lim x→0+e ln xx =elimx→0+(x ln x ) =e0 =1

(16)

Evaluate the limit lim

x→0+(1 + sin 4x )

cot x

Then limx→0+(1 + sin 4x ) = 1 and limx→0+cot x =∞

We write the limit as: lim

x→0+(1 + sin 4x )

cotx = lim x→0+e

ln(1+sin 4x )cotx

=elimx→0+(cot x ·ln(1+sin 4x ))

lim

x→0+(cot x · ln(1 + sin 4x )) = limx→0+

ln(1 + sin 4x ) tan x

Now limx→0+ln(1 + sin 4x ) = 0 and limx→0+tan x = 0

Hence we can apply l’Hospital’s Rule:

lim x→0+ ln(1 + sin 4x ) tan x =xlim→0+ 4 cos 4x 1+sin 4x (sec x )2 = 4 1  1 =4 Thus limx→0+(1 + sin 4x )cot x =e4

Referanslar

Benzer Belgeler

Easy Braille cihazını Windows işletim sistemi altında kabartma ekran olarak kullanabilmek için, bilgisayar ekranının içeriğini cihaza gönderecek olan ekran

24 Mayıs 1847 tarihli iradede; Hoca Agob’un hava değişikliği nedeniyle Avrupa’ya yapacağı se- yahati sırasında, oradaki sanayi tesislerini etraflıca görmesi ve bilgi

''IRCA QMS Auditor/Lead Auditor Training Course/KYS Baş Denetçi Eğitim Sınav'' IRCA ISO 9001:2008 Baş Denetçi eğitim sınavına ancak ISO 9001 eğitimi almış

amacıyla, sonradan bu dönemlere ilişkin düzeltme beyannamesi vererek iade talebinde bulunmaları mümkün değildir. İzleyen yıl içerisinde talep edilen iade tutarının, aynı

"GEÇİCİ MADDE 42- 20/8/2016 tarihli ve 6745 sayılı Yatırımların Proje Bazında Desteklenmesi ile Bazı Kanun ve Kanun Hükmünde Kararnamelerde Değişiklik

Bu önlemler; iş sağlığı ve güvenliği kurulunun bulunduğu işyerlerinde kurul tarafından, diğer işyerlerinde ise; işveren veya vekili koordinesinde, bulunması

Verilen bilgiye göre aşağıdakilerden hangisi bir sivil toplum kuruluşu değildir?. A) Tema B) Lösev C) Kızılay

Sigorta irketi tarafından 1.350-YTL prim tahakkuk ettirilerek ba langıç tarihi ve düzenlenme tarihi 10/5/2007 olan 1 yıllık motorlu kara ta ıt aracı sigorta poliçesi