• Sonuç bulunamadı

Biosensors for cardiac biomarkers detection: A review Sensors and Actuators B: Chemical

N/A
N/A
Protected

Academic year: 2021

Share "Biosensors for cardiac biomarkers detection: A review Sensors and Actuators B: Chemical"

Copied!
15
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

SensorsandActuatorsB171–172 (2012) 62–76

ContentslistsavailableatSciVerseScienceDirect

Sensors

and

Actuators

B:

Chemical

jou rn a l h o m e pag e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

Review

Biosensors

for

cardiac

biomarkers

detection:

A

review

Anjum

Qureshi

a,∗

, Yasar

Gurbuz

b

,

Javed

H.

Niazi

a,∗

aSabanciUniversity,NanotechnologyResearchandApplicationCenter,OrtaMahalle34956,Tuzla,Istanbul,Turkey bFacultyofEngineeringandNaturalSciences,SabanciUniversity,Orhanli34956,Tuzla,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10February2012

Receivedinrevisedform22May2012 Accepted25May2012

Available online 2 June 2012 Keywords: Cardiovasculardisease Cardiacbiomarker C-reactiveprotein Electrochemical Opticalbiosensor

a

b

s

t

r

a

c

t

Thecardiovasculardisease(CVD)isconsideredasamajorthreattoglobalhealth.Therefore,thereisa growingdemandforarangeofportable,rapidandlowcostbiosensingdevicesforthedetectionofCVD. BiosensorscanplayanimportantroleintheearlydiagnosisofCVDwithouthavingtorelyonhospital visitswhereexpensiveandtime-consuminglaboratorytestsarerecommended.Overthelastdecade, manybiosensorshavebeendevelopedtodetectawiderangeofcardiacmarkertoreducethecostsfor healthcare.Oneofthemajorchallengesistofindawayofpredictingtheriskthatanindividualcan sufferfromCVD.Therehasbeenconsiderableinterestinfindingdiagnosticandprognosticbiomarkers thatcanbedetectedinbloodandpredictCVDrisk.Ofthese,C-reactiveprotein(CRP)isthebestknown biomarkerfollowedbycardiactroponinIorT(cTnI/T),myoglobin,lipoprotein-associatedphospholipase A(2),interlukin-6(IL-6),interlukin-1(IL-1),low-densitylipoprotein(LDL),myeloperoxidase(MPO)and tumornecrosisfactoralpha(TNF-␣)hasbeenusedtopredictcardiovascularevents.Thisreview pro-videsanoverviewoftheavailablebiosensorplatformsforthedetectionofvariousCVDmarkersand considerationsoffutureprospectsforthetechnologyareaddressed.

© 2012 Elsevier B.V. All rights reserved.

Contents

1. Introduction... 62

2. Cardiacbiomarkers... 63

3. BiosensorsforCVDs... 67

3.1. Opticalbiosensors... 67

3.1.1. Fluorescencebasedbiosensorsforcardiacmarkersdetection... 67

3.1.2. Luminescenceandcolorimetricmethodsforcardiacmarkerdetection ... 68

3.1.3. ELISAbasedmethodsforcardiacmarkerdetection ... 68

3.1.4. SPRbasedbiosensorforcardiacmarkerdetection... 69

3.1.5. SPRbasedfiberopticbiosensorsforcardiacmarkerdetection... 71

3.1.6. Otheropticalbasedbiosensors... 71

3.2. Acousticbiosensorsfordetectionofcardiacmarkers... 71

3.3. Electrochemicalbiosensors... 71

3.3.1. Useofnanomaterialsinelectrochemicalbiosensors... 72

3.3.2. Electrochemicalbiosensorswithoutelectronmediators... 73

3.4. Magneticbiosensors... 74

4. Conclusionsandperspectives ... 74

Acknowledgements... 74

References... 74

Biographies... 76

∗ Correspondingauthors.Tel.:+902164832413;fax:+902164839885. E-mailaddresses:anjum@sabanciuniv.edu(A.Qureshi),javed@sabanciuniv.edu (J.H.Niazi).

1. Introduction

Cardiovasculardisease(CVD)isamajorcauseofhumandeathin bothdevelopinganddevelopedcountries.AccordingtotheWorld 0925-4005/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76 63

HealthOrganization (WHO),anestimated 17.5million(30%) of

allglobaldeathsin2005areassociatedwithCVDanditis esti-matedthatby2015,CVDcanbetheleadingcauseofdeathinthe developingcountries[1].Recently,accordingtothenewEuropean cardiovasculardiseasestatistics2008,astaggeringfigureofover 4.3milliondeathsinEuropealoneand2milliondeathsinEuropean UnionarecausedbyCVD,anditisoverallestimatedtocosttheEU economyD192billionayear[2].Theearlyandquickdiagnosisof cardiovasculardiseaseisextremelyimportantandcrucialnotfor onlypatientsurvivalbutalsosavingcostandgreatdealoftimein successfulprognosisofthediseases.Existingmethodsofdiagnosis forCVDrelyheavilyonclassicalmethodswhicharebasedontests conductedincentrallaboratoriesthatmaytakeseveralhoursor evendaysfromwhentestsareorderedtowhenresultsarereceived [3].Thediagnosisof CVDhasbeenbasedontheWHO criteria, wherebypatientsmustmeetatleasttwoofthreeconditions: char-acteristicchestpain,diagnosticelectrocardiogram(ECG)changes, andelevationofthebiochemicalmarkersintheirbloodsamples [3].Although,ECGisanimportantmanagementtoolforguiding therapy[4,5],butitisapoordiagnostictestforCVD,becauseabout halfoftheCVDpatientswhopresenttotheEmergencyDepartment

shownormalornodiagnosticelectrocardiograms, whichmakes

earlydiagnosisofCVDmoredifficult[4–7].Therefore, measure-mentof cardiac markersis critical inassisting the diagnosisof CVD.Amoresensitiveandrapidtechnologyplatformistherefore neededtofulfilltherapiddiagnosisrequirementsinCVD detec-tion.Theelaboration ofbiosensorsis probablyone ofthemost promisingwaystosolvesomeoftheproblemsconcerning sensi-tive,fastandcosteffectivemeasurements[8].Biosensorcanhelpin rapiddiagnosis,providingbetterhealthcareandreducingthe wait-ingtimeforresultsdisseminationwhichishighlystressfultothe patients.Recently,lab-on-achipandmicrofluidicsbased biosen-sortechnologyisreviewedforthedetectionofcardiacmarkers[9]. Thisreviewprovidedinformationoncommerciallyavailableafew point-of-careimmunosensinginstrumentsandchipbased technol-ogyforthedetectionofdifferentcardiacbiomarkers.Inthepresent

paper,wereviewed thedevelopmentsinapplication of

biosen-sorsoverthepast10yearsforthedetectionofcardiovascularrisk assessment.Thisreviewalsosummarizedthefrequentlytargeted

CVDbiomarkers invariousbiosensor platformsandhighlighted

themajorclinicallyrelevantparameters,suchastheirdetection limit/rangeanddesigningofbioassay.

2. Cardiacbiomarkers

CVDisnotasingledisease,butitisagroupofdifferentdisorders thataffectheartandbloodvessels.CVDincludesatherosclerosis conditionthatdevelopswhenaplaquebuildsupinthewallsofthe arteries.Thisplaquenarrowsthearteriesandmakesitdifficultfor bloodtoflowthroughandcausesaheartattackorstroke.CVDcan becausedbyarangeoffactorsanddisordersthatincludegenetic, gender,age,highbloodpressureandcholesterol,diabetes,obesity andoverweight,smokingandstress.ThecausesofCVDaremore diversethatclinicaltestingbecomesincreasinglycomplex.There areanumberofdiseasesassociatedwithCVDthataffectdifferent partsofthebody.Although,greatprogresshasbeenmadeinthe treatmentofthisdisease,currentmedicalknowledgeisunableto effectivelypredictitsrisk.WithregardstopredictingCVDrisk,one oftheactiveresearchareasrecentlyistheuseofdiagnosticand prognosticbiomarkersthatcanbeidentifiedinblood[10].Onthe basisofdiagnosticandprognosticstandpoint,CVDbiomarkerscan becategorizedintopathogeneticandtherapeutictypes.The diag-nosticandprognosticbiomarkersalsoprovidetherapeuticvalue inmedicalapplications.Thevascularwallreleasesmoleculesinto thebloodstreamthatcanreflectthepathologicalprocessestaking

Fig.1.Mostfrequentlystudiedbiomarkersinrelationtothedifferentmechanism involvedinCVDrisk[10].

place.Intheory,theconcentrationsofthemoleculesinvolvedin differentpathologicalprocessescouldbethebiomarkers.However, notallofthesemoleculesaresuitedtothisaimbutshouldfulfill certainconditions[10].

Thereareseveralimportantcharacteristicsthatanidealcardiac biomarkershouldexhibit.Theseinclude:(a)highclinicalsensitivity andspecificity,(b)quickreleaseofbiomarkerinthebloodenabling earlydiagnosis,(c)capabilitytoremainelevatedforlongertimein theblood,and(d)abilitytobeassayedquantitatively[10].Itis diffi-culttoselectaspecificmarkerforthediagnosisofCVD.Therefore,a rangeofbiomarkerscanpotentiallybeanalyzedsimultaneouslyfor theaccuratediseasediagnosis[6,7,10–13].Andersonetal.reported asetof177candidatebiomarkersthatarepotentialplasma mark-ersforCVDandstroke[13].Recently,themostfrequentlystudied biomarkersaresummarizedinrelationtothedifferentmechanisms involved indevelopmentand ruptureof atheroscleroticplaque, suchas endothelialdysfunction,inflammation, oxidativestress, proteolysis,andthrombosis(Fig.1)[10].

Several other cardiac-specific biomarkers have emerged as

strongandreliableriskpredictorsforcoronaryheartdisease,as listedinTable1.Ofwhich,CRPhasbeenthemostfrequentlyused singlebiomarkerforcardiovascularrisk(CVR).TheCVRdefinedby theAmericanHeartAssociation(AHA)andtheCenterforDisease ControlandPrevention(CDC)isregardedaslowriskforaCRP con-centrationbelow1.0mgL−1,moderatefor1.0–3.0mgL−1,andhigh riskforconcentrationsover3.0mgL−1[14].CRPcanriseashighas 1000-foldbecauseofinflammationinducedbyinfectionorinjury, oftenleadingtoCVR[15].Recentresearchsuggeststhatpatients withelevatedbasallevelsofCRPareatanincreasedriskofdiabetes andhypertensionaswellasCVD[15].

Myoglobin,althoughnotaveryspecificmarker,butitisthefirst markerreleasedafterthedamageoccurredtomyocardialmuscle cells.B-typenatriureticpeptide(BNP),cardiactroponinI(cTnI), andCRParereleasedaftermyoglobin,buttheyarespecificmarkers forcoronaryevents.BNPisusefulfortheemergencydiagnosisof heartfailureandfortheprognosisinpatientswithacutecoronary syndromes(ACS)[16].CRPisanimportantprognosticindicatorof CVRandACS.cTnIhasbecomeastandardmarkerforthedetection

(3)

64 A. Qureshi et al. / Sensors and Actuators B 171– 172 (2012) 62– 76 Table1

Asummaryofprimaryclinicallyutilizedcardiacbiomarkers,highlightingtheirrespectivecut-offvalues.

Cardiacbiomarker Typeofcardiovasculardiseases involved

Cut-offlevels Specificity(low,

medium,high) MW (kDa) Initial elevation Timeto peak Returnto normal POCtest available TroponinI(cTnI) Detectionofacutemyocardial

infarction(AMI)

0.01–0.1ngmL−1 High 23.5 4–6h 12–24h 6–8days Yes

TroponinT(cTnT) DetectionofAMI 0.05–0.1ngmL−1 High 37 4–6h 12–24h 7–10days Yes

Myoglobin EarlydetectionofAMI 70–200ngmL−1 Low 18 1–3h 6–12h 24–48days Yes

C-reactiveprotein(CRP) Earlydetectionof inflammation/cardiacrisk factor

<103ngmL−1lowrisk

1–3× 103ngmL−1intermediaterisk >3–15×103ngmL−1highrisk(nodefinitive)

High 125 ND ND ND Yes

CreatinekinaseMBsubform (CK-MB)

EarlydetectionofAMI 10ngmL−1 Medium 85 4–6h 12–24h 3–4days Yes

B-typenatriureticpeptide (BNP) Acutecoronary syndromes/diagnosisofheart failure/ventricularoverload High 3.4 ND ND ND Yes N-terminalpro-B-type natriureticpeptide (NT-proBNP) Acutecoronary syndromes/diagnosisofheart failure/ventricularoverload 0.25–2ngmL−1 High 8.5 ND ND ND Yes

Myeloperoxidase(MPO) Detectionofinflammation PatientswithelevatedMPOlevels >350ngmL−1stratificationrisk

Medium 150 ND ND ND Yes

Heartfattyacidbinding protein(H-FABP)

Myocardialnecrosis PatientswithelevatedH-FABPlevelselevated ≥6ngmL−1stratificationrisk Low 15 2–3h 8–10h 18–30h Yes TNF-␣ Inflammation/cardiacrisk factor <0.0036ngmL−1lowrisk ≥0.0036ngmL−1highrisk ND ND ND ND ND ND

Interlukin-6(IL-6) Inflammation/cardiacrisk factor Low<0.0013ngmL−1 Mid0.00138–0.002ngmL−1 High>0.002ngmL−1 ND ND ND ND ND ND Fibrinogen Low<3.58×106ngmL−1 Mid3.58–4.20×106ngmL−1 High>4.20×106ngmL−1 ND ND ND ND ND ND

(4)

A. Qureshi et al. / Sensors and Actuators B 171– 172 (2012) 62– 76 65 Table2

Cardiacmarkersdetectionondifferenttransductionplatformsandtheirdetectionrangereportedintheliterature.Thetimerequiredforthedetectionofcardiacmarkersusingthemethodslistedintableisestimatedtobewithin ∼20minto1h.

Target/biomarker Transductionplatform Detectionrange Assaytype Reference

Opticalbiosensors CRP

Myoglobin cTnI

Fluorescence CRP-LOD– 30ngmL−1 Microfluidic

with multianalyte

[22]

NF-␣,IL-8,IL-6,IL-4,IL-2␥,IL-2,IL-1b, IL-12,IL-10,interferon-gamma (IFN-␥)

Fluorescence Allcytokine0.01–10ngmL−1

LOD– 0.01ngmL−1 Multianalyte [23]

IL-6 Fluorescenceusinglabelednanoparticles 0.02–1.25ngmL−1

LOD– 0.007ngmL−1

Singleanalyte [24]

TNF-␣ Fluorescence 1ngmL−1 Singleanalyte [25]

TNF-␣ Fluorescence 1–0.0016ngmL−1 Singleanalyte [93]

CRP Fluorescence 0.1ngmL−1 Singleanalyte [26]

CRP Fluorescence 10–105ngmL−1 Singleanalyte [27]

CRP Fluorescence 20ngmL−1 Singleanalyte [28]

cTnI Fluorescence 0.1–100ngmL−1 Singleanalyte [29]

Heart-typefatty-acidbindingprotein (H-FABP) CRP ELISA H-FABP-LOD<6× 103mL−1 CRP-LOD<103ngmL−1 Multianalyte [30] cTnT ELISA 0.1–100ngmL−1

LOD– 0.027ngmL−1 Singleanalyte [31]

Myoglobin ELISA 20–230ngmL−1

LOD– 16ngmL−1

Singleanalyte [32] cTnI ELISA RattroponinIprotein(5.3× 104to5.3×106ngmL−1)orhuman

troponinIprotein(4.3× 104to4.3× 106ngmL−1) Singleanalyte [33]

CRPandIL-6 Fluorescence/colorimetric 1–1000ngmL−1

LOD-CRP–1ngmL−1 Microfluidicwith

multianalyte

[35]

Myoglobin,creatinekinasemb(CKmb), cTnI,andfattyacid-bindingprotein (FABP) Chemiluminescence Myoglobin– 1.2ngmL−1 CKmb–0.6ngmL−1 TnI–5.6ngmL−1and FABP– 4ngmL−1 Multianalyte [37] CRP Chemiluminescence 50–5× 104ngmL−1 LOD–12.5ngmL−1 Multianalyte [34] CRP Chemiluminescence 10to104ngmL−1 Microfluidic withSingle analyte [14]

cTnI Colorimetric;PDMS–goldnanoparticlecompositefilm 104to5×103ngmL−1 Singleanalyte [36]

Low-densitylipoprotein(LDL) Electrochemiluminescence 0.025–16ngmL−1 LOD–0.006ngmL−1

Singleanalyte [38]

cTnI Electrochemiluminescence 0.002ngmL−1 Singleanalyte [39]

Metalloproteinase(MMP)-2 SPR LOD– 0.036ngmL−1 Single [42]

CRP SPR LOD– 103ngmL−1 Singlemarker [43]

B-typenatriureticpeptide(BNP) SPR 5pgmL−1to100ngmL−1

LOD– 0.005ngmL−1 Microfluidic withsingle analyte [48] CRP SPR 2–5×103ngmL−1

LOD–103ngmL−1 singleanalyte [44]

CRP SPR 1ngmL−1to5× 104ngmL−1 LOD– 1ngmL−1 Singleanalyte [45] cTnT SPR 0.03upto6.5ngmL−1 LOD– 0.01ngmL−1 Singleanalyte [49] cTnT SPR 0.05and4.5ngmL−1

(5)

66 A. Qureshi et al. / Sensors and Actuators B 171– 172 (2012) 62– 76 Table2(Continued)

Target/biomarker Transductionplatform Detectionrange Assaytype Reference

MyoglobinandcTnTI SPR LOD–below1ngmL−1 Multianalyte [52]

CRP SPR 104ngL−1 Singleanalyte [46]

TNF-␣ SPR 1–2×103ngmL−1 Singleanalyte [53]

CRP SPR 0.1–200ngmL−1 Singleanalyte [47]

cTnT SPR 100ngmL−1 Singleanalyte [51]

cTnT SPR 0.068ngmL−1 Singleanalyte [18]

Myeloperoxidase(MPO) SPR 50ngmL−1 Singleanalyte [54]

BNP,cTnI,myoglobin,andCRP Opticalfiber BNP–0.1ngmL−1

IcTnI–7×10−3ngmL−1

MG–70ngmL−1

CRP–700ngmL−1

Multianalyte [16]

CRP Opticalfiber 5–12.5×103ngmL−1 Singleanalyte [55]

Nervegrowthfactor(NGF) Opticalfiber 1–200ngmL−1 Singleanalyte [57]

IL-6 Opticalfiber LOD–0.12ngmL−1 Singleanalyte [58]

CRP Opticalfiber/fluorescence/evanescent 4.4×10−11to2.9×10−9ngmL−1and1.3×10−10to

2.29×10−8ngmL−1

Singleanalyte [56] CRP Photonicmicroringresonator 3×10−6ngmL−1 Singleanalyte [59]

IL-6 Photoniccrystalresonant 0.001–0.01ngmL−1 Multianalyte [60]

cTnT Optomagnetic 0.0039–3.9ngmL−1(1–1000pM)

LOD–0.0117ngmL−1

Multianalyte [61]

cTnT Optomagnetic 0.03ngmL−1 Singleanalyte [62]

IL-6 Surfaceacousticwave 20ngmL−1to2×103ngmL−1 Singleanalyte [19,20]

CRP Resonantacousticprofiling 0–231ngmL−1

Directassay– LOD20ngmL−1 Sandwichassay– 3ngmL−1

Singleanalyte [63]

Electrochemicalbiosensors

Myoglobin Faradaic,Impedance/interdigitatedelectrodes 100ngmL−1 Singleanalyte [64]

CRP Faradaic,CNTmodifiedcarbonelectrodes 0.5–500ngmL−1

LOD–0.5ngmL−1

Singleanalyte [65] CRP Faradaic,impedance/goldelectrodes to20ngmL−1

LOD–0.1ngmL−1

Singleanalyte [66] Lipoprotein-associatedphospholipase

A(2)

Faradaic,iridium-modifiedcarbonelectrodes 0–150UmL−1 Singleanalyte [72] IL-6 Faradaic,goldelectrodes LOD–4.1×10−3ngmL−1 Microfluidic

withsingle analyte

[94]

Low-densitylipoprotein(LDL) Faradaic,impedance/AuNPs-AgCl@PANI-modifiedglassycarbon electrode

LOD–3.4×10−3ngmL−1 Singleanalyte [73] CRP Faradaic,magneticbeadswithcarbonelectrodes LOD–5.4×10−11ngmL−1 Singleanalyte [67]

cTnT Non-Faradaic,impedance/Alinterdigitatedelectrodes 0.07–6.83ngmL−1 Multianalyte [81]

CRP Faradaic,impedance/goldelectrodes 1.15×10−13to1.15ngmL−1

LOD–6×10−14ngmL−1

Singleanalyte [68] CRP Faradaic,diamondlikecarbonelectrodes LOD–10−4ngmL−1 Singleanalyte [69]

IL-6 Faradaic,goldinterdigitatedelectrodes LOD–0.005ngmL−1 Singleanalyte [95] CRP Non-Faradaic,goldinterdigitatedelectrodes 25–800ngmL−1 Singleanalyte [70] CRPandMPO Faradaic,Impedance/iridiumoxidemodifiedelectrodes LOD-CRP–1ngmL−1andLOD-MPO0.5ngmL−1 Multianalyte [71]

cTnIandCRP Faradaic,poly(dimethylsiloxane)–goldnanoparticlecomposite microreactors

cTnI–0.01ngmL−1andCRP0.5ngmL−1 Microfluidic

withsingle analyte

[74]

CardiacbiomarkerN-terminal pro-B-typenatriureticpeptide (NT-proBNP)

Faradaic,nanostructuralgoldandcarbonnanotubescomposite 0.006ngmL−1 Singleanalyte [96]

CRP Non-Faradaic,impedance/Alinterdigitatedelectrodes 0.1ngmL−1 Singleanalyte [82]

cTnT Faradaic,streptavidin-microspheremodifiedscreenprinted electrodes

(6)

A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76 67 Table 2 (Continued ) Target/biomarker Transduction platform Detection range Assay type Reference CRP Faradaic, nanotextured polystyrene (PS) electrode 0.001–10 3ng mL − 1 Single analyte [75] Myoglobin Faradaic, nanoparticles modified electrodes 17.8–1780 ng mL − 1 Single analyte [98] cTnI Faradaic, gold nanoparticles modified ITO electrodes 1–100 ng mL − 1 Single analyte [76] Myoglobin Faradaic, nanoparticles modified Fe graphite electrodes 5 ng mL − 1in human plasma Single analyte [77] cTnT Conductance, metal-oxide semiconductor-compatible silicon nanowire In buffer solution – 10 − 6ng mL − 1 Undiluted human serum –3 × 10 − 6ng mL − 1 Single analyte [78] Myoglobin Polyaniline nanowires/conductance 1.4 ng mL − 1 Single analyte [79] cTnI SnO 2 nanobelt FET sensor/IV curve ∼ 2 ng mL − 1 Single analyte [80] Magnetic biosensors CRP and creatine kinase isoenzyme MB fraction (CKMB) Magnetometer sensing coil/coated paramagnetic particles CKMB – 1–15 ng mL − 1 CRP – 1–40 ng mL − 1 LOD-CKMB –2 ng mL − 1 LOD-CRP –3 ng mL − 1 Multianalyte [86] CRP Streptavidin-coated magnetic beads and avidin-coated polystyrene microspheres/beads 10 − 5ng mL − 1 Single analyte [87] CRP Solid phase (polyclonal anti-CRP conjugated silica microparticles), labeling agent 2 × 10 − 10 ng mL − 1 Single analyte [88] CRP Antibody conjugated dextran iron oxide nanoparticles (70 nm) as superparamagnetic labels 3 × 10 3ng mL − 1 Single analyte [89] CRP Magnetometer sensing coil/coated magnetic beads 25 ng mL − 1to 2.5 × 10 3ng mL − 1 LOD –2 5 ng mL − 1 Single analyte [90] cTnI Magnetic tweezer/magnetic beads 0.368 ng mL − 1 Single analyte [20]

ofacutemyocardialinfarction(AMI).Duringtheheartinfarction, thetroponinT(TnT)isimmediatelyreleasedtothebloodstream, abiosensorabletomonitorthisbiomarkerinashorttimecould improvepatientcarebyallowingadefinitediagnosisofmyocardial infarctioninrealtime.

Elevatedconcentrationsofthesecardiacmarkersinserumare

associated with recurrent CVD events and higher death rates.

Simultaneousquantificationofthesebiomarkersallowsclinicians todiagnoseCVDquicklyand/ortoaccuratelydesignapatientcare strategy.Afastandreliabledetectionoftheseproteinswillalsohelp medicalprofessionals differentiate diseasesamong those show-ingsimilarsymptoms.Theclinicallysignificantsensingrangesof myoglobin,BNP,cTnI,andCRPareextremelylow(pMtonM),and therefore,assaymethodsforthesebiomarkersneedtobehighly sensitive.Inrecentyears,differentbiosensorplatformshavebeen designed for detection of available cardiac disease biomarkers. Here,wesummarizedthemostprominentlyusedcardiac biomark-ersandtheirdetectionbydifferentbiosensorplatforms.

3. BiosensorsforCVDs

Abiosensorisadevicedesignedtodetectandquantifytarget moleculesthatiswidelyusedasapowerfulanalyticaltoolin med-icaldiagnostics[8].Itincludesproteinsdetection,nucleicacidsor monitoringantigen–antibodyinteraction.In principle,it is gen-erallyfabricatedbyimmobilizing abiological receptormaterial, forinstance,antibody,DNA,orRNAonthesurfaceofasuitable transducerthatconvertsthebiochemicalsignalintoquantifiable electronicsignals.ArangeofsensorshasbeendevelopedforCVD markersdetection.Here,asummaryofavailabledifferentsensor

platformsforthe detectionofCVDand mostprominentlyused

CVDmarkers is presentedand summarized in Tables 1 and2).

Thissignalcanbeelectrochemical,optical,masschange (piezo-electric/acousticwave)ormagneticinnature[17–20].

3.1. Opticalbiosensors

Opticalbiosensorsareconsideredasthemostsensitive

tech-niques that are based on the change in the phase, amplitude,

polarization,or frequency of theinput lightin response tothe biorecognitionprocesses.Opticalbiosensorcanbeclassifiedinto followingcategories,suchascolorimetric,fluorescence, lumines-cence,surfaceplasmaresonance(SPR)andfiberoptics/bio-optrode basedbiosensors.In colorimetricand fluorescence-based detec-tion, either target or biorecognition molecule is labeled with chromogenic/fluorescenttag,suchasdyes.Thechangeinthe inten-sityofthecolor/fluorescencesignalindicatesthepresenceofthe targetmolecules,whichisextremelysensitive,withthedetection limitdowntoasinglemolecule[21].Inlabel-freedetection meth-ods,thetargetmoleculesarenotlabeled,andaredetectedintheir nativeforms.Thistypeofdetectionisrelativelyeasyandcheap toperformthatalsoallowsquantitative/kineticmeasurementof molecularinteractionsbysurfaceplasmaresonanceoropticalfiber biosensors[reviewedin21].Although,opticalbiosensorsarehighly sensitive,theyarebulky,expensiveandrequirededicated person-neltoperformthetests.Additionally,colorimetric,fluorescence andluminometrictypeofsensorsrequiredifficultlabeling proce-duresthatdependonindirectindicatorbasedsignalschemes. 3.1.1. Fluorescencebasedbiosensorsforcardiacmarkers detection

Arangeofdifferentcardiacbiomarkershasbeendetectedon differentopticalbasedbiosensorplatforms.Currentresearchhas

morefocusedonthemethodologiesfor multi-analytedetection

andtheintegrationofimmunosensorsintochipbased

(7)

68 A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76

based immunosensor is designed for the multianalyte cardiac

markerdetectionthat includesCRP,Mband cTnI [22].

Fluores-cencemicrosphereimmunoarraybasedplatformwasemployed

usingantibodysandwichassayforthedetectionofcytokinessuch as,TNF-␣,IL-1,IL-6,andIL-8[23].Insuchtypeofmulti-analyte detectionplatform,simultaneousdetectionofmultiplemarkers, therapidavailabilityofresultsandthesimplicityofthe experimen-talsetupmakesthisapproachanoptionforpoint-of-caretesting

devices.AnovelsandwichfluoroimmunoassayforIL-6detection

withfunctionalizedRubpy-encapsulatedfluorescentcore–shell sil-icananoparticleslabelshasbeendeveloped [24].Here,IL-6was measuredbasedonthespecificinteractionbetweencapturedIL-6 antigensandfunctionalizedfluorescentcore–shell nanoparticles-labeledanti-IL-6antibodies.Thereportedmethodofferedpotential advantages of sensitivity, simplicity and reproducibilityfor the determinationofIL-6inserumsamples.Inanotherapproach,a

20-foldenhancementofemittedlightbyfluorescentmoleculeswas

achievedbyemployingphotoniccrystalscoupledwithcolloidal quantumdotemittersthatresultedinhighsignal-to-noiseratiofor cardiacmarker(TNF-␣)detection[25].Improvementsinphotonic crystalperformancecanbemadetofurtherlowerthedetection limitsthatisusefulindetectingnewbiomarkersassociatedwith thedisease.WhileJungetal.developedacompetition-basedtagged internalstandardassaytosensitivelymeasurethesub-nanogram levelsofCRPinhumanserum[26].

Inanotherapproach,onchipsandwichassayforthedetection ofCRP,whichissimilartomicroarraysusingfluorescenttagsis

reported[27]. Thismethodwassuperior interms of CRP

mea-suringrange,butlowerindatareproducibilitycomparedtoother methods.Arelativelynewmethodwithoutemployingantibodyfor theestimationofCRPinserumwasdeveloped[28].Thismethod

centered on the variation of fluorescence intensity of

copoly-mers,containingafluorophore(Fluoreseinamineisomer1)anda CRPligand,O-phosphorylethanolamine(PEA).Here,thecopolymer

containing fluorophore quenches the fluorescence in the

pres-enceofPEAthat eventuallydeterminestheCRP levels.Further, anantibody-taggedfluoro-microbeadguidingchipintegratedwith microchannelsforsimultaneouslyfiveidenticaltestswas devel-opedforthedetectionofcTnIinhumanplasma[29].Design,picture andschematicdiagramofthesandwichassayonfluoro-microbeads guiding chipis shown in Fig. 2. This chip contained five gold functionalsurfacestoperformfiveidenticaltestssimultaneously throughcTnIantibody-linkedfluoro-microbeadsasthedetection component(Fig.2c:System1).Toamplifytheantigen–antibody bindingsignal,theavidin–biotinaffinityinteractionwasemployed. Afterimmobilizationofthecaptureantibodyandbindingofthe target antigen cTnI, biotin-conjugated cTnI detection antibody wasloadedintothechipandreactedfor30min.Afterwashing

the micro-channels withPBS, 0.005% avidin-conjugated

fluoro-microbeadswereinjected(Fig.2c:System2).Thentheamplified signalfromtheavidin–biotinreactionwasdetectedundera

flu-orescencemicroscope.Humanplasmasampleswerespikedwith

varyingconcentrationofcTnIfortestingintheSystems1and2 forsensitivelydetectingcTnIincomplexmixtures(Fig.2c). How-ever,additionofmicrofluidiccomponentscanminimizeprocedural stepssuchassamplepreparations.

3.1.2. Luminescenceandcolorimetricmethodsforcardiacmarker detection

Recently,luminescencebasedbiosensingplatformsand

meth-ods were examined for the early cardiac biomarker detection

[14,30–35].Theluminescencemethodsarebroadlyclassifiedinto twotypes,namelychemiluminescenceandelectroluminescence.In chemiluminescence,luminescentsignalisgeneratedbytheaction ofanenzymaticantibodylabelinthepresenceofluminogenic sub-stratewhileinthecaseofelectroluminescence;theluminescent

signalisinducedfollowinganelectrontransferreactionofa lumi-nescentcompoundimmobilizedneartheproximityofanelectrode surface.

Acardiac chipwasdeveloped byexploitinga geometrythat

allowsforisolationandentrapmentofsinglepolymericspheres inmicro-machinedpits, whileprovidingtoeachbeadtherapid introductionofaseriesofreagents/washesthroughmicrofluidic structures.Opticalsignalsderivedfromsinglebeadsareusedto completeimmunologicaltestsforthesimultaneousdetectionof thecardiacriskfactors,suchasC-reactiveproteinand interleukin-6(IL6)inhumanserumsamples[30].Inanotherapproach,PDMS

surfacewasdirectlymodified witha randomlyorientedprotein

antibodyspotsduringthepolymerization[31]reliesontheability ofthePDMSpolymertoentrapmacromoleculesatitssurfacewhile

thepolymerization process occurs.This methodwasemployed

todevelopasensitivesandwichimmunoassayforCRPdetection.

The main advantage of this concept is to be able to combine

boththemacromoleculeimmobilization,withouttheneedof addi-tionalchemicals,andtheeasy3Dstructuredplatformforsandwich assays.CRPmeasurementswerealsoperformedbyusingan inte-gratedmicrofluidicchipincorporatedwithmagneticbeads[14].

ThemagneticbeadscoatedwithCRP-specificDNAaptamers

rec-ognize, purifyand enrich thetarget CRP from thesample that

wassandwichedbybindingwithacridiniumester-labeled

CRP-antibodyforchemiluminescencesignal.Thedevelopmentofthis microfluidicsystemispromisingforfast,accurate,andsensitive detectionofCRP.

Currently,electroluminescence(ECL)andcolorimetric biosens-ingplatformshavebeenlessextensivelyexaminedbyresearchers forcardiacmarkersdetections[34,35].BasedontheECLofCdS nanocrystals,anovellabel-freeECLbiosensorforthedetectionof low-densitylipoprotein(LDL)hasbeendevelopedbyusing self-assemblyandgoldnanoparticleamplificationtechniques[34].The

LDL concentration was measuredthrough the decrease in ECL

intensityresultingfromthespecificbindingofLDLtoapoB-100 (ligand of LDL receptor).The ECLpeak intensity ofthe

biosen-sor decreased linearly with LDL concentration in the range of

0.025–16ngmL−1withadetectionlimitof0.006ngmL−1.

Colorimetric method using poly(dimethylsiloxane)

(PDMS)–gold nanoparticles (AuNPs) composite film as basis

withsilverenhancementhasbeenreportedforthedetectionof cardiactroponinI(cTnI)[30,32].InthisstudyPDMSmaterialwas usedbecauseitsadvantages.Firstly,thepolymermatrixofPDMS

couldprotectAuNPsfromaggregation,sothisPDMS–AuNPs

com-positefilmcouldbewellstoredat4◦Cforseveralmonthswhich enhancedthestabilityandprolongshelf-lifeofthedevice. Exper-imentalprocedureforsilverenhancementcolorimetricdetection ofcardiactroponin I,isshownin Fig.3.ForcTnI detection,the monoclonalantibodyagainstcTnIwasfirstlyimmobilizedonthe

PDMS–AuNPscompositefilm,followedbyblockingsolutionand

cTnIundertheprocedureasshowninFig.3.Themechanismof goldbasissilverenhancementmethodisthatAuNPsplayarole ofcatalystduringreactionsofsilverreduction,andthiscatalytic abilitycouldbeinhibitedwhentherewereproteinscoveringthe surfaceofAuNPs,whichinfluencetheamountofreductionsilver metal,whichledtothecolordifferenceinthereactionmixture. Thisinhibition effect couldbedistinct due todifferentspecies, quality and/or quantity of covering proteins. The results were

consistentwiththatfromEnzyme-linkedimmunosorbent assay

(ELISA),whichisconsideredtobeoneofthemostsensitiveand standardtechniques[30].

3.1.3. ELISAbasedmethodsforcardiacmarkerdetection

ELISA typically relies on optical properties of chromogenic reporterstogiverisetoasensitivesignalintoeither colorimet-ric,fluorogenicorluminescentforms,respectively.ELISAhasbeen

(8)

A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76 69

Fig.2.(a)Design,(b)photographand(c)schematicdiagramofthesandwichimmunoassayonthefluoro-microbeadsguidingchip[29].

widelyutilizedforthedetectionofcardiacmarkers[36–39].Darain etal. reported a simple and highlyefficient sandwichELISA in

whichin-channelpolystyrenewasimmobilizedwithantibodies,

andfabricatedplasticbasedmicrofluidicchipforthedetectionof myoglobin[38].Cardiacmultianalytes,suchasheart-type fatty-acidbindingprotein(H-FABP)andC-reactiveprotein(CRP)were detectedin asimple, rapidand“digital-style” semiquantitative lateralflowassay usinganin-houseELISA[36].Thisassaywas abletosimultaneouslydetectcardiacmarkers andenables pre-dictingearlyCVDrisk,simplybycountingthenumberofredlines inthetestwithoutanyexpensivereadinginstruments.Choetal. reportedachemiluminometricbiosensorsystemforpoint-of-care

testingusinganimmuno-chromatographicassaycombinedwith

anenzyme(e.g.,horseradishperoxidase)tracer,whichproduces alightsignalmeasurableonasimpledetector[37].Inthiswork, toenhancethesensitivity,biotin–streptavidincapturetechnology

wasemployedinpreparinganimmuno-stripthatwasthen

inte-gratedontothechipinordertogeneratetheELISA-on-a-chip(EOC) biosensor,andsensitivelydetectedcTnIaslowas0.027ngmL−1 detectionlimit.However,furtherminiaturizationofsensor plat-formhastobeprovidedwithoutsacrificingthedetectioncapability.

A relatively different method involving specific peptide

sequence of cardiac marker detection has been reported. This

methodutilizespolyvalentphagedisplaytoisolateuniquelinear peptidemotifswhichrecognizeboththehumanandrathomologs oftroponinI[39].ThepeptidespecificforhumantroponinIhasa

sequenceofFYSHSFHENWPS,whileFHSSWPVNGSTIfortherat

tro-poninIthatlaterdetectedbyELISA.Itwasshownthatthebinding affinitiesofthephagedisplayedpeptidesweredecreasedbythe presenceofcomplextissueculturemedia,andtheadditionof10% calfserumfurtherinterferedwiththebindingofthetargetproteins.

Inthisstudy,kineticindirectphageELISAsrevealedthatboth tro-poninIbindingpeptideswerefoundtohavenanomolaraffinities forthetroponinproteinswhileattachedtothephageparticles[31]. Thesenewpeptidesmayhavepotentialutilityinthedevelopment ofnewclinicalassaysforcardiacinjuryaswellasinmonitoringof cardiaccellsgrowninculture.

3.1.4. SPRbasedbiosensorforcardiacmarkerdetection

Surfaceplasmonresonance(SPR)isauniqueoptical

transduc-tionmethod,whichhasbeencommerciallyemployedforoptical

biosensors [40]. SPR biosensors exploit special electromagnetic waves–surfaceplasmontoprobechangesintherefractiveindex (RI)atsurfacesofmetals.SPRbiosensorscanthereforebeusedto monitortheinteractionbetweenananalyteanditsbiospecific ele-mentimmobilizedonthemetalsurfacewithouttheuseoflabels. ThebasicSPRapparatusisreferredtoastheKretschmanprism arrangement[40].

In the SPR, a thin film of metal (usuallya 400–500 ˚A thick goldorsilverfilm)iscoatedontheprismontowhicha biosens-inglayeriscoatedbyimmobilizationofbiorecognitionelements

(proteins/antibodies/DNA/RNA). When an incident light of an

appropriatewavelengthstrikesonthedielectric–metalinterface ataparticularangle,itinducesSPRphenomenonatthemetal sur-face.Depending upon thethicknessof amolecularlayeratthe metalsurface,SPRresultsina gradedreductionintheintensity ofthereflectedlight[41].Thus,onecanobserveasharpminimum oflightreflectancewhentheangleofincidenceisatthisproper resonantangle.Sincetheresonanceangledependsonseveral fac-tors(e.g.,thewavelengthoftheincidentlight,themetal,andthe natureofthemediaincontactwiththesurface)thenatureofthe mediacanbesensedbymeasuringthisresonanceangle.Further,

(9)

70 A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76

Fig.3.ExperimentalprocedureforsilverenhancementcolorimetricdetectionofcardiactroponinI:(a)PDMSchipwithHAuCl4solution,(b)photoofPDMS–AuNPscomposite filmand(c)schematicdiagramforcolorimetricdetection[32].

inadditiontotheprismcoupling,SPRsensorscanalsobebasedon opticalfibersorintegratedopticalwaveguides.Biomedical appli-cationstakeadvantageoftheexquisitesensitivityofSPRtotheRI ofthemediumnexttothemetalsurface,whichmakeitpossible tomeasureaccuratelythecapturingoftargetbiomarkersonthe metalsurface[41].

SPRbasedsensingplatformshavebeenextensivelystudiedand appliedforthedetectionofcardiacmakersthatinclude metallo-proteinase(MMP)-2[42],CRP[42–47],B-typenatriureticpeptide (BNP)[48],cTnT[49–51],myoglobin[52],cTnI[18,52],TNF-␣[53],

andMPO[54].Aone-stepSPRbasedsandwichassayformatfor

thequantificationofMMP-2hasbeenreportedwithBiacore2000, usingcolloidalgoldwithaparticlediameterofabout20nmfor signalamplification[42].Thereportedassayhasadetectionlimit

belowtheleveldocumentedbyestablishedmethodsforMMP-2

detection(Table2).Amodified CRP(mCRP)wasdetectedusing SPRbasedsensorbecausemCRPisregardedasapowerfulinducer

thanpentamerCRP(pCRP),therefore,mCRPisconsideredtobe

importantindicatorforassessingtheriskofdevelopingCVD.Three

monoclonal antibodies (Mabs), C8,8D8, and 9C9, were

immo-bilizedona proteinGlayerfor subsequentCRP detection.It is

shownthatdetectingpCRPusingMabC8,theSPRbioassay

pro-videdsufficientsensitivity toevaluatewhetheror notapatient isatriskofdeveloping CVD[43].Aminiaturizedimmunosensor is designed todeterminetracelevelsof cardiacmarker,B-type natriureticpeptide,usingamicrofluidicdevicecombinedwitha portableSPRsensorsystemthatshowedadetectableconcentration range5pgmL−1to100ngmL−1bymonitoringtheSPRangleshift, whichcoverstherequireddetectionrangefortheB-typenatriuretic peptideconcentrationsfoundinblood[48].

A carboxymethyldextran hydrogel planar sensor chip was

employedforthedetectionofcTnT[49].Thissensorwascoupled

to the SPR AutoLab Spirit® system (Eco Chemie, Netherlands)

attachedat thebottom of theprism withcedar oiland a flow

cellwasinstalledonthechip.Inthiswork,thewell-established

biotin–streptavidinchemistry wasusedtoincrease theamount

ofimmobilizedantibodiesbyhighlyspecificinteractionbetween thebiomolecules.Further,twomyocardialinfarctionbiomarkers, myoglobin andcardiac troponinI,were quantifiedatbiological

levels and in undiluted serum without sample pretreatment

using SPR sensors and the detection limits for both markers

(10)

A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76 71

sensorsurface for CRPdetection is developedin which

poly(3-(2-((N-succinimidyl)succinyloxy)ethyl)thiophene) (P3SET), a

poly(thiophene)withpendantNHSestergroupswaspreparedand usedfortheformationofaself-assembledmonolayer(SAM)ona goldsurfaceforCRPbiosensorfabrication[46].Improvementsin

thefabricationofSPRsensorshavebeenattemptedand

demon-stratedtheenhancementofsensitivityforanSPRinterfaceusing

Kretschmann’s configuration, through nano-gratings combined

with nano-patterned immobilization of surface bioreceptors

[53]. This configuration resulted in high electromagnetic field intensityfor thedetectionofTNF-␣.Inaninteresting approach

Escherichiacoli outer membrane withautodisplayed Z-domain

wasusedasamolecularrecognitionlayerforthedetectionofCRP usingSPRbiosensor[47].Fromthisstudy,theLODofSPRbiosensor

wasestimatedtoimprovemorethan100-foldcompared tothe

SPR biosensor with the antibody-layer by physical adsorption.

ThemainproblemofSPRsensorcouldbemainlybecauseofits

foulingability, lowaffinityand specificitythat affectsensitivity ofbiosensingtransducers.Onestudyattemptedtoimprovethese

factorbyutilizingamodifiedmethodofSAMformationusinga

homogeneousmixtureofoligo(ethyleneglycol)(OEG)-terminated

alkanethiolateandmercaptohexadecanoicacid(MHDA)ongold

surfacefordetectingcardiactroponinT[51].

3.1.5. SPRbasedfiberopticbiosensorsforcardiacmarker detection

Recently,SPRbasedonopticalfibershavebeenutilizedforthe detectionofcardiacspecificbiomarkersBNP[55],cTnI,Mg[55], CRP[16,55,56],nervegrowthfactor(NGF)[57],andIL-6[58].The detectionprincipleofalargeclassoffiberopticbiosensors(FOBs)is basedontheprincipleoftotalinternalreflectionfluorescence(TIRF) [55,56].Anevanescentwaveformswhenthelightpropagatesinthe fibercoreatanincidentanglegreaterthanthecriticalangle,which resultsintotalreflectionofincidentlight.Thisisduetothechange inhightolow refractiveindicesofthemedia,respectively.The evanescentwavecanbeusedtoexcitefluorophoresofthe immo-bilizedfluorescentlylabeledspecies,resultingintheevanescent waveexcitationoffluorescence.Theintensityoftheevanescent wavedecaysexponentiallyalongthedirectionperpendicularto theinterface(typicalpenetrationdepthof100–200nmrange).This characteristicenablesreal-timemonitoringofthekinetics behav-iorbetweenreceptorsandtargetanalytesduringthemeasurement. Moreover,thedetectedsignalintensityofanFOBdependsonthe amountoffluorophoresinthecapturedtargetmolecules,andthe relationshipbetweenthesignalresponseandtheconcentrationof targetmoleculescanbedeterminedaccurately.Studiesinvolving useofnovelFOBhasbeenreportedtodeterminethe mCRP-anti-CRPbindingkinetics[55].Inthis FOBplatformthefluorescence signalexcitedbyevanescentwaveinthenearfieldregionoffiber coresurfaceandaphotomultipliertube(PMT)facingthefiberwall, andperpendicularlytothefiberaxiswasfixedthatenabledto col-lectthefluorescencesignalmoreefficientlyintheFOB.Thereported FOBwascapableofdetectingCRPatphysiologicalconcentration.

Sandwichimmunoassay hasalsobeen performedusing FOB in

whichfiberopticprobewasusedasadipprobeforthesensitive detectionofIL6(5pMor0.12ngmL−1)[58].

3.1.6. Otheropticalbasedbiosensors

Refractive index based other optical biosensors have been

reported.Theseinclude,resonantbiosensortodetectCRPmarkers andsiliconphotonicmircroringresonatorsusingoptofluidic plat-formtodetectIL-6[59,60].Optomagneticbiosensorshavebeen appliedforthedetectionofcardiactroponincTnTandI[61,62]. Whileaprototypehandhelddevicewasdevelopedactuated mag-netic nanoparticle labels (500nm)bound tothe sensor surface

viaasandwichimmunoassayfor theoptomagnetic detectionof

cTnT [61]. Optomagnetic detection of cardiacbiomarkers using functionalizedmagneticparticleshashighpotentialinanalytical performanceand ease-of-usethat issuitable forapplicationsin point-of-carediagnosis[61,62].

3.2. Acousticbiosensorsfordetectionofcardiacmarkers

Acousticbiosensorsallowlabel-freedetectionofbiomolecules andanalysisofbindingeventsmainlyforCRPandinterleukin fam-ilyofproteins.Thedetectionofthesemarkersisbasedonthemass ofcapturedanalytebyanimmobilizedreceptormoleculeonthe quartzcrystalresonatorsurface,whichisproportionaltothe res-onantfrequency[63].Theirdetectionhasalsobeendemonstrated byusingsurfaceacousticwavebasedbiosensorplatform[19,63]. ItwasfoundthatZnO/SiO2/SiLovemodesurfaceacousticwave (SAW)biosensorforthedetectionofinterleukin-6(IL-6)hasbeen reportedwithhighsensitivity.Thissensorconsistedoffully inte-gratedCMOSSichipsforportablerealtimedetectionofinterleukin familyofproteinsinhumanserum[19].However,performances ofacousticbiosensorsdependonfactors,suchasitstemperature dependence,attenuationandtheRaleighwavesaresurface-normal waves,depositionofnon-specificmolecules,dustorother contam-inantsonsensorcrystalsmaycontributetolargebackgroundsignal noisesthatmayaffectsensitivityandspecificityofthesensors. 3.3. Electrochemicalbiosensors

Electrochemicalbiosensorsareaffinitybasedbiosensorswhere theyuseanimmobilizedrecognitionelement(probe)thatbinds thetarget/analytemoleculeselectively.Thedetectionofbinding atargettoprobeinsolutionisgovernedbydetectingchangeata localizedsurfaceintermsofchangeincurrentsand/orvoltages. Based ontheir operating principle,the electrochemical

biosen-sorscanemploypotentiometric,amperometricandimpedimetric

transducersconvertingthechemicalinformationintoameasurable amperometricsignal.Thus,thiscategoryexcludessensorswhich require light (e.g., surface plasmon resonance or fluorescence), mechanicalmotion(e.g.,quartzcrystalmicrobalanceorresonant cantilever),oruseofmagneticparticles.Duetotheirlowcost,low powerandeaseofminiaturization,electrochemicalbiosensorshold greatpromiseforapplicationswhereminimizingsizeandcostis crucial,suchaspoint-of-carediagnostics and bio-warfareagent detection.

Thefirstscientificallyproposedandsuccessfully commercial-izedbiosensorswerethosebasedonelectrochemicalsensorsfor multipleanalytes.Currently,transducers basedon semiconduc-torsandscreenprintedelectrodesrepresentatypicalplatformin electrochemicalbiosensorfordetectionofCVRmarkers. Electro-chemicalbiosensorsforthedetectionofcardiacmarkers,including cardiac troponin I or T (cTnI/T), myoglobin, CRP, Lipoprotein-associatedphospholipaseA,IL-6,LDLandMPOhavebeenpublished inthelast fewyears. Mostnotably,thedetectionof myoglobin wasperformedbyaminiaturizedpoint-of-caresensor,whichwas basedonimpedimetricsensingofcardiacenzymecapturedbyan antibodylayerimmobilizedonaplanargoldelectrodesensor[64].

Gold/Ti-on-glasssubstratehasbeenusedonwhichtheworking

electrodewasimmobilizedwithantibodiesthatareinturn

inte-gratedwithamicrofluidicsystem.Thepresentedbiosensor was

abletodetectthemyoglobinantigenconcentrationof100ngmL−1. Anumberofstudiesondevelopingelectrochemicalbiosensorsfor thedetectionofCRP havebeenpublishedin thelastfew years [65–71].

Athree-dimensionalordered macroporous(3DOM)goldfilm

modifiedelectrodeshavebeenemployedforthedevelopmentof

(11)

72 A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76

Fig.4. Procedureforpreparationof3DOMgoldfilm[66].

Theprocedure forpreparation of 3DOMgold filmelectrodes is

showninFig.4.

Theelectrodeusedinthissensorwaselectrochemically fabri-catedwithaninvertedopaltemplatethatenabledenhancedsurface

areaofthe3DOMgoldfilmupto14.4timeshighercomparedto

classicalbare flatelectrodes.The presentedCRP immunosensor

wasdevelopedbycovalentlyconjugatingCRPantibodieswith

3-mercaptopropionicacid(MPA)onthe3DOMgoldfilmelectrode

andschematicispresentedinFig.5.TheCRPconcentrationwas

measuredthroughtheincreaseof impedancevaluesinthe

cor-respondingspecificbindingofCRPantigenandCRPantibody.This enhancedsensorsurfaceareaof3DOMgoldfilmafterimmobilizing CRPantibodiesincreasedtheelectron-transferresistance(Ret) val-uesthatwereproportionaltotheCRPconcentrationsintherange of0.1–20ngmL−1.ThelowestdetectionlimithereforCRPantigen wasaslowas100pgmL−1[66].

A possibility of using a range of dc and ac electrochemical

techniques to probe associative interactions of CRP with CRP

antibody immobilized ona gold electrode surface was

investi-gated by Hennessey et al. [68]. It was demonstrated that the

investigated electrochemical techniquescan be used efficiently toprobetheseinteractionsoverawideCRPconcentrationrange, from1.15×10−5 to1.15mgL−1.Themeasuredsensitivityofthe techniques was in the following decreasing order: differential pulsevoltammetry,charge-transferresistanceobtainedfrom

elec-trochemical impedance spectroscopy (EIS), cyclic voltammetry,

chronoamperometry,anddouble-layercapacitancededucedfrom

EISmeasurementswhichgavethepoorestsensitivity.Thelowest detectionlimitofCRPantigenconcentrationwas6×10−6mgL−1.A

capacitivebiosensorbasedonchronoamperometrywasdeveloped

by using diamond-like carbon (DLC) film as an electric

isolat-ing layer and applicability of the biosensor was demonstrated

bydetectingCRP[69].ThelowestdetectionlimitofCRPantigen concentrationinthismethodwas0.01pgmL−1.Centietal. devel-opedelectrochemicalsandwichassayforthedetectionofCRP[67].

Thescreen-printedcarbon electrodesand magneticbeadswere

employedinthisassaytodevelopelectrochemicalassaythathada limitofdetectionof0.054mgL−1CRPinserum.

Electrochemical biosensors based detection offer sensitivity, selectivityandreliability, makingthemvery attractivetoolsfor

biomarker protein detection. However, these biosensors suffer

fromperturbationsonthesensorsurfacethatareinfluencedby differentpH,ionicstrengthandco-existingmoleculesin biologi-calfluids.Thebiologicalrecognitionelementsusedinamajority ofelectrochemicalbiosensorsareantibodies.Thefactthatthese antibodiesaregenerated,isolatedandpurifiedafterthe adminis-trationofadesiredantigenintotheanimalmodelsmakingthem inherentlytrained tofunctioninnormalphysiologicalsolutions. Thismakesantibodiesdifficulttocontainspecificbindingability outsideofthephysiologicalenvironmentsorsyntheticbuffers.The functionalityofantibodiesmayfurtherdeclineinpresenceof exter-nalredoxmediatorsthat areessentiallymixedwiththesample solutionforelectrochemicalsensorplatforms.

3.3.1. Useofnanomaterialsinelectrochemicalbiosensors

Useofnanomaterialsinelectrochemicalbiosensorshasreceived

considerable attention by the research groups over the past

decade.Thedemonstrationofnovelanduniquedetectionplatform for cardiac marker detection by utilizing nanoparticles, nano-tubes,nanowiresandnanocompositeshasbeenreported.Thereis muchversatilityintheselectionofnanomaterialstomeasurethe detectablesignalbywhichanalyteconcentrationscanbe deter-mined.Recently,asensitive,disposable,andeasytooperatesensor basedonheterogeneoussandwichimmunoassayforhigh sensitiv-ityCRP(hs-CRP)measurementwasdeveloped[65].Thisbiosensor utilizedscreen-printedelectrodesmodifiedwithmulti-walled

car-bonnanotubes(SPE/CNTs)and proteinAtoensuretheoriented

immobilizationofanti-CRPantibodiesandsensitivelydetectedCRP at500pgmL−1levels.Inanotherstudy,detectionof lipoprotein-associatedphospholipaseA2(Lp-PLA2)isreportedinwhichcarbon pastedopedwithiridiumnano-particlesasworkingelectrodeswas usedasbiosensor[72].Here,thedetectionofLp-PLA2wasinthe range0–150UmL−1withasensitivityof1.45nA/U.Thedetection oflow-densitylipoprotein(LDL)usingsilverchloride@polyaniline

(PANI)core–shellnanocomposites(AgCl@PANI)combinedwithAu

(12)

A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76 73

Fig.5. Schematicoftheimmunosensorfabricationprocess[67].

hybridmaterialwasusedtoprovidesurfaceforhighantibody load-ingduetoitslargesurface-to-volumeratio.Themethodwasbased onadsorptionofantibodytoapolipoproteinB-100(aopB-100)on

anAuNPs-AgCl@PANI-modifiedglassycarbon(GC)electrode.The

biosensorexhibitedahighlysensitiveresponsetoLDLwitha detec-tionlimitof0.34pgmL−1.

In a study by Zhou et al. developed an electrochemical

immunoassayforthesimultaneousdetectionofcardiactroponinI (cTnI)andCRPinwhichCdTeandZnSequantumdotswereutilized forsandwichimmunoassay.Here,Cd2+andZn2+weredetectedby

square-waveanodicstrippingvoltammetrytoenablethe

quan-tificationofthe2 biomarkersin 20humanserumsamples[74]. Similarly,Kunduruetal.designednanotechnology-based

electro-chemicalbiosensorusingmicro-and nanotexturedpolystyrene

polymerstructures.Theresultsdemonstratedthatscalingdown thesurfacetexturingfromthemicro-tothenanoscaleenhances thesensitivityofthisdetectionmethodforCRP[75].Intheworkby Ahammadetal.,goldnanoparticleshavebeenelectrodepositedon indiumtinoxide(ITO)andappliedtodetectmolecularinteraction

betweenhumancardiaccTnIandspecificantibodybymeasuring

opencircuitpotential(OCP).Inthiswork,anewstrategyhasbeen adaptedtoobtainanelectrical signaldue totheenzyme-based immunecatalyticreactionanddetected1–100ngmL−1IcTnI[76].

Electrochemicalimmunosensorbasedonmetalnanoparticlesfor

cardiac myoglobin detection in human blood plasma hasbeen

reported[77].Inthiswork,cardiacmyoglobindetectionwasbased ondirectelectrontransferbetweentheFe(III)-hemeandthe elec-trodesurfacethatwasmodifiedwithmetalnanoparticles(gold,

silver, and copper) stabilized by didodecyldimethylammonium

bromideandantibodies.Themethodproposeddoesnotrequire

labeledsecondaryantibodiesthatresultedinadetectionlimitof 5ngmL−1withabroadrangeofworkingconcentrations.

The iridium oxide (IrOx) nanowires based electrochemical

biosensorwaspresentedforthedetectionCRPandMPO

cardio-vascular disease biomarkers [71]. This biosensor wasbased on electricaldetectionofproteinbiomarkerswhereinan

immunoas-say was built onto the iridium oxide nanowires that in turn

undergoesspecificelectricalparameterperturbationsduringeach

binding event associated with the immunoassay. The study

demonstratedthattheiridiumoxidenanowireshasanabilityto detectverysmallchangestothesurfacechargeandthiscapabilityis utilizedforachievingtheperformancemetricsandformsthebasis ofthekeyinnovationsofthistechnologytoimproveselectivityand sensitivityofdetection.

3.3.2. Electrochemicalbiosensorswithoutelectronmediators Anotherclassofelectrochemicalbiosensorsthatdonotutilize

redoxmediatorsknownasnon-Faradaic electrochemicalsensor

hasbeenemployedforthecardiacmarkerdetectioninbufferand complexserumgreatlyvariesbecauseoftheinterferenceofthe non-specificmoleculesandions.Capacitiveelectrochemical (non-Faradaic)immunosensorhasrecentlybeenpresented[78]forthe detectionofTnTbasedontheuseofimmobilizedantibodies spe-cificforTnT.ThedevicewasabletodetectTnTlevelsintherange 0.07–6.83ngmL−1inhumanserumfrompatientswithcardiac dis-easesandintherange0.01–5ngmL−1forTnTinphosphatebuffer saline.IntheworkbyQureshietal.[79],goldinterdigitated capac-itorarrays wereemployedforthedevelopmentofreagent-less, label-freecapacitiveelectrochemicalbiosensorsforthedetection ofCRPthatisbasedonchargedistributiononthesurfaceof capac-itors.ThesensitivedetectionofCRPcapturingoncapacitorswas

observed in a dynamic range 100–500pgmL−1 under standard

conditionsthatincludesthedefinedgeometryofelectrodesand specifiedbiochemicalassayconditions.

Electrochemicalcapacitiveimmunoassaysarepromising

alter-natives to existing immunochemical tests for the development

of hand-held devices for point-of-care applications.The attrac-tionofaffinity-based capacitivesensorsisthattheyareableto determinetheanalytedirectlyin a samplewithnoorvery lit-tle sample preparation. The sensing principle of these sensors isbasedonchangesindielectric properties,charge distribution, and/orconductivitychangebroughtonbybioreceptor–target ana-lytecomplexesformedonthesurfaceoftheelectrodes.Capacitive affinitybiosensorscanbeconstructedbyimmobilizing

recogni-tionelementsontheelectrodes,and measuringchanges inthe

dielectric/surfacepropertieswhenananalytebinds.Itcanthenbe correlatedtotheboundtargetproteinmoleculesandtheamount capturedbybioreceptorsimmobilizedonthesurface.Forproviding

(13)

74 A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76

largersensor surface area, conductorscanbe madeinto a pat-ternofmicrotonano-interdigitatedfingers.However,non-specific and largebackground signals affectthese typesof sensors and reducesignal-to-noiseratioandtherefore,furtherimprovements isrequiredforimprovingtheselabel-freebiosensors.

3.4. Magneticbiosensors

Magneticparticles/beadshavebeenestablishedinlifesciences andusedfor manyyears inbiological assays.Awide varietyof biologicalspecies,suchascells, proteins,antibodies,pathogens, toxins,andDNAcanbelabeledbyattachingthemto

superpara-magnetic microbeads. These particlesrange in size from a few

nanometerstoafewmicrons,andthenormalmagneticbead struc-tureconsistsof manyiron oxide(magnetite)crystallites, which providetheparamagneticattractionoftheparticlestoamagnet andtheyareencapsulatedinplasticorceramicspheres.Thebeads arecoatedwithachemicalorbiologicalspecies(e.g.,DNAor anti-bodies)thatselectivelybindstothetargetanalyte.Todate,several authorsdescribedtheinteractionofmagneticbeadswitha mag-neticfieldandtheensuingvisualizationofbindingeffects[80],or usethebeadsasaseparationandmagneticimmobilization plat-form[81,82]althoughmagneticbeads/particlesbasedbiosensing platformshavebeenlessextensivelyexaminedbyresearchersfor cardiacmarkersdetections.

A rapid immunoassay system based on antibody-coated

micrometer-sizedparamagneticparticlewasreportedbyLuxton

etal.[83]forthedetectionofcardiacmarkersincludingCRPand creatinekinaseisoenzymeMBfraction(CKMB).Thisassaydonot requiresamplepreparation orwashingstep,and resultscanbe obtainedinlessthan3minafterintroducingthesampleintothe vesselwithsensitivitiesinthenormalclinicalrange.

The use of magnetic beads in CRP detection has also been

describedbyotherresearchgroup[84]wheremagneticbeadwas

used only for separation of bound and unboundaggregates of

sandwichassay.ThequantificationofmagneticbeadsfortheCRP detectionhasalsobeendescribedbyKrizetal.[85].Inthis publi-cation,theauthorsdescribethesedimentationofmagneticbeads complexedwithsilicamicroparticlesuponappearanceofCRPin

the sample. The content of magnetic beads in the sedimented

phaseofthemeasurementisthenanalyzedbyasinglemagnetic

resonantcoil.Themeasurementneedsonly11.5min,butshows

detectionlimitsof0.2mgL−1 anda coefficientofvariation(CV) of11%.Thesameresearchgrouppublishedarapiddetection sys-tembasedonthesametechnique[86]whichprovidesresultsafter 5.5minandhasadetectionlimitof3mgL−1andaCVof10.5%.In anotherapproach,CRPdetectionwasreportedbyanotherresearch group[87]wherethemostsignificantdifferencebetween previ-ouslymethodsisthemeasurementhead.Thisreportedsystemuses twodifferentexcitementcoilsinafrequencymixingmode.This enablestheverylowdetectionlimitof25␮gL−1,accompaniedby thelowCVof4.2%.

AnewstrategyforthedetectionofcardiactroponinIthatrelies oncompetitiveexchangeinteractionsofananalytewasreported [20].Inthismethod,useofsuperparamagneticbeadsandof mag-netictweezersapparatusallowsasmallforcetobeappliedtothe tethers, providing a drivingforce for thecompetitiveexchange reactionandselectively detectedproteinin asensitive reagent-lessfashion.Although,toobtainthereproducibleresultsfromthe device,furtheroptimizationinthefabricationofsensorwouldbe necessaryforbettersensitivity.

4. Conclusionsandperspectives

It is criticallyimportant to diagnose CVD at early stages of itsprogression,whichallowssuccessfultreatmentandrecovery

ofpatients.Therefore, itisessentialtodevelopsimpleand sen-sitive CVDdiagnosticmethods thatcan detectmultiplecardiac biomarkers atvery lowconcentrations inbiological fluids. Cur-rentbiosensing platformscan fulfillthesedemands but require sophisticatedlaboratoryequipmentandtraining. Inthisreview, availablebiosensingplatformsforCVDbiomarkersdetectionare summarized.MostfrequentlyusedCVDbiomarker/sforbiosensing areintheorderofCRP>cTnI>myoglobin>IL-6>TNF␣onoptical,

electrochemical and magnetic transductionformats. A majority

of cardiac biomarkers are also markers of common

inflamma-tion,makingitdifficulttodistinguishthecardiovascularrisk.An inflammatoryprocessinpatientscanoccurwithouttheexistence ofcardiovascular disease,which mayincurahighrateof false-positives.Therefore,amultiplemarkerdetectionstrategy needs tobeadaptedusingacombinationofestablishedandnewcardiac markers,whichhelpsinmakingcorrectclinicaldecisions.Future innovationinbiosensortechnologycanbedirectedtoward(a)

iden-tification ofnewandnon-inflammatorycardiacbiomarkersand

theirvalidation,(b)developmentofnovelbiorecognitionelements in placeof classicalantibodies,(c) directdetection of biomark-ersin biologicalfluids(blood)withoutsamplepreparations,(d) miniaturization ofelectronictransducersfor portability,and (e) patterningarraysandmicrofluidicssuitableformultiplebiomarker detection.Combinationsofalltheabovefeaturesareessentialto makingdevicesofhighpotentialforearlyCVDdiagnosiswith pre-cision.Improvingsensitivity,specificity,andmakingbiosensorsa low-costandpoint-of-carecapabilityisanotherchallenge.

Inrecentyears,nanomaterialshaveshownwideapplicationsin biosensing.Oneofthemoststrikingadvantagesofsuch nanoma-terialsistousesurfaceactivatedmagneticnanoparticles(SAMN).

These SAMNenable functionalizationand concentrationof

tar-getproteinmoleculesdirectlyfromthecomplexmixtures,such asblood/serum.Concentrationoftargetproteinfromthecomplex serumcanbeachievedbymagneticnanoparticlesfunctionalized withspecificaffinityligands(antibodies/aptamers).Themagnetic propertiesofnanoparticlesprovidemagneticseparationsimplyby

placinga magnet in closeproximityof thesuspension, making

themconcentratewithcapturedtargetproteins.This methodol-ogyholdsgreatpromiseinelectrochemicalchipbasedbiosensing, mainlyfordrawingthetargetcapturedmagneticnanoparticleson thesensorsurfaceimmobilizedwithspecificaffinityligands.This methodenableswashingawaythemagneticnanoparticleswithno

targetwhilewithdrawingthemagnetaway,andleavingbehind

only thosethat boundtothetargetproteinsfor specific detec-tionandquantification.Theconceptofusingnanomaterialsasone ofthecandidatestofurtherimprovethesensitivity in develop-inghighlysensitivedevicesforearlydiagnosisandpoint-of-care applications.Earlydiagnosiswillaidinincreaseinthehuman sur-vivalratethatrequiresprecisediagnosis,whichisonlypossible withmultiplebiomarkerdetectionforCVDrisk.However, appro-priateinvestmentandfundingsupportmechanismsareneededto facilitatemovingthistechnologyfromresearchtothecommercial applications.

Acknowledgements

ThisworkwassupportedbyDPTProgramofSabanci

Univer-sity,NanotechnologyResearchandApplicationCenterandpartially

by the Science and Technological Research Council of Turkey

(TUBITAK)undertheGrantno.110E287andtheauthorsthankfor thesupport.

References

[1]WHO,FactsAboutCardiovascularDiseases,WorldHealthOrganization,2007, http://www.who.int/mediacentre/factsheets/fs317/en/index.html.

(14)

A.Qureshietal./SensorsandActuatorsB171–172 (2012) 62–76 75

[2]S. Allender, P. Scarborough, V. Peto, M. Rayner, European Cardiovascu-lar Disease Statistics 2008, 2008, pp. 1–112 http://www.heartstats.org/ datapage.asp?id=7683.

[3]Z. Yang, D.M. Zhou, Cardiacmarkers and their point-of-care testing for diagnosis ofacutemyocardial infarction,Clinical Biochemistry39(2006) 771–780.

[4]S.Yusuf,M.Pearson,H.Sterry,S.Parish,D.Ramsdale,P.Rossi,P.Sleight, TheentryECGintheearlydiagnosisandprognosticstratificationofpatients withsuspectedacutemyocardialinfarction,EuropeanHeartJournal5(1984) 690–696.

[5]S.G.Foy,I.C.S.Kennedy,H.Ikram,C.J.S.Low,T.M.Shirlaw,I.G.Crozier,Theearly diagnosisofacutemyocardial-infarction,AustralianandNewZealandJournal ofMedicine21(1991)335–337.

[6] P.Stubbs,P.O.Collinson,Point-of-caretesting:acardiologist’sview,Clinica ChimicaActa311(2001)57–61.

[7] G.J.Kost,N.K.Tran,Point-of-caretestingandcardiacbiomarkers:thestandard ofcareandvisionforchestpaincenters,CardiologyClinics23(2005)467–490, vi.

[8]M.Mascini,S.Tombelli,Biosensorsforbiomarkersinmedicaldiagnostics, Biomarkers13(2008)637–657.

[9] M.I.Mohammed,M.P.Desmulliez,Lab-on-a-chipbasedimmunosensor princi-plesandtechnologiesforthedetectionofcardiacbiomarkers:areview,Labon aChip11(2011)569–595.

[10]J.L.Martin-Ventura,L.M.Blanco-Colio,J.Tunon,B.Munoz-Garcia,J. Madrigal-Matute,J.A.Moreno,M.VegadeCeniga,J.Egido,Biomarkersincardiovascular medicine,RevistaEspanoladeCardiologia62(2009)677–688.

[11]B. McDonnell, S. Hearty, P. Leonard, R. O’Kennedy, Cardiac biomarkers and the case for point-of-care testing, Clinical Biochemistry 42 (2009) 549–561.

[12]R.Vasan,Biomarkersofcardiovasculardisease:molecularbasisandpractical considerations,Circulation113(2006)2335.

[13] L.Anderson,Candidate-basedproteomicsinthesearchforbiomarkersof car-diovasculardisease,JournalofPhysiology563(2005)23.

[14]Y.N.Yang,H.I.Lin,J.H.Wang,S.C.Shiesh,G.B.Lee,Anintegratedmicrofluidic systemforC-reactiveproteinmeasurement,BiosensorsandBioelectronics24 (2009)3091–3096.

[15]J.Casas,T.Shah,A.Hingorani,J.Danesh,M.Pepys,C-reactiveproteinand coro-naryheartdisease:acriticalreview,JournalofInternalMedicine264(2008) 295–314.

[16] L.Tang, K.A.Kang,Preliminary studyof fiberoptic multi-cardiac-marker biosensingsystemforrapidcoronaryheartdiseasediagnosisandprognosis, AdvancesinExperimentalMedicineandBiology578(2006)101–106. [17]J.S.Daniels,N.Pourmand,Label-freeimpedancebiosensors:opportunitiesand

challenges,Electroanalysis19(2007)1239–1257.

[18] Y.C.Kwon,M.G.Kim,E.M.Kim,Y.B.Shin,S.K.Lee,S.D.Lee,M.J.Cho,H.S.Ro, Developmentofasurfaceplasmonresonance-basedimmunosensorforthe rapiddetectionofcardiactroponinI,BiotechnologyLetters33(2011)921–927. [19] S. Krishnamoorthy, A.A. Iliadis, T. Bei, G.P. Chrousos, An interleukin-6 ZnO/SiO(2)/Sisurfaceacousticwavebiosensor,BiosensorsandBioelectronics 24(2008)313–318.

[20]C.F.Monson,L.N.Driscoll,E.Bennion,C.J.Miller,M.Majda,Antibody–antigen exchangeequilibriainafieldofanexternalforce:designofreagentless biosen-sors,AnalyticalChemistry81(2009)7510–7514.

[21]X.Fan,I.M.White,S.I.Shopova,H.Zhu,J.D.Suter,Y.Sun,Sensitiveoptical biosensorsforunlabeledtargets:areview,AnalyticaChimicaActa620(2008) 8–26.

[22]M.Wolf,D. Juncker,B.Michel,P.Hunziker,E.Delamarche,Simultaneous detectionofC-reactiveproteinandothercardiacmarkersinhumanplasma usingmicromosaicimmunoassaysandself-regulatingmicrofluidicnetworks, BiosensorsandBioelectronics19(2004)1193–1202.

[23]H.R.Hill,T.B.Martins,Theflowcytometricanalysisofcytokinesusing multi-analytefluorescencemicroarraytechnology,Methods38(2006)312–316. [24]X.Hun,Z.Zhang,Functionalizedfluorescentcore–shellnanoparticlesusedasa

fluorescentlabelsinfluoroimmunoassayforIL-6,BiosensorsandBioelectronics 22(2007)2743–2748.

[25]N.Ganesh,I.D.Block,P.C.Mathias,W.Zhang,E.Chow,V.Malyarchuk,B.T. Cunningham,Leaky-modeassistedfluorescenceextraction:applicationto flu-orescenceenhancementbiosensors,OpticsExpress16(2008)21626–21640. [26]J.W.Jung,S.H.Jung,J.O.Yoo,I.B.Suh,Y.M.Kim,K.S.Ha,Label-freeand

quanti-tativeanalysisofC-reactiveproteininhumanserabytagged-internalstandard assayonantibodyarrays,BiosensorsandBioelectronics24(2009)1469–1473. [27]J.Pultar,U.Sauer,P.Domnanich,C.Preininger,Aptamer–antibodyon-chip sandwichimmunoassayfordetectionofCRPinspikedserum,Biosensorsand Bioelectronics24(2009)1456–1461.

[28]V.Raj,P.Hari,M.Antony,K.Sreenivasan,SelectiveestimationofC-reactive proteininserumusingpolymericformulationswithoutantibody,Sensorsand ActuatorsB:Chemical146(2010)23–27.

[29]S.Y.Song,Y.D.Han,K.Kim,S.S.Yang,H.C.Yoon,Afluoro-microbeadguiding chipforsimpleandquantifiableimmunoassayofcardiactroponinI(cTnI), BiosensorsandBioelectronics26(2011)3818–3824.

[30]N.Christodoulides,M.Tran,P.N.Floriano,M.Rodriguez,A.Goodey,M.Ali,D. Neikirk,J.T.McDevitt,Amicrochip-basedmultianalyteassaysystemforthe assessmentofcardiacrisk,AnalyticalChemistry74(2002)3030–3036. [31] K.A.Heyries,C.A.Mandon,L.Ceriotti,J.Ponti,P.Colpo,L.J.Blum,C.A.

Mar-quette,MacromoleculestoPDMStransferasageneralrouteforPDMSbiochips, BiosensorsandBioelectronics24(2009)1146–1152.

[32]W.Y.Wu,Z.P.Bian,W.Wang,J.J.Zhu,PDMS–goldnanoparticlecomposite film-basedsilverenhancedcolorimetricdetectionofcardiactroponinI,Sensorsand ActuatorsB:Chemical147(2010)298–303.

[33]F.Torabi,H.R.MobiniFar,B.Danielsson,M.Khayyami,Developmentofaplasma paneltestfordetectionofhumanmyocardialproteinsbycapillary immunoas-say,BiosensorsandBioelectronics22(2007)1218–1223.

[34]G. Jie, B.Liu, H. Pan,J.J. Zhu,H.Y. Chen,CdS nanocrystal-based electro-chemiluminescencebiosensorforthedetectionoflow-densitylipoproteinby increasingsensitivitywithgoldnanoparticleamplification,Analytical Chem-istry79(2007)5574–5581.

[35]W.Shen,D.Tian,H.Cui,D.Yang,Z.Bian,Nanoparticle-based electrochemi-luminescenceimmunosensorwithenhancedsensitivityforcardiactroponin IusingN-(aminobutyl)-N-(ethylisoluminol)-functionalizedgoldnanoparticles aslabels,BiosensorsandBioelectronics27(2011)18–24.

[36]W.M.Leung,C.P.Chan,M.F.Leung,R.Renneberg,K.Lehmann,I.Renneberg,M. Lehmann,A.Hempel,J.F.C.Glatz,Noveldigital-stylerapidtestsimultaneously detectingheartattackandpredictingcardiovasculardiseaserisk,Analytical Letters38(2005)423–439.

[37]I.H.Cho,E.H.Paek,Y.K.Kim,J.H.Kim,S.H.Paek,Chemiluminometric enzyme-linkedimmunosorbentassays(ELISA)-on-a-chipbiosensorbasedoncross-flow chromatography,AnalyticaChimicaActa632(2009)247–255.

[38]F.Darain,P.Yager,K.L.Gan,S.C.Tjin,On-chipdetectionofmyoglobinbasedon fluorescence,BiosensorsandBioelectronics24(2009)1744–1750.

[39]J.P.Park,D.M.Cropek,S.Banta,Highaffinitypeptidesfortherecognitionofthe heartdiseasebiomarkertroponinIidentifiedusingphagedisplay, Biotechnol-ogyandBioengineering105(2010)678–686.

[40]J.Homola,SurfacePlasmonResonanceBasedSensors,SpringerVerlag,2006. [41]P.Englebienne,A.VanHoonacker,M.Verhas,Surfaceplasmonresonance:

principles,methodsandapplicationsinbiomedicalsciences,Spectroscopy:An InternationalJournal17(2003)255–273.

[42]U.Pieper-Furst,U.Kleuser,W.F.M.Stocklein,A.Warsinke,F.W.Scheller, Detec-tionofsubicomolarconcentrationsofhumanmatrixmetalloproteinase-2by anopticalbiosensor,AnalyticalBiochemistry332(2004)160–167.

[43]W.P.Hu,H.Y.Hsu,A.Chiou,K.Y.Tseng,H.Y.Lin,G.L.Chang,S.J.Chen, Immun-odetectionofpentamerandmodifiedC-reactiveproteinusingsurfaceplasmon resonancebiosensing,BiosensorsandBioelectronics21(2006)1631–1637. [44]M.H.Meyer,M.Hartmann,M.Keusgen,SPR-basedimmunosensorfortheCRP

detection–anewmethodtodetectawellknownprotein,Biosensorsand Bio-electronics21(2006)1987–1990.

[45] I.Vikholm-Lundin,W.M.Albers,Site-directedimmobilisationofantibody frag-mentsfordetectionofC-reactiveprotein,BiosensorsandBioelectronics21 (2006)1141–1148.

[46]H.C.Kim,S.K.Lee,W.B.Jeon,H.K.Lyu,S.W.Lee,S.W.Jeong,Detectionof C-reactiveproteinonafunctionalpoly(thiophene)self-assembledmonolayer usingsurfaceplasmonresonance,Ultramicroscopy108(2008)1379–1383. [47]J.Jose,M.Park,J.C.Pyun,E.colioutermembranewithautodisplayedZ-domain

asamolecularrecognitionlayerofSPRbiosensor,BiosensorsandBioelectronics 25(2010)1225–1228.

[48] R.Kurita,Y.Yokota,Y.Sato,F.Mizutani,O.Niwa,On-chipenzyme immunoas-sayofacardiacmarkerusingamicrofluidicdevicecombinedwithaportable surfaceplasmonresonancesystem,AnalyticalChemistry78(2006)5525–5531. [49] R.F.Dutra,L.T.Kubota,AnSPRimmunosensorforhumancardiactroponinT usingspecificbindingavidintobiotinatcarboxymethyldextran-modifiedgold chip,ClinicaChimicaActa376(2007)114–120.

[50]R.F.Dutra,R.K.Mendes,V.LinsdaSilva,L.T.Kubota,Surfaceplasmonresonance immunosensorforhumancardiactroponinTbasedonself-assembled mono-layer,JournalofPharmaceuticalandBiomedicalAnalysis43(2007)1744–1750. [51]J.T.Liu,C.J.Chen,T.Ikoma,T.Yoshioka,J.S.Cross,S.J.Chang,J.Z.Tsai,J.Tanaka, Surfaceplasmonresonancebiosensorwithhighanti-foulingabilityforthe detectionofcardiacmarkertroponinT,AnalyticaChimicaActa703(2011) 80–86.

[52]J.F.Masson,T.M.Battaglia,P.Khairallah,S.Beaudoin,K.S.Booksh,Quantitative measurementofcardiacmarkersinundilutedserum,AnalyticalChemistry79 (2007)612–619.

[53]X.D. Hoa,A.G. Kirk,M.Tabrizian,EnhancedSPRresponsefrompatterned immobilizationofsurfacebioreceptorsonnano-gratings,Biosensorsand Bio-electronics24(2009)3043–3048.

[54]B.McDonnell,S.Hearty,S.Brahmbhatt,R.O’Kennedy,Ahighaffinity recom-binantantibodypermitssimpleandsensitiveone-stepdirectdetectionof myeloperoxidase,AnalyticalBiochemistry410(2010)1–6.

[55]C.Chou,H.Y.Hsu,H.T.Wu,K.Y.Tseng,A.Chiou,C.J.Yu,Z.Y.Lee,T.S.Chan,Fiber opticbiosensorforthedetectionofC-reactiveproteinandthestudyofprotein bindingkinetics,JournalofBiomedicalOptics12(2007)024025.

[56]C.Albrecht,N.Kaeppel,G.Gauglitz,Twoimmunoassayformatsforfully auto-matedCRPdetectioninhumanserum,AnalyticalandBioanalyticalChemistry 391(2008)1845–1852.

[57] L.Tang,Y.S.Oh,H.Li,J.Song,P.S.Chen,S.F.Lin,Clinicalvalidationoffiberoptic immunobiosensorforpoint-of-careanalysisofplasmanervegrowthfactor, HeartRhythm4(2007)1208–1213.

[58]R.Kapoor,C.W.Wang,Highlyspecificdetectionofinterleukin-6(IL-6) pro-teinusingcombinationtaperedfiber-opticbiosensordip-probe,Biosensorsand Bioelectronics24(2009)2696–2701.

[59]M.S.Luchansky,A.L.Washburn,M.S.McClellan,R.C.Bailey,Sensitiveon-chip detectionofaproteinbiomarkerinhumanserumandplasmaoveranextended dynamicrangeusingsiliconphotonicmicroringresonatorsandsub-micron beads,LabonaChip11(2011)2042–2044.

Referanslar

Benzer Belgeler

The article conducted in-depth interviews with 10 teachers from three kindergartens in Chongqing, coded and analyzed the interview contents using rooting theory,

“Nafs al-Amr and the Possibility of Objective Truth: An Introduction to the Problem” adını taşıyan ilk bölüm “Nafs al-Amr and the Meaning of

Figure 5 shows the optimal result of a graph with 99 nodes/157 edges (4 crossings) and the corresponding best results of the manual teams (100 crossings) and of the automated teams

Benchmark target textures of the 0- TO -1 type displaying a macroscopically anisotropic response are depicted together with the output designs from the optimization algorithm based

It iias been suggested that the last three categories of government - group relations had stemmed from the experience of Western European political systems and

Here, we report SIK2 as a potential tumor suppressor in breast cancer whose expression was reduced in tumor tissues and breast cancer cell lines compared to normal counterparts..

Sevda-Cenap And Müzik Vak- fı’nda, Çoksesli Müziği Geliştirme Vakfı’nda bir Adnan Saygun yok artık.. Chopin’i seven­ ler merkezinde de bir Adnan

nöronlarında in vitro TrkB ve TrkC protein seviyeleri üzerine etkisi.(a)Vehicle veya CpG ODN 2088 uygulanmış CM’ler ile 24 sa inkübe edilen nöron kültürlerinde TrkB