• Sonuç bulunamadı

films Characterization of MWCNT-TiO QDs and TiO QDs inself-assembled Optik

N/A
N/A
Protected

Academic year: 2021

Share "films Characterization of MWCNT-TiO QDs and TiO QDs inself-assembled Optik"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Optik

jou rn a l h om ep ag e :w w w . e l s e v i e r . d e / i j l e o

Original

research

article

Characterization

of

MWCNT-TiO

2

QDs

and

TiO

2

QDs

in

self-assembled

films

Ümit

Özlem

Akkaya

Arıer

a,∗

,

Bengü

Özu˘gur

Uysal

b

aDepartmentofPhysics,MimarSinanFineArtsUniversity,Bomonti,Istanbul34349,Turkey

bFacultyofEngineeringandNaturalSciences,KadirHasUniversity,CibaliCampus,Fatih,Istanbul34083,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22November2016

Receivedinrevisedform26April2017

Accepted28April2017 Keywords: MWCNT-TiO2 QDscomposites Films Growthkinetics

a

b

s

t

r

a

c

t

Inthisstudy,thesolutionwhichincludesTiO2quantumdots(QDs)wasmixedwiththe

multi-wallcarbonnanotubes(MWCNTs)toprepareMWCNT-TiO2QDscompositefilms.

TheeffectofmicrostructuresonthestructuralandopticalpropertiesofMWCNT-TiO2QDs

compositefilmswasevaluated.TheactivationenergyforcrystallitegrowthofTiO2QDs

whichareproducedinbrookitephaseswascalculatedas20.3kJ/mol.Thepropertiesof MWCNT-TiO2QDscompositefilmswerecharacterizedbyX-raydiffraction(XRD),

scan-ningelectronmicroscopy(SEM),atomicforcemicroscopy(AFM)andultraviolet–visible absorptionspectroscopy(UV–vis).

©2017ElsevierGmbH.Allrightsreserved.

1. Introduction

Single-walledandmulti-walledcarbonnanotubes(CNTs)haveinterestingphysicalandtechnologicalproperties.CNTs

havelargesurfaceareas,highstrengthandgoodelectricalconductivities[1,3].MWCNT-TiO2 compositestructureshave

anumberofapplicationsincludingphotocatalyticandhydrophilicactivities,solarcells,lithiumionbatteries,biosensors

andelectrochemicalcapacitorduetotheirmechanical,chemicalandelectricalproperties[2–12].MWCNT-TiO2composites

showhigherphotocatalyticactivitythanpureTiO2structures[2,13].MWCNT-TiO2structureshavebeenpreparedwith

differentmethodssuchassol-geldeposition,chemicalvapordeposition(CVD),hydrothermaldeposition,and

electrospin-ningdepositionetc.[1–3,13].MWCNT-TiO2QDscompositescanbeproducedaspowder,films,etc.[4–6].CombiningTiO2

filmswithCNTsimprovesaspectssuchasmechanicalandoptoelectronicefficiency[14].TiO2quantumdotshavedifferent

propertiesbecauseofquantumconfinementeffects,smallsize,andhighsurfacearea.Iftheparticlesizeiscomparabletothe

Bohrexcitonradiusofthematerial,onecaninvestigatethatthismaterialwhichcontainQDsdisplayquantumconfinement

effectsconsiderably.Onlyifradiusofparticlesissmallerthanexcitonradius,particlesexhibitstrongconfinement.While

excitonBohrradiusofhydrogen:0.53Å,theexcitonradiiofTiO2nano-particlesarebetween7.5and19Å[15].Quantum

sizeeffectoccurredinTiO2particleswhichhaveradiusintherangeof1–10nm[16,17].QuantumsizeeffectofQDsmeans

controllingthebandgap,thustuningthediscretenessoftheenergylevelsdependingonthesize.BrookitephaseofTiO2is

difficulttoproducepurelyandthereisnoanystudyaboutbrookitephaseofMWCNT-TiO2QDscompositefilms[16].The

effectofprecursorratiosonthefilmisherepresentedwhereTiO2quantumdotsareincorporatedinthefilmstructurein

additionwithMWCNTinordertoformthedispersedmediaofTiO2QDsinMWCNT-TiO2films.

∗ Correspondingauthor.

E-mailaddress:oarier@gmail.com(Ü.Ö.A.Arıer).

http://dx.doi.org/10.1016/j.ijleo.2017.04.101

(2)

Ü.Ö.A.Arıer,B.Ö.Uysal/Optik140(2017)1032–1037 1033

Table1

SizecalculationsofQDsfromXRDandUV–vismeasurementsbyusingScherrerandBrusequationsfordifferentAcid:TiO2ratios.

Data Acid:TiO2ratio XrdgraphScherrer’sequ.

QDsize(nm)

Brusequ.QDssize(nm)

a 0.05 2.99 2.18

b 0.1 3.58 3.81

c 0.2 4.22 4.13

d 0.4 5.52 5.15

2. Experimental

2.1. Preparationofsolutionsandcoatings

TiO2QDsandMWCNT-TiO2QDscompositethinfilmswerepreparedusingsol-gelmethod.TiO2solutionwasprepared

bydissolving1.2mltitaniumisopropoxideTi(OCH(CH3)2)4 inthesolutionwhichcontains11mlethanol,0.12mlacetic

acid(AcAc)and0.038mlwater.Firstly,titaniumisopropoxide,ethanolandwaterconcentrationswereheldfixed,andthen

acid:TiO2volumeratioswerechangedto0.4,0.2,0.1,0.05.

Secondly,TiO2solution(acid:TiO2volumeratios:0.05)andMWCNT(outerdiameter20–40nm,cheaptubes-commercial)

wereusedtopreparethefourdifferentsolutionsforMWCNT:TiO2ratio:0.005,0.00375,0.0025and0.00125.Thesolutions

weremixedusingamagneticstirrerfor3handthentheyweredepositedoncorning2947glasssubstratesbyaspin-coating

techniquewithaspeedof3000rpm.Eightdifferentsol-coatedglasssubstrateswereannealedat470◦C.Theprocesswas

repeatedat420,520,and570◦CheattreatmenttemperaturesforTiO2QDscontainedfilmwithvolumeratioofacid:TiO2=0.2.

2.2. Characterizationofcoatings

TiO2QDsandMWCNT-TiO2 QDscompositefilmsdepositedonglasssubstrateswerecharacterizedbyX-ray

diffrac-tometer(XRD,PhilipsPW-1800,Cu-K␣radiation).Ascanningelectronmicroscopy(SEM-S-3100H,HitachiLtd.)andatomic

forcemicroscope(AFM,ShimadzuscanningprobemicroscopeSPM-9500J3)wereusedtoinvestigatethesurface

morphol-ogyofthesefilms.UV–visspectroscopicanalysisoffilmswasperformedusingUV–visibleabsorptionspectrophotometer

(Perkin–ElmerLambda900withLabsphereintegratingsoftware).

3. Resultsanddiscussion

3.1. XRDanalysis

XRDwasemployedtostudythecrystalstructureofthepreparedfilms.TiO2QDsfilmswhichwereproducedwithvarious

acid:TiO2ratiosandMWCNT-TiO2QDscompositefilmsfordifferentMWCNT:TiO2ratioswereanalyzedinFig.1.

ThediffractionpatternsofthefilmsdemonstratethatbothTiO2 QDsandMWCNT-TiO2 QDsfilmsincludedbrookite

(orthorhombic)phaseof(211)(JCPDScardNo.75-1582)[17].

ThecrystalsizesofTiO2QDsfordifferentacid:TiO2ratiosandTiO2QDsinMWCNT-TiO2QDscompositefilmarecalculated

withScherrer’sformulaaccordingtotheXRDresults.TheyaredisplayedinTable1.TiO2QDscrystalsizesweredetermined

between2.99and5.52nmfordifferentacid:TiO2 ratiosandthesevalueswerefoundneartheTiO2 excitonBohrradius.

TheresultsindicatethatadecreaseintheratioleadstotheincreaseintheTiO2QDssize.Thatistosay,thesizesofTiO2

QDsdecreasedwiththeincreaseinacid:TiO2ratiosduetotheacceleratedreactionwiththeincreaseintheamountofacid.

Furthermore,theincreaseintheamountofTiO2causestheagglomeration,sothecrystalsizeofTiO2QDsinMWCNT-TiO2

QDscompositefilmsincreaseswiththisincrement.

TheactivationenergyofTiO2QDsfilmswascalculatedbyArrheniusequation.TheaverageQDssize(d)canbedetermined

usingEq.(1):aistheintercept,Ristheuniversalgasconstant,Tisthetemperature(Kelvin),andEistheactivationenergy.

lnd= −E/RT+lna (1)

Fig.2representsaplotoflogarithmoftheparticlesizeversusthetemperature(1000/T).Theactivationenergyforthe

TiO2QDsgrowthwasdeterminedusingtheslopeofthelineinFig.2andEq.(1)as20.3kJ/mol.Theactivationenergyof

therarebrookitephasehasbeenfoundlessthanthevaluesofotherphasesintheliteraturebecauseofthedifficultiesin

obtainingbrookitecrystalphase.Inthiscase,thetotalsurfaceenergyincreasesandthatleadstogrowthofQDsrequireless

energy.

TEMimagesofTiO2QDsareshowninFig.3.Theparticlessizewasapproximatelydeterminedas5nmforacid:TiO2ratio

of0.05.TEMimagesofthefilmsaredifficulttomeasurebecausethefilmsareverythin.

SEMandAFMimagesofTiO2QDsandMWCNT-TiO2QDscompositefilmsareshowninFig.4andFig.5.Fig.4indicate

thatTiO2QDswerelocatedontheMWCNTs.SurfaceroughnessvaluesofthefilmsweredeterminedtobeRms:5.07;5.65;

(3)

Fig.1.X-raydiffractionpatternsof(I)TiO2QDsfilmsfordifferentacid:TiO2ratios:(a)0.05,(b)0.1,(c)0.2,(d)0.4;(II)MWCNT-TiO2QDscompositesfilms

fordifferentMWCNT:TiO2ratios:(a)0.00125,(b)0.0025,(c)0.00375,(d)0.005,(III)TiO2QDsfilmsfordifferentheattreatmenttemperatures:(a)570,(b)

520,(c)470,(d)420◦Cforacid:TiO2volumeratios:0.05.

(4)

Ü.Ö.A.Arıer,B.Ö.Uysal/Optik140(2017)1032–1037 1035

Fig.3.TEMimagesofTiO2QDswithdifferentacid:TiO2ratios:(a)0.1,(b)0.05.

Fig.4. SEMimagesofTiO2withdifferentacid:TiO2ratios:(a)0.1,(b)0.05,MWCNT-TiO2QDscompositefilmswithdifferentMWCNT:TiO2ratios:(c)0.005,

(d)0.0025.

to0.4,0.2,0.1,0.05,theroughnessvalueswereevaluatedtobeRms:1.9;2.2;3.5;4.51.Theroughnessincreasedwiththe

decreasingacid:TiO2andMWCNT:TiO2ratios.

AbsorptiongraphsofTiO2QDsandMWCNT-TiO2QDscompositefilmsarerepresentedinFig.6.WhenMWCNT’samount

washeldfixed,absorptionedgeshiftstoalongerwavelengthbyincreasingtheTiO2ratios.

ThesizesofTiO2QDscanbecalculatedusingtheabsorptionshiftandeffectivemassmodel(particleinaboxproblem)

(5)

Fig.5.AFMimagesofTiO2withdifferentacid:TiO2ratios:(a)0.1,(b)0.05,MWCNT-TiO2QDscompositefilmswithdifferentMWCNT:TiO2ratios:(c)0.005,

(d)0.0025.

Fig.6. UV–visspectraof(a)TiO2QDsfilmsfordifferentacid:TiO2ratios:0.4;0.2;0.1;0.05,(b)MWCNT-TiO2QDscompositefilmsfordifferentMWCNT:TiO2

ratios:0.005;0.00375;0.0025;0.00125.

(r)ofQDsusingEq.(2),wherehisPlanck’sconstant,effectivemass,isthedielectricconstant,Eg=Eg-Ebulkistheband

gapshift.EffectivemassforTiO2istakenas1.63mo,whichisexperimentallyestimatedbyKormannetal.[19,20].

Emin=Eg+h−−− 2 ␲2 2r2 − 1.8e2 4␲



0



r (2)

IfradiusofQDsissmallerthanexcitonradius,thefirsttermisdominantasquantumconfinementintheequation,and

thelasttermisbecauseoftheCoulombinteractionbetweentheelectronandtheholeinEq.(1).

XrdanduvresultsofTiO2QDs’sizeswerecompared,anditwasfoundthatthesizesincreasedwithacid:TiO2ratiosin

Table1.TheUV–visabsorptionspectrarepresentthatabsorptionedgeshiftstoalongerwavelengthwiththeincreasing

(6)

Ü.Ö.A.Arıer,B.Ö.Uysal/Optik140(2017)1032–1037 1037

4. Conclusions

TiO2QDsandMWCNT-TiO2QDscompositefilmsweredepositedbysol-gelspincoatingtechnique.QDssizesofthefilms

dependontheprecursorratiossuchasacid:TiO2andMWCNT:TiO2ratios.TiO2QDsandMWCNT-TiO2QDscompositefilms

wereobtainedasbrookiteformandsingleoriented(211).TiO2QDsdispersedeasilyinMWCNT-TiO2QDscompositefilms.

ItisfoundthatsizeofTiO2QDscanbecontrolledbychangingtheacid:TiO2andMWCNT:TiO2ratios.Thesizesofparticles

weredeterminedwithdifferentwaysinTable1.Thefilmsexhibitabsorptioninthelongerwavelengthregionwiththe

incrementQDssize.Withtheoptimizationoftheprocessparameters,untoxicTiO2filmsincludingQDsinpreferredsizes

andfeaturescanbeusedinopticandelectronicindustry.

Acknowledgment

TheResearchFundofMimarSinanFineArtsUniversity(BAPProjectNo:201206)hassupportedthisresearch.

References

[1]S.Wang,L.J.Ji,B.Wu,Q.Gong,Y.Zhu,J.Liang,InfluenceofsurfacetreatmentonpreparingnanosizedTiO2supportedoncarbonnanotubes,Appl. Surf.Sci.255(2008)3263–3266.

[2]H.Yu,X.Quan,S.Chen,H.Zhao,Y.Zhang,TiO2–carbonnanotubeheterojunctionarrayswithacontrollablethicknessofTiO2layerandtheirfirst

applicationinphotocatalysis,J.Photochem.Photobiol.A:Chem.200(2008)301–306.

[3]H.Kim,H.J.Kim,M.Morita,S.G.Park,PreparationandelectrochemicalperformanceofCNTelectrodewithdepositedtitaniumdioxidefor electrochemicalcapacitor,Bull.KoreanChem.Soc.31(2010)423–428.

[4]K.Woan,G.Pyrgiotakis,W.Sigmund,PhotocatalyticCarbon-Nanotube–TiO2composites,Adv.Mater.21(2009)2233–2239.

[5]M.J.Sampaio,C.G.Silva,R.R.N.Marques,A.M.T.Silva,J.L.Faria,Carbonnanotube–TiO2thinfilmsforphotocatalyticapplications,Catal.Today161 (2011)91–96.

[6]W.Jarernboon,S.Pimanpang,S.Maensiri,E.Swatsitang,V.Amornkitbamrung,Effectsofmultiwallcarbonnanotubesinreducingmicrocrack formationonelectrophoreticallydepositedTiO,J.AlloysCompd.476(2009)840–846.

[7]W.Q.Zhang,G.B.Zhu,J.Y.Ma,X.H.Zhang,J.H.Chen,AnewelectrochemicalsensorbasedonW-dopedtitania-CNTscompositefordetectionof pentachlorophenol,IndianJ.Chem.50(2011)15–21.

[8]Y.Tang,L.Liu,X.Wang,D.Jia,W.Xia,Z.Zhao,J.Qiu,TiO2quantumdotsembeddedinbamboo-likeporouscarbonnanotubesasultrahighpowerand

longlifeanodesforlithiumionbatteries,J.PowerSources319(2016)227–234.

[9]K.R.Reddy,M.Hassan,V.G.Gomes,Hybridnanostructuresbasedontitaniumdioxideforenhancedphotocatalysis,Appl.Cat.A:Gen.489(2015)1–16.

[10]Z.Peining,A.S.Nair,Y.Shengyuan,P.Shengjie,N.K.Elumalai,S.Ramakrishna,Ricegrain-shapedTiO2?CNTcomposite—afunctionalmaterialwitha novelmorphologyfordye-sensitizedsolarcells,J.Photochem.PhotoBiol.A:Chem.231(2012)9–18.

[11]F.Petronella,M.L.Curri,M.Striccoli,E.Fania,C.Mateo-Mateo,R.A.Alvarez-Puebla,T.Sibillano,C.Giannini,M.A.Correa-Duarte,R.Comparelli,Direct growthofshapecontrolledTiO2nanocrystalsontoSWCNTsforhighlyactivephotocatalyticmaterialsinthevisible,Appl.Cat.B:Environ.178(2015) 91–99.

[12]X.Liu,R.Yan,J.Zhu,X.Huo,X.Wang,Developmentofaphotoelectrochemicallacticdehydrogenasebiosensorusingmulti-wallcarbon nanotube-TIO2nanoparticlecompositeascoenzymregenarationtool,Electrochim.Acta173(2015)260–267.

[13]Y.Xie,S.H.Heo,S.H.Yoo,G.Ali,S.O.Cho,SynthesisandphotocatalyticactivityofanataseTiO2nanoparticles-coatedcarbonnanotubes,Nanoscale

Res.Lett.5(2010)603–607.

[14]D.J.Cooke,D.Eder,J.A.Elliott,RoleofbenzylalcoholincontrollingthegrowthofTiO2oncarbonnanotubes,J.Phys.Chem.C114(2010)2462–2470.

[15]M.D.Archer,A.J.Nozik,Nanostructuredandphotoelectrochemicalsystemsforsolarphotonconversion,WorldSci.(2008)284–285.

[16]U.O.AkkayaArıer,F.Z.Tepehan,ControllingtheparticlesizeofnanobrookiteTiO2thinfilms,J.AlloysComp.509(2011)8262–8267.

[17]U.O.AkkayaArıer,F.Z.Tepehan,InfluenceofheattreatmentontheparticlesizeofnanobrookiteTiO2thinfilmsproducedbysol–gelmethod,Surf. Coat.Technol.206(2011)37–42.

[18]L.E.Brus,Electron–electronandelectron-holeinteractionsinsmallsemiconductorcrystallites:thesizedependenceofthelowestexcitedelectronic state,J.Chem.Phys80(1984)4403–4409.

[19]N.Satoh,K.Yamamoto,Quantumsizetitaniumoxidetemplatedwitha(-conjugateddendrimer:crystalstructureinthequantumsizedomain, Synth.Metal159(2009)813–816.

[20]H.Lin,etal.,SizedependencyofnanocrystallineTiO2onitsopticalpropertyandphotocatalyticreactivityexemplifiedby2-chlorophenol,Appl. Catal.B:Environ.68(2006)1–11.

Şekil

Fig. 1. X-ray diffraction patterns of (I) TiO 2 QDs films for different acid:TiO 2 ratios: (a) 0.05, (b) 0.1, (c) 0.2, (d) 0.4; (II) MWCNT-TiO 2 QDs composites films
Fig. 3. TEM images of TiO 2 QDs with different acid:TiO 2 ratios: (a) 0.1, (b) 0.05.
Fig. 5. AFM images of TiO 2 with different acid:TiO 2 ratios: (a) 0.1, (b) 0.05, MWCNT-TiO 2 QDs composite films with different MWCNT:TiO 2 ratios: (c) 0.005,

Referanslar

Benzer Belgeler

[r]

[r]

Şekillerden de anşılacağı gibi bor katkılanmadan oluşan TiO2 nanofiberler oldukça iyi oluşturulmuşken bor katkılandıktan sonra üretilen nanofiberlerin Şekil 2

Şekil 4 ve 5’de yine sırasıyla ısıl işem öncesi ve sonrasında elektroeğirme yöntemi ile üretilen seyum katkılanmış TiO 2 nanofiberlerin SEM ile

In this study, Vanadium (V), Erbium (Er) and Cerium (Ce) substituted TiO 2 films were deposited on glass substrates via sol-gel technique in industrial scale in order to

Bu çalmada, antimon katkl TiO 2 /n-Si MIS diyot oluturulmu ve yapnn idealite faktörü (n), engel yükseklii ( I b )ve seri direnç deeri (R s ) gibi temel elektriksel

ÖZET: Bu çalışmada, %100 pamuklu kumaşlar çok tabakalı kaplama yöntemine göre çinko oksit (ZnO) veya titanyum dioksit (TiO 2 ) nanopartiküller ile kaplanmış ve süblime

Bu çalışmada ise, söz konusu üç maddenin birlikte katılması ile oluşan TiO 2 /SiO 2 /GLYMO esaslı nanokompozit çözeltisinin deri üzerine uygulanması ile ince,