• Sonuç bulunamadı

Bernoulli numbers and certain convolution sums with divisor functions

N/A
N/A
Protected

Academic year: 2021

Share "Bernoulli numbers and certain convolution sums with divisor functions"

Copied!
20
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

R E S E A R C H

Open Access

Bernoulli numbers and certain convolution

sums with divisor functions

Daeyeoul Kim

1

, Aeran Kim

2

and Nazli Yildiz Ikikardes

3*

*Correspondence: nyildizikikardes@gmail.com 3Department of Elementary Mathematics Education, Necatibey Faculty of Education, Balikesir University, Balikesir, 10100, Turkey Full list of author information is available at the end of the article

Abstract

In this paper, we investigate the convolution sums  (a+b+c)x=n a,  ax+by=n ab,  ax+by+cz=n abc,  ax+by+cz+du=n abcd,

where a, b, c, d, x, y, z, u, n∈ N. Many new equalities and inequalities involving convolution sums, Bernoulli numbers and divisor functions have also been given.

MSC: 11A05; 33E99

Keywords: inequality of Diophantine equations; Bernoulli numbers; convolution

sums

1 Introduction

Throughout this paper,N, Z, and C will denote the sets of positive integers, rational in-tegers, and complex numbers, respectively. The Bernoulli polynomials Bk(x), which are usually defined by the exponential generating function

text et– = ∞  k= Bk(x) tk k!,

play an important role in different areas of mathematics, including number theory and the theory of finite differences. The Bernoulli polynomials satisfy the following well-known identity: N  j= jk=Bk+(N + ) – Bk+() k+  , k≥ . () It is well known that Bk= Bk() are rational numbers. It can be shown that Bk+=  for

k≥ , and is alternatively positive and negative for even k. The Bk are called Bernoulli numbers.

For n, k∈ N with s ∈ N ∪ {}, we define

σs(n) =  d|n ds, Fk(n) = ⎧ ⎨ ⎩ , if k|n, , if k n.

©2013 Kim et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribuAttribu-tion, and reproducAttribu-tion in any medium, provided the original work is properly cited.

(2)

The exact evaluation of the basic convolution sum n–

 m=

σ(m)σ(n – m)

first appeared in a letter from Besge to Liouville in . Ramanujan’s work has been ex-tended by many authors, e.g., see []. For example, the following identity

n–  m= σ(m)σ(n – m) =    σ(n) + ( – n)σ(n)  ()

is due to the works of Huard et al. []. In [], Ramanujan also found nine identities, includ-ing (), of the form

n  m=

σr(m)σs(n – m) = Aσr+s+(n) + Bnσr+s–(n),

where A and B are certain rational numbers. We refer to [] for a similar work. Lahiri [] obtained the most general result by evaluating the sum

 m+···+mr=n

ma

· · · marrσb(m)· · · σbr(mr) (r≥ ),

where the sum is over all positive integers m, . . . , mr satisfying m+· · · + mr= n, aiN ∪ {}, and bi∈ N.

The convolution identities have many beautiful applications in modern number theory, in particular in modular forms, since they appear in the coefficients of the Fourier expan-sions of classical Eisenstein series. For example, a very well-known work of Serre on p-adic modular forms (see []). For some of the history of the subject, and for a selection of these articles, we mention [, ] and [], and especially [] and []. We also refer to [] and [].

In this paper, we shall investigate the convolution sums  (a+b+c)x=n a,  ax+by=n ab,  ax+by+cz=n abc,  ax+by+cz+du=n abcd.

In fact, we will prove the following results.

Theorem . Let n be a positive integer. Then we have  (a+b+c)x=n a=  σ(n) –  σ(n) +  σ(n) >  B(n – ) () with n≥ .

Remark . Let α be a fixed integer with α≥ , and let

Pyrα(x) =   

(3)

be the αth order pyramid number. In fact, in (), if n = p is a prime number, then we obtain 

(a+b+c)x=p

a= Pyr(p – ). ()

This result is similar to [, ()].

Theorem . Let M be an odd positive integer. Let R, r∈ N ∪ {} with R ≥ r. Then we have

A(R, r) :=  ax+by=RM ax=rm modd ab= R–r–r+– σ(M) >R–r–   r+– B(q + ) () with M= q + .

Theorem . Let mbe an odd positive integer. Let r, r∈ N and r∈ N ∪ {} with r>

r> r. Then we have A(r, r, r) :=  ax+by+cz=rmax+by=rmax=rmmodd modd abc= r–r–r–r+– r+– σ(m). ()

Theorem . Let mbe an odd positive integer. Let r, r, r∈ N and r∈ N ∪ {} with

r> r> r> r. Then we have  ax+by+cz+du=rmax+by+cz=rmax+by=rmax=rmmodd modd modd abcd=  ·  –r–r–r–r+– r+– r+–  ×rσ(m) + (–)r–rr+r–b(m) whenn=b(n)qn= q n=( – qn)( – qn).

Theorem . Let M be an odd positive integer. Let r, R∈ N ∪ {}. Then we have  R≤r<log(RMm )  ax+by=RM ax=rm modd ab =    · R+– R++ σ(M) –  · R+M– R+– σ(M) .

Corollary . For R> r, we have the following lower bound of A(R, r) and the upper bound

of A(r, r, r), A(R, r) >  σ  R–r–M

(4)

and A(r, r, r) <  σ  r–m   .

2 Bernoulli number derived from Diophantine equations(a+b+c)x=na Lemma . Let n∈ N. Let f : Z → C be an odd function. Then

 (a,b,c,x)∈N(a+b+c)x=n  f(a + b) + f (b – c)= e|n e–  k= (e – k – )f (e – k).

Proof We can write the equality as  (a+b+c)x=n  f(a + b) + f (b – c) = k≥ f(k)  (a+b+c)x=n a+b=k  +  (a+b+c)x=n b–c=k  –  (a+b+c)x=n b–c=–k  = k≥ f(k)  (a+b+c)x=n a+b=k  = e|n  (e – )f (e – ) + (e – )f (e – ) +· · · +e– (e – )f() = e|n e–  k= (e – k – )f (e – k).

This completes the proof of the lemma. 

Proof of Theorem. Let f (x) = x. Then Lemma . becomes  (a+b+c)x=n {a + b – c} = σ(n) – σ(n) +  σ(n) () and  (a+b+c)x=n a=  σ(n) –  σ(n) +  σ(n). ()

Using (), we note that p–  j= j=   B(p – ) – B =B(p – )since B= . It is easily checked that

p(p – )(p – )

 >

(p – )(p – )(p – )

(5)

We can write that  (a+b+c)x=n

a> 

B(n – )

with n≥ . This completes the proof of the theorem. 

We list the first ten values of(a+b+c)x=nain Table .

Remark . Let f(x) :=  (a+b+c)t=x a and g(x) :=  x(x – )(x – ) = Pyr(x – ).

If x is a prime integer, by () and (), then f (x) = g(x).

The first nine values of f (x) and g(x) are given in Figure . In Figure , we plot the graphs for the values of the sums f (x) and g(x) in Remark . when x = , , , , , , , , .

Table 1 The first ten values of(a+b+c)x=na

n 1 2 3 4 5 6 7 8 9 10

(a+b+c)x=na 0 0 1 4 10 21 35 60 85 130

(6)

3 Two lemmas

Lemma . Let n∈ N and r, m ∈ N ∪ {} with r ≥ m. Let f : Z → C be a function. Then

 (a,b,x,y)∈Nax+by=rn y=x+m f(a + b) =r–mn– j= (r–r–m)n+j– l=m  k|mj f(k)δk,rn–l,

where the Kronecker delta symbol is defined by

δi,j= ⎧ ⎨ ⎩ , i= j, , i= j.

Proof We note that  (a,b,x,y)∈Nax+by=rn y=x+m f(a + b) = k≥ f(k)  ax+by=rn y=x+m a+b=k  = k≥ f(k)  ax+b(x+m)=rn a+b=k  = k≥ f(k)  (a+b)x+mb=rn a+b=k  () and  (a+b)x+mb=rn a+b=k  =  (a+)x=rn–m a+=k  +  (a+)x=rn–m· a+=k  +· · · +  (a+r–mn–)x=rn–m(r–mn–) a+(r–mn–)=k  =  k|(rn–m) k≥  +  k|(rn–m·) k≥  +· · · +  k|m· k≥r–mn–  +  k|m k≥r–mn= Fk  rn– m(δk,+ δk,+· · · + δk,rn–m) + Fk  rn– m· (δk,+ δk,+· · · + δk,rn–m·) +· · · + Fk  m· (δk,r–mn–+ δk,r–mn+· · · + δk,m·) + Fk  m(δk,r–mn+ δk,r–mn++· · · + δk,m) = r–mn– j= Fk  mj(δk,rn–m+ δk,rn–(m+)+· · · + δk,rn–((r–r–m)n+j–)) = r–mn– j= Fk  mj (r–r–m)n+j– l=m δk,rn–l.

(7)

Therefore, () becomes  (a,b,x,y)∈Nax+by=rn y=x+m f(a + b) = k≥ f(k)r–mn– j= Fk  mj (r–r–m)n+j– l=m δk,rn–l = r–mn– j= (r–r–m)n+j– l=m  k|mj f(k)δk,rn–l.

This completes the proof of the lemma. 

Example .

(a) Letting m = r =  in Lemma .,  (a,b,x,y)∈Nax+by=n y=x+ f(a + b) = n–  j= j–  l=  k|j f(k)δk,n–l. (b) If m = r =  in Lemma ., then  (a,b,x,y)∈Nax+by=n y=x+ f(a + b) = n–  j= n+j– l=  k|j f(k)δk,n–l.

Corollary . Let n∈ N and r, m ∈ N∪{} with r ≥ m. Let f : Z → C be a complex-valued function. Then r  m=  (a,b,x,y)∈Nax+by=rn y=x+m f(a + b) = r  m= r–mn– j= (r–r–m)n+j– l=m  k|mj f(k)δk,rn–l.

Proof It is obvious by Lemma .. 

Example . Let f (x) = x. Then we have  ax+by=n y=x+ (a + b)= n–  j= j–  l=  k|j kδk,n–l.

Lemma . Let n be an odd positive integer, and let f :Z → C be a complex-valued

func-tion. Then  (a,b,x,y)∈Nax+by=n y=x+ f(a + b) = n–   j= j+n– l=  k|(j+) f(k)δk,n–l.

(8)

Proof It is similar to Lemma .. 

4 A study ofax+by=nab

Proof of Theorem. We observe that  ax+by=RM ax=rm modd ab=  m<R–rM m   a|rm a   b|r(R–rM–m) b  . ()

Thus, for odd m, we have  a|rm a= σ  rσ(m) =  r+– σ(m). ()

Similarly, since R–rM– m is odd, we have 

b|r(R–rM–m)

b=r+– σ 

R–rM– m. ()

From () and (), we can write () as  ax+by=RM ax=rm modd ab=r+–   m<R–rM m σ(m)σ  R–rM– m =r+–   m<R–rM σ(m)σ  R–rM– m –  m<R–rM |m σ(m)σ  R–rM– m =r+–   m<R–rM σ(m)σ  R–rM– m –  m<R–r–M σ(m)σ  R–rM– m . ()

Let us consider the second term of (). Since σ(m) = σ(m) – σ(m), so we obtain  m<R–r–M σ(m)σ  R–rM– m =  m<R–r–M σ(m) – σ  m   σ  R–rM– m =   m<R–r–M σ(m)σ  R–rM– m –   m<R–r–M σ(m)σ  R–rM– m. ()

(9)

Therefore, () becomes  ax+by=RM ax=rm modd ab=r+–   m<R–rM m σ(m)σ  R–rM– m =r+–   m<R–rM σ(m)σ  R–rM– m –   m<R–r–M σ(m)σ  R–rM– m +   m<R–r–M σ(m)σ  R–rM– m =r+– · R–r–σ(M), () where we refer to (),  m<n/ σ(m)σ(n – m) =    σ(n) + ( – n)σ(n) + σ(n/) + ( – n)σ(n/) in [, (.)] and  m<n/ σ(m)σ(n – m) =    σ(n) + ( – n)σ(n) + σ(n/) + σ(n/) + ( – n)σ(n/) in [, Theorem ]. Thus, we obtain

A(R, r) = R–r–  r+– σ(M) > R–r–r+– σ(M) – σ(M)  > R–r–r+–   q(q + )(q + )   ≥ R–r–r+– B(q + ) – B   ()

with M = q + . This completes the proof of this theorem. 

Theorem . Let M be an odd positive integer. Let R∈ N and r ∈ N ∪ {} with R > r. Then

we have (a)  ax+by=RM ax=rm modd xeven ab= R–r–r– r+– σ(M),

(10)

(b)  ax+by=RM ax=rm modd xeven yeven ab= R–r–r– σ(M), (c)  ax+by=RM ax=rm modd xeven yodd ab=  ax+by=RM ax=rm modd xodd yeven ab= R–r–r– σ(M), (d)  ax+by=RM ax=rm modd xodd yodd ab= R–r–σ(M). Proof

(a) First, we note that  m<R–rM m σ(m)σ  R–rM– m= R–r–σ(M), () by (). Therefore,  ax+by=RM ax=rm modd xeven ab=  ax+by=RM ax=rm modd ab =  ax+by=RM ax=r–m modd ab =  m<R–rM m   a|r–m a   b|r(R–rM–m) b  =r– r+–   m<R–rM m σ(m)σ  R–rM– m = R–r–r– r+– σ(M), where we use () for the last line.

(11)

(b) We observe that  ax+by=RM ax=rm modd xeven yeven ab=  ax+by=RM ax=rm modd ab=  ax+by=R–M ax=r–m modd ab = R–r–r– σ(M),

by replacing R with R –  and r with r –  in Theorem .. (c) We can write  ax+by=RM ax=rm modd xeven yodd ab=  ax+by=RM ax=rm modd xeven ab–  ax+by=RM ax=rm modd xeven yeven ab.

So we use Theorem .(a) and (b). We have that  ax+by=RM ax=rm modd xodd yeven ab=  ax+by=RM ax=rm modd xodd ab =  m<R–rM m   a|rm r m a odd a   b|r–(R–rM–m) b  . () Then, since  a|rm r m a odd a= a|mra= r a|m a= (m), so () becomes rr–   m<R–rM m σ(m)σ  R–rM– m. Finally, we refer to (). (d) Since  ax+by=RM ax=rm modd xodd yodd ab=  ax+by=RM ax=rm modd ab–  ax+by=RM ax=rm modd xeven yeven ab+  ax+by=RM ax=rm modd xeven yodd ab+  ax+by=RM ax=rm modd xodd yeven ab ,

(12)

Corollary . Let M be an odd positive integer. Let R∈ N and r ∈ N ∪ {} with R > r. Then we have  ax+by=RM ax=rm modd ab=       R+– – · R–r–r+–  σ(M) –R+– · R+M– σ(M)  .

Proof From (), we deduce that n–  m= σ(m)σ(n – m) =  ax+by=n ab=    σ(n) + ( – n)σ(n)  . ()

So for n = RMwith an odd M, we have  ax+by=RM ab=    σ  RM+ – · RMσ  RM =       (R+)– σ(M) +   – · R+MR+– σ(M)  =  ax+by=RM ax=rm modd ab+  ax+by=RM ax=rm modd ab.

Thus, we refer to Theorem .. 

Corollary . Let M be an odd positive integer. Let R∈ N and r ∈ N ∪ {} with R > r. Then

we have R–  r=  ax+by=RM ax=rm modd ab=    · R+– · R+ · R+–  σ(M).

Proof By Theorem ., we have R–  r=  ax+by=RM ax=rm modd ab= R–  r= R–r–r+– σ(M) = (M) R–  r=  –r–+ –r–– –r–. ()

Then the first term of () is R–

 r=

(13)

Similarly, the other terms of () are R–  r= –r–=    – –R () and R–  r= –r–=    – –R. ()

From (), () and (), we get the result. 

Proof of Theorem. The proof starts as follows:  ax+by+cz=rmax+by=rmax=rmmodd modd abc =  m<r–rm m   m<r–rm m  a|rma·  b|r(r–rm–m) b   c|r(r–rm–m) c =  m<r–rm m  r–r–r+– σ(m)  r+– σ   r–rm– m  ()

by Theorem .. So Eq. () is equal to r–r–r+– r+–   m<r–rm m σ(m  r–rm– m  = r–r–r+– r+–   m<r–rmσ(m  r–rm– m  –  m<r–rm |m σ(m  r–rm– m  . ()

Then the second term of () is  m<r–rm |m σ(m  r–rm– m  =  m<r–r–mσ(m  r–rm– m  =  m<r–r–mσ(m) – σ  m   σ  r–rm– m 

(14)

=   m<r–r–mσ(m  r–rm– m  –   m<r–r–mσ(m  r–rm– m  . So we refer to n–  m= σ(m)σ(n – m) =    σ(n) + ( – n)σ(n) – σ(n)  in [, (.)],  m<n/ σ(m)σ(n – m) =  σ(n) +  σ  n   +( – n)  σ  n   –  σ(n) in [, Theorem ], and  m<n/ σ(m)σ(n – m) =  ,σ(n) +  σ  n   +  σ  n   +( – n)  σ  n   –  σ(n) +  a(n) with∞n=a(n)qn= q

n=( – qn)in [, Theorem .]. Therefore, () becomes  ax+by+cz=rmax+by=rmax=rmmodd modd abc= –r–r–r+– r+– rσ(m) + ra  r–rm   = r–r–r–r+– r+– σ(m),

where we use the fact that r> rand a(n) =  for n∈ N. This completes the proof this

theorem. 

Proof of Theorem. From Theorem ., we observe that  ax+by+cz+du=rmax+by+cz=rmax+by=rmax=rmmodd modd modd abcd= r–r–r–r+– r+– r+–  ×  m<r–rm m σ(m  r–rm– m  .

(15)

Thus, we refer to  m<n σ(m)σ(n – m) =  ,σ(n) +  σ  n   +( – n)  σ  n   +  σ(n) –  b(n) and  m<n σ(m)σ(n – m) =  ,σ(n) +  ,σ  n   +  σ  n   +( – n)  σ  n   +  σ(n) –  ,b(n) –  b  n  

in [, Theorem .]. Also, to obtain the formula, we use the fact that b(n) = –b(n) in [,

Remark .]. 

Proof of Theorem. If rm< RM, then r < log

( RM m ). We note that  ax+by=RM ab= R–  r=  ax+by=RM ax=rm modd ab+  R≤r<log(RMm )   ax+by=RM ax=rm modd ab  .

Thus, by () and Corollary ., we get our result. 

Theorem . Let M be an odd positive integer. Let R∈ N and r ∈ N ∪ {} with R > r. We

have (a)  ax+by=RM ax=rm modd (–)aab= R–r–r+– r+– σ(M), (b)  ax+by=RM ax=rm modd (–)a+bab= R–r–r+– σ(M). Proof

(a) The proof is similar to Theorem .. Let us consider that  ax+by=RM ax=rm modd (–)aab=  m<R–rM m   a|rm (–)aa   b|r(R–rM–m) b  . ()

(16)

Then  a|rm (–)aa= – a|m a+ a|m a + a|m a+· · · + a|mra =– +  + +· · · + r  a|m a =r+– σ(m). Thus, () becomes  ax+by=RM ax=rm modd (–)aab=  m<R–rM m  r+– σ(m)·  r+– σ  R–rM– m =r+– r+–   m<R–rM m σ(m)σ  R–rM– m.

Then by (), we get our result. (b) We sketch the proof as follows:

 ax+by=RM ax=rm modd (–)a+bab=  ax+by=RM ax=rm modd (–)aa· (–)bb =  m<R–rM m   a|rm (–)aa   b|r(R–rM–m) (–)bb  . 

Proof of Corollary. Firstly, from (), we note that

A(R, r) =    R–rr+– σ(M). If r≥ , then A(R, r)≥    R–rσ(M) >   R–r–   –   σ(M).

It is easily checked that σ(R–r–) =

R–r– – . So we obtain A(R, r) >  σ  R–r–M

with (, M) = . Secondly, by (), we deduce that

A(r, r, r) = r–  r+– r   r  r+– r  σ(m).

(17)

t – t= –(t – )+  and  < t – t with  < tt. Put t = (  )r then  < r+– r ≤  . ()

Thirdly, we consider f (t) = t( – t)with  < t < . Then, we easily check that  < f (t)  so  < r+– r ≤  . () Consider r  – r–   –  =  – ()r–  <  ()

with r> . From (), we deduce that r–< σ   r– and r–<  σ  r–. ()

From (), () and (), we compute that A(r, r, r) <σ(r–m). 

5 A study ofax+by+cz+du=nabcd

Corollary . Let mbe an odd positive integer. Let r, r, r∈ N and r∈ N ∪ {} with

r> r> r> r. If r, r, r≡ – (mod ), then we haver+σ

(m)≡ (–)r–r+· r+rb(m) (mod · r+r+r+).

Proof From Theorem ., we have  ax+by+cz+du=rmax+by+cz=rmax+by=rmax=rmmodd modd modd abcd=  ·  –r–r–r–r+– r+– r+–  ×rσ(m) + (–)r–rr+r–b(m) . ()

Since r, r, r≡ – (mod ) by the assumption, therefore, r+– ≡  (mod ). So from (), we have

–r–r–r–rσ

(m) + (–)r–rr+r–b(m)

≡  (mod ). ()

By multiplying () by r+r+r+, we obtain the proof. 

(18)

6 Another convolution sums

Theorem . Let M∈ N with   M. Let R ∈ N and r ∈ N ∪ {} with R ≥ r. Then we have

A(R, r) :=  ax+by=RM ax=rm m ab=  ·  R–r–r+–  σ(M) () and if R> r, then A(R, r) >  · σ  R–r–M.

Proof It is similar to Theorem .. So we obtain that  ax+by=RM ax=rm m ab=   r+–   m<R–rM m σ(m)σ  R–rM– m =   r+–   m<R–rM σ(m)σ  R–rM– m –  m<R–rM |m σ(m)σ  R–rM– m =   r+–   m<R–rM σ(m)σ  R–rM– m –  m<R–r–M σ(m)σ  R–rM– m . Then we refer to  m<nσ(m)σ(n – m) =   σ(n) + ( – n)σ(n) + σ  n   ,

if n≡  (mod ) in [, Theorem ]. Therefore, we get (). By (), we note that

A(R, r) =   R–r–r+–  σ(M) = ·   (R–r)r+–  σ(M). ()

It is well known that 

(19)

Table 2 Values of b(n) (1≤ n ≤ 12) n b(n) n b(n) 1 1 7 1,016 2 –8 8 –512 3 12 9 –2,043 4 64 10 1,680 5 –210 11 1,092 6 –96 12 768

with r≥ . Combine () and (),

A(R, r) > ·  (R–r)σ(M) > ·  · ((R–r)– )  –  σ(M) =  · σ  R–r–M

with (, M) = . This completes the proof of this theorem. 

Appendix

The first twelve values of b(n) for n∈ N are given in Table .

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in this article. All authors read and approved the final manuscript.

Author details

1National Institute for Mathematical Sciences, Doryong-dong, Yuseong-gu, Daejeon, 305-811, South Korea.2Department of Mathematics, Institute of Pure and Applied Mathematics, Chonbuk National University, Chonbuk, Chonju, 561-756, South Korea. 3Department of Elementary Mathematics Education, Necatibey Faculty of Education, Balikesir University, Balikesir, 10100, Turkey.

Acknowledgements

The first author was supported by the National Institute for Mathematical Sciences (NIMS) grant funded by the Korean government (B21303).

Received: 20 June 2013 Accepted: 23 August 2013 Published: 23 September 2013

References

1. Ramanujan, S: On certain arithmetical functions. Trans. Camb. Philos. Soc. 22, 159-184 (1916)

2. Huard, JG, Ou, ZM, Spearman, BK, Williams, KS: Elementary evaluation of certain convolution sums involving divisor functions. In: Number Theory for the Millennium, vol. II, pp. 229-274 (2002)

3. Melfi, G: On some modular identities. In: Number Theory, pp. 371-382. de Gruyter, Berlin (1998)

4. Lahiri, DB: On Ramanujan’s functionτ(n) and the divisor functionσ(n). I. Bull. Calcutta Math. Soc. 38, 193-206 (1946) 5. Serre, JP: Formes modulaires et fonctions zeta p-adiques. In: Modular Functions of One Variable, vol. III. Proc.

International Summer School, Univ. Antwerp, 1972. Lecture Notes in Math., vol. 350, pp. 191-268. Springer, Berlin (1973)

6. Cheng, N, Williams, KS: Evaluation of some convolution sums involving the sum of divisors functions. Yokohama Math. J. 52, 39-57 (2005)

7. Williams, KS: Number Theory in the Spirit of Liouville. London Mathematical Society Student Texts, vol. 76. Cambridge University Press, Cambridge (2011)

8. Cho, B, Kim, D, Park, H: Evaluation of a certain combinatorial convolution sum in higher level cases. J. Math. Anal. Appl. 406(1), 203-210 (2013)

9. Royer, E: Evaluating convolution sums of the divisor function by quasimodular forms. Int. J. Number Theory 3(2), 231-261 (2007)

10. Kim, D, Bayad, A: Convolution identities for twisted Eisenstein series and twisted divisor functions. Fixed Point Theory Appl. 2013, 81 (2013)

(20)

12. Kim, D, Kim, A, Sankaranarayanan, A: Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions. J. Inequal. Appl. 2013, 225 (2013)

doi:10.1186/1687-1847-2013-277

Cite this article as: Kim et al.: Bernoulli numbers and certain convolution sums with divisor functions. Advances in Difference Equations 2013 2013:277.

Şekil

Table 1 The first ten values of 

Referanslar

Benzer Belgeler

Şair olarak, heccav olarak, öğretmen olarak, kültür sahibi bir insan olarak, müellif olarak onu ayrı ayrı aniatmaktansa, artist bir insan, daima dik­ katli,

[r]

Çünkü Türkiye’nin örneğin bugün standart &amp; Poors notu (B)dir. Bu ise yüzde yüz karşılık ayrılması demektir. Bu durum Türk devletini ve dolaylı olarak da

Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Yıl: 12, Sayı: 33, Aralık 2019.. itaat, bağlılık ve sıkı çalışmanın getirdiği başarı, aşk, ailenin

Gül Kurtuluş, Ph.D., English Language and Literatüre Department, Faculty of Humanities and Letters, Bilkent University.. environmental issues today. As early as the 16th century,

Since, the sign of real effective exchange rate in the long run equations of export supply and capital goods import demand obtained in Johansen cointegration analysis is wrong;

a Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara, Turkey b Department of Mathematics, Faculty of Sciences, Middle East Technical University,

由臺北醫學大學醫學資訊研究所、臺灣生命倫理學 會以及印尼加札馬達大學(Gadjah Mada University) 共同舉辦之「2011 東南亞區域共同研究暨培訓型國 際合作工作坊」於 9