ContentslistsavailableatSciVerseScienceDirect
Fluid
Phase
Equilibria
j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / f l u i d
High
pressure
CO
2
absorption
studies
on
imidazolium-based
ionic
liquids:
Experimental
and
simulation
approaches
Ferdi
Karadas
a,
Banu
Köz
b,
Johan
Jacquemin
c,
Erhan
Deniz
a,
David
Rooney
c,
Jillian
Thompson
c,
Cafer
T.
Yavuz
d,
Majeda
Khraisheh
a,
Santiago
Aparicio
e,∗,
Mert
Atihan
a,∗∗aDepartmentofChemicalEngineering,QatarUniversity,Doha,Qatar
bDepartmentofEnergySystemsEngineeringKaramanogluMehmetbeyUniversity,Karaman,Turkey
cSchoolofChemistryandChemicalEngineering,Queen’sUniversityBelfast,Belfast,NorthernIreland,UnitedKingdom dGraduateSchoolofEEWS(WCU),KoreaAdvancedInstituteofScienceandTechnology(KAIST),Daejeon,RepublicofKorea eDepartmentofChemistry,UniversityofBurgos,Burgos,Spain
a
r
t
i
c
l
e
i
n
f
o
Articlehistory: Received24May2012
Receivedinrevisedform6October2012 Accepted8October2012
Available online 2 November 2012 Keywords: Ionicliquids High-pressure Carbondioxide Solubility Imidazolium Moleculardynamics
a
b
s
t
r
a
c
t
Acombinedexperimental–computationalstudyontheCO2absorptionon1-butyl-3-methylimidazolium
hexafluophosphate, 1-ethyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide, and 1-butyl-3-methylimidazoliumbis[trifluoromethylsulfonyl]imideionicliquidsis reported. Thereportedresults allowedtoinferadetailednanoscopicvisionoftheabsorptionphenomenaasafunctionofpressure andtemperature.Absorptionisothermsweremeasuredat318and338Kforpressuresupto20MPa forultrapuresamplesusingastate-of-the-artmagneticsuspensiondensimeter,forwhich measure-mentproceduresaredeveloped.AremarkableswellingeffectuponCO2absorptionwasobservedfor
pressureshigherthan10MPa,whichwascorrectedusingamethodbasedonexperimental volumet-ricdata.Theexperimentaldatareportedinthisworkareingoodagreementwithavailableliterature isotherms.Soave–Redlich–KwongandPeng–Robinsonequationsofstatecoupledwithbi-parametric vanderWaalsmixingrulewereusedforsuccessfulcorrelationsofexperimentalhighpressure absorp-tiondata.Moleculardynamicsresultsallowedtoinferstructural,energeticanddynamicpropertiesof thestudiedCO2+ionicliquidsmixedfluids,showingtherelevantroleofthestrengthofanion–cation
interactionsonfluidvolumetricpropertiesandCO2absorption.
© 2012 Elsevier B.V. All rights reserved.
1. Introduction
Ionicliquids(ILs)aresaltsexistingintheliquidstateatroom temperature,consistingoflargeasymmetricorganiccationsand anions,which areresulted in low lattice energy and moderate coulombicforces[1,2].Thevariabilityofcationsandanionsleading toILsallowstailor-madeILswithdesiredphysicalandchemical propertiesofinterest[3,4].MostmajorcharacteristicsofILsare theirlowvolatilityandhighionicconductivitytogetherwiththeir goodthermalandelectrochemicalstability[5–7],forwhichthey haveattractedacademicandindustrialinterest[8–12]in applica-tionssuchassolventsandcatalystsforchemicalreactions,andflue gasseparationagentsforchemicalandotherindustrialprocesses
[13,14].
Compared to traditional organic solvents, the non-volatility natureofILsmakesthembenignsolventsforgastreatmentand
∗ Correspondingauthor.Tel.:+34947258062;fax:+34947258831. ∗∗ Correspondingauthor.Tel.:+97444034142;fax:+97444034131. E-mailaddresses:[email protected](S.Aparicio),[email protected] (M.Atihan).
separationprocesses[15].ILsarereportedforhighsolubilitiesof waterandCO2comparedtoconventionalorganicsolvents[16–19].
DuetosolubilitydifferencesbetweenCO2andothergasessuchas
N2,O2,andCH4,ILshavestartedtogaingreatacademicand
indus-trialinterestforseparationofCO2fromfluegasornaturalgasatpre
orpostcombustionprocessstreams[14,20,21].Literaturecontains alargenumberofarticlesonthesolubilityofCO2inILs[18,22–30],
whichshowtheinterest,bothinindustryandacademia,onthis ILsapplication. Experimental studieson determiningCO2
solu-bilities in selected ILshave been widely investigated in recent years[27,31–40].Inparticular,classicimidazolium-basedILshave beenstudiedcomprehensivelyfortheirCO2captureperformances
[41–43].Blanchardetal.[44]reportedfortheveryfirsttimethe propertiesofimidazolium-basedionicliquidsasCO2 absorbents,
showingthenullsolubilityofionicliquidsinCO2incomparison
withtheremarkablesolubilityofCO2 in theionic liquidphase.
ZhangandChan[45]reviewedtheavailableliteratureontheuseof imidazolium-basedionicliquidsinsustainablechemistry, includ-ingCO2 capture.Huang etal. [46]analyzedtheCO2 absorption
mechanism in imidazolium-based ionic liquids from molecular dynamicssimulationsresultsthroughthespatialrearrangementof availablefreevolumetoaccommodateCO2moleculesbutwithout
0378-3812/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.fluid.2012.10.022
remarkablechangesinanion–cationinteractions.TheCO2
absorp-tionisstronglydependentonaniontype,andinaminorextension inalkylchain lengthsinimidazoliumrings[46].Brennecke and coworkers[47]analyzedtheanioneffectonCO2solubility,
show-ingincreasingabsorptionwithanionfluorination.Nevertheless,the availableresultsshowlowCO2 captureabilityfor
imidazolium-basedILs,i.e.upto3.5mol%atambienttemperatureandpressure
[45], which is clearly insufficientfor industrial purposes, espe-ciallyforfluegasestreatment.Therefore,neweffortshavebeen developedintheliteraturetoimproveCO2capturingabilityusing
imidazolium-basedionic liquids.Severalauthorshaveproposed theuseofamine-functionalizedimidazolium-basedionicliquids, whichleadstochemicalabsorption,andthusshowingremarkable increaseinCO2solubilitybutalsoimportantproblemssuchastheir
veryhighviscosityandhighenergypenaltiesforthedesorption processes[48–51].
ExperimentalstudieshaveshowedthattheCO2solubilityinILs
increaseswithpressureanddecreaseswithtemperature[39,52]. Nevertheless, mostof the data available areat atmospheric or low-pressureconditions(e.g.lowerthan10MPa)[14].Themain reasonforthisscarcityinhighpressureabsorptiondatarisesfrom thetechnicaldifficultiestocarry out thesemeasurementswith acceptableuncertainties.HighpressuredataonCO2captureisalso
importanttotestpossiblesorbentmaterialsonbothpreandpost combustionCO2capturepurposesforindustrialscaleapplications.
Pre-combustionCO2 conditions are setathigher pressures,e.g.
awater–gasshiftreactionproducesamixtureofH2 (61.5%)and
CO2(35.5%)at30bar[53].Pipelinecompressionofcrudenatural
gasreaches[54]uptopressuresinexcessof175barwhileCO2
transportforsequestrationdemands[55]pressuresof150bar. Liq-uefiednaturalgas(LNG) stacktemperatureshave tobelimited toa maximum of 180◦C byregulations[56].Ideally, a sorbent shouldtolerate all theseconditions (0–175barand 40–180◦C), whileretainingitsCO2capacity.Mostgasadsorptionand
absorp-tion(sorption) experiments are measuredwitha volumetric, a gravimetricorcombinedvolumetric/gravimetricequipment.There arealsosomeotherexperimentaltechniques,whichdonotget seri-ousinterestduetolimitations,accuracyandrepeatabilityproblems
[57]. For measurementsat conditions similartoprocess condi-tionsthevolumetricmethodhassomelimitations,becauseonly atmosphericconditionsareexperimented.Recently,Rubotherm®
state-of-the-artmagneticsuspensionsorptionequipmenthasbeen usedforILsand CO2 solubilitymeasurements[24,58–60].With
thisapparatus,measurementscanbeperformedfrom253to523K forpressuresupto35MPa,withsuitableaccuracyinthewhole pressure–temperatureranges.
Animportantproblemrisingin thestudyofthermophysical behaviorofILsstandsonthepurityoftheusedsamples,which hasastrongeffectonILsproperties[13].Manyavailablestudies onCO2 absorptioninILswere carriedout withsamplesof not
clarifiedpurity.Moreover,Freireetal.[61]reportedthe hydrol-ysisof thecommonhexafluorophosphateand tetrafluoroborate anions,whichwereusedinmanyCO2 absorptionstudiespaired
withimidazolium-basedcations.Thereforetheuseofultrapureand properlycharacterizedILssamplesisrequiredtoobtainreliable results[62].
Moleculardynamics simulationsis a powerfultool tostudy nanoscopicbehaviorofcomplexsystemssuchasthosecontaining ILs+CO2.Deschampsetal.[63]studiedtheCO2+[bmim][PF6]
sys-tem,pointingtoCO2moleculesnon-interactingremarkablywith
C2positioninimidazoliumringandplacedpreferentiallynearthe anion.Cadenaetal.[29]analyzedtheCO2+[bmim][PF6]system
showingthesmallvolumeexpansionandthenegligiblechanges inthe ionicliquid structure upon CO2 absorption.Huang et al.
[46]studiedtheCO2+[bmim][PF6]systemanalyzingthe
molec-ularlevelreasonsofthelowvaluesforCO2partialmolarvolume,
andshowingthatCO2moleculesoccupycavitiesrisingfromsmall
angularrearrangementsoftheanionswithoutremarkable expan-sion.Bhargavaet al.[64] studiedtheCO2+[bmim][PF6] system
showingaremarkablevolumeexpansionandspecificinteraction between CO2 molecules and [PF6]− anions; these authors also
reportedthattheCO2 solvation in[bmim][PF6] isprimary
con-trolledbytheanion[65].Kerleetal.[66]simulatedthetemperature dependenceofCO2solubilityin[emim][Tf2N]and[bmim][Tf2N],
showingthatthesolvationfreeenergyofCO2 isalmost
insensi-tivetothealkylchainlengthontheimidazoliumcation.Shimetal.
[67]studiedthesolvationstructureofCO2in[bmim][PF6]
show-ingtheappearanceofpreferentialsolvationforadiatomicprobe. Yueetal.[68]carriedoutmoleculardynamicsstudiesofseveral CO2+imidazolium-basedionicliquidsincluding[bmim][PF6]and
[emim][Tf2N],showingthat CO2 moleculesoverlap with[PF6]−
anions around the imidazoliumcation, whereas in thecase of [Tf2N]−systemsnooverlappingisinferred.Ghobadietal.[69]
car-riedoutNPTMonteCarlosimulationsfortheCO2absorptionin
[bmim][PF6]and[bmim][Tf2N]ILs;theauthorsproposedtheuse
ofanewsolubilityindexobtainedfromcalculated intermolecu-larinteractionenergiestoanalyzegassolubility.Zhangetal.[15]
publishedareviewworkrecentlyontheuseofionicliquidsfor CO2capturingpurposesinwhichavailableresultsfrommolecular
modelingarealsoanalyzed.
Theenormousamountofpossibleanion–cationcombinations leadingtoILs[70]makenecessarytocarryoutsystematicstudies ontheirpropertiesandmolecularlevelstructure,whichis espe-ciallyrelevanttofindILswithsuitableCO2propertiesforindustrial
purposesbetweentheplethoraofpossiblecandidates.This objec-tivecanbefulfilledusingacombinedexperimental–computational approach,whichononesidewouldprovidewiththerequiredCO2
absorptiondata,andontheothersidewouldleadtothenanoscopic visionof theabsorptionprocess, andthus,allowingtoobtaina visionoftherelationshipsbetweensorptionabilitiesandfluids’ structuringandproperties.Therefore,theresultsofthecombined highpressureCO2absorptionandmoleculardynamicsstudieson
threeselectedimidazolium-basedILs:butyl-3-methylimidazolium hexafluophosphate, [bmim][PF6], 1-ethyl-3-methylimidazolium
bis[trifluoromethylsulfonyl]imide, [emim][Tf2N], and
1-butyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide, [bmim][Tf2N],are reported in this work.The objectives of the
workwere:(i)toextendavailableinformationofCO2absorption
data for imidazolium-based ionic liquids to the high pressure regionusingreliableandaccuratestate-of-the-artapparatus,(ii)to usesamplessynthesizedinourlaboratories,beingultrapureand well-characterized,and(iii)toinfermolecularlevelinformation from simulation results that combined with the experimental measurementswillleadtovaluableinformationontheabsorption process.
2. Materialsandmethods
2.1. Materials
AllstudiedILsweresynthesizedandpurifiedin-houseinthe Queen’sUniversityIonicLiquidLaboratories(QUILL)Research Cen-tre.Priortouse,ILsweredriedanddegassedatpressureslower than1Pafor15hat323.15Kwhilstbeingstirred.Afterthis treat-ment,theirhalide contentsweredeterminedby usingAgilent®
suppressedionchromatography(IC), andlithiumcontentofthe samplespreparedfromthelithiumsaltwasdeterminedbyAgilent®
inductively coupled plasma analysis (ICP). Water content was determinedbeforeand aftereachmeasurement byCoulometric Karl–Fishertitrationusinga GRScientifictitrator. 99.99%purity CO2wasused.RelevantpropertiesaresummarizedinTable1.
Table1
Molarmass(M),halidemassfractioncontent(wh−),lithiummassfractioncontent(wLi+),andwatercontentinmassfractions(ww)ofthesamplesusedinthiswork.
M(gmol−1) ww×10−3 w h−×10−6 wLi+×10−6 Purity(mass%) [bmim][PF6] 284.18 0.135 <15a – [bmim][Tf2N] 419.37 0.055 <5a 0.8 [emim][Tf2N] 391.31 0.012 <5a 2.7 CO2 – – – – 99.995
aBromidemassfractioncontent.
2.2. Absorptionmeasurements
High-pressuresorptionisothermdataofCO2werecollectedin
amagneticsuspensionbalancemanufacturedbyRubotherm®that
canbeoperatedupto35MPa.Detailsoftheequipmentaregiven elsewhere[71,72].Pressuretransducers(Paroscientific,US)were usedinarangefromvacuumupto35MPawithanaccuracyof0.01% infullscale.Thetemperaturewaskeptconstantwithanaccuracy of±0.5Kforeachmeasurement(MincoPRT,US).Insitudensity valuesforCO2aremeasuredduringsorptionmeasurementsasitis
necessarytocalculatetheabsorbedCO2amount,anddensityvalues
arecross-checkedwithREFPROP9.0[73]forconsistencypurposes. Absorptionmeasurementswerecarriedoutusing2–3mL sam-ples for the corresponding IL. First the system is taken under vacuumfor24hat60◦C.Carbondioxideisthenpressurizedvia TeledyneIsco260Dfullyautomatedgasboosterandchargedinto thehigh-pressurecell,thenCO2absorptiononthesamplebegins.
Onceequilibriumisreached(∼45min),4differentsetof measure-mentsaretakenforaperiodof10min;eachdatapointiscollected atevery30s.Attheendofeachpressurepoint,systemgoes, auto-matically,tothenextpressuremeasurementpoint.Inthiswork, pressureupto20MPaisusedformaximumpressure,toprovide fullscaleperformancescan,andattheendofeachisotherm, hys-teresischeckisconductedateachisothermbycollectingdesorption dataasthesystemisdepressurized.
Absorptiondataisanalyzedandtheamountofadsorbedcarbon dioxideonthesampleiscalculatedbyusingEq.(1):
W+Wbuoy,sample+Wbuoy,sink=mads+msample+msink (1)
where W is the signal read by the instrument,
Wbuoy,sample=Vsample×dgas is the buoyancy correction due to
sample,Vsample isthevolumeof thesample, dgas isthedensity
of the gas, Wbuoy,sink=Vsinker×dgas is the buoyancy correction
due to sinker, Vsinker is the volume of the sinker, mads is the
absorptionamount,msampleisthemassofthesample,andmsinkis
themassofthesinker.Themassofemptysinkerwasdetermined atseveralpressuresusingheliumtodetermineWbuoy,sink.Vsinker
wascalculatedfromtheslopeofweightvs.densityplotobtained fromthis measurement. A blankmeasurement atvacuum was, firstly, performedtodeterminemsink.msample is determinedby
performingameasurementatvacuum. 2.3. Moleculardynamicsmethods
ClassicalmoleculardynamicssimulationsforCO2+ILsmixed
fluids were carried out using the MDynaMix v. 5.0 molecular modelingpackage[74].SimulationswereperformedintheNPT ensembleusingtheNose–Hoovermethodtocontrolthe temper-atureandpressureofthesimulationsystem[75].Theequations of motion were solved by Tuckerman–Berne double time step algorithm [76] withlong and short time stepsof 1 and 0.1fs, respectively.TheEwaldsummationmethod[77]wasimplemented fortheCoulombicinteractionswithradiuscut-offof1.5nm.The simulatedsystemsconsistofcubicboxesofpureionicliquidsor ionicliquidswithabsorbedCO2,withthecompositionsreportedin
TableS1(Supplementarydata).Simulationboxeswerebuiltusing
125ionicpairsandanumberofCO2 moleculesfrom14 to125,
tostudycompositioneffectonmixturepropertiesupto equimo-larsystems.Initialboxesweregenerated placingrandomlyions andCO2 moleculesinaFCClatticeatlowdensity(∼0.2gcm−3),
thenNPTsimulationswereperformedattheselectedpressureand temperature,equilibrationwascheckedthroughconstant poten-tialenergy.Afterequilibration,10nsruns(timestep1fs)inthe NPTensembleatthestudiedpressure(2.5MPa)andtemperature (298K)were performedfor theanalysisof systems’properties. Equimolarcompositionforthestudiedpressureandtemperature aresupersaturatedconditions,aswemayinferfromexperimental measurements,Table2;nevertheless,theobjectiveofthe computa-tionalworkistoanalyzemolecularlevelinteractionfeatures,notto predictphaseequilibria.Forcefieldparameterizationforthe stud-iedionicliquidswereobtainedfromtheliterature[78,79],aswell asthoseforCO2molecules[80].
3. Resultsanddiscussion
3.1. CO2absorptionmeasurements
Sorptiondatafrommagneticsuspensionapparatusisgivenin
Fig.1.Reportedresultsshowthatforacommon[bmim]+cation,
CO2 sorption increases ongoingfrom [PF6]− to[TF2N]− anion,
andforcommon[TF2N]− anionsorptionincreaseswith
increas-ingalkylchainlengthinimidazoliumcation[46,47].Nevertheless, theanioneffectonsorptionabilityismoreremarkablethanthe cationeffect.Temperatureincreaseleadtolowersorption abili-ties,asitmaybeexpected,whereasthepressureeffectseemsto bemorecomplexfromFig.1.Althoughincreasingpressureleadto increasingCO2sorption,itappearsthatforpressureshigherthan
0 40 80 120 160 200
P
/ MPa
0 0.2 0.4 0.6 0.8x(CO
2)
[BMIM][PF6] - 318 K [BMIM][PF6] - 338 K [BMIM][TF2N] - 318 K [BMIM][TF2N] - 338 K [EMIM][TF2N] - 318 K [EMIM][TF2N] - 338 KFig.1.SwellinguncorrectedhighpressureCO2absorptiondataon[bmim][PF6],
Table2
ExperimentaldataofsolubilityofCO2inthestudiedionicliquids,swellingcorrectedaccordingtomethodproposedinprevioussection.a
[bmim][PF6] [bmim][Tf2N] [emim][Tf2N]
318K 338K 318K 338K 318K 338K
P(MPa) x(CO2) P(MPa) x(CO2) P(MPa) x(CO2) P(MPa) x(CO2) P(MPa) x(CO2) P(MPa) x(CO2)
0.0120 0.0000 0.0120 0.0000 0.0130 0.0000 0.0120 0.0000 0.0120 0.0000 0.0120 0.0000 0.0970 0.0000 0.0980 0.0006 0.1060 0.0000 0.0990 0.0000 0.0963 0.0001 0.0990 0.0000 0.4950 0.0282 0.4951 0.0346 0.5000 0.0589 0.4990 0.0550 0.4957 0.0759 0.4960 0.0326 0.9951 0.0835 0.9953 0.0761 0.9980 0.1461 0.9960 0.1211 0.9989 0.1603 1.0015 0.0990 1.4952 0.1358 1.4951 0.1153 1.4950 0.2211 1.4953 0.1800 1.4950 0.2297 1.4978 0.1597 1.9952 0.1842 1.9951 0.1509 1.9951 0.2845 1.9970 0.2322 1.9960 0.2911 1.9950 0.2128 2.4951 0.2267 2.4949 0.1839 2.4951 0.3409 2.4960 0.2810 2.4956 0.3424 2.4960 0.2588 2.9952 0.2647 2.9950 0.2137 2.9970 0.3902 2.9960 0.3213 2.9974 0.3888 2.9960 0.3015 3.4954 0.2990 3.4947 0.2416 3.4960 0.4324 3.4961 0.3583 3.4951 0.4285 3.4951 0.3400 3.9958 0.3308 3.9952 0.2677 3.9952 0.4715 3.9958 0.3941 3.9959 0.4658 3.9961 0.3741 4.4954 0.3586 4.4951 0.2916 4.4960 0.5042 4.4958 0.4243 4.4959 0.4974 4.4953 0.4044 4.9950 0.3853 4.9950 0.3137 4.9955 0.5344 4.9963 0.4522 4.9960 0.5262 4.9955 0.4333 7.4956 0.4741 7.4949 0.3976 7.4958 0.6428 7.4955 0.5583 7.4957 0.6304 7.4957 0.5403 9.9955 0.5225 9.9949 0.4518 9.9952 0.7095 9.9966 0.6288 9.9955 0.7003 9.9958 0.6132 12.4955 0.5260 12.4947 0.4812 12.4960 0.7282 12.4960 0.6768 12.4961 0.7348 12.4953 0.6670 14.9955 0.5317 14.9942 0.4924 14.9964 0.7399 14.9960 0.7008 14.9962 0.7455 14.9961 0.6977 17.4952 0.5375 17.4916 0.4966 17.4959 0.7479 17.5016 0.7119 17.4958 0.7553 17.4959 0.7139 19.9948 0.5428 19.9909 0.4997 19.9974 0.7562 19.9973 0.7149 19.9965 0.7638 19.9977 0.7226
au(T)=±0.1K;u(P)=±0.01%(fullscale);u(x)=±0.0001.
10MPa,absorbedamountsofCO2onILsshowdecreasingtrends,
whichisduetotheswellingeffectbeingpreviouslyreportedfor
high-pressureCO2solubilityexperimentsinILs,andinpolymers,
[81–84].Therefore,theswelling-uncorrecteddatareportedinFig.1
shouldbecorrectedconsideringtheswellingeffectrisinguponCO2
absorption,forwhichseveralproceduresarepossible. 3.2. Correctionofswellingeffectonsorptiondata
Swellingphenomenaneedscorrectionfordeterminingabsolute CO2captureperformanceatelevatedpressures[22–24,81].Most
reportedexperimentalsorptiondatahavebeenobtainedatlowor moderatepressures,wheretheCO2solubilityisrelativelylowand
theILswellingcanbeneglected.UncorrectedCO2 highpressure
sorptiondataatelevatedpressures,Fig.1,areanalyzedconsidering Eq.(2).
m=mA+ms+mSK−WSK−WS-A (2)
wheremstandsfortheexperimentalreadings,mAforthemass
ofabsorbedgas(CO2),mSfortheILmass,mSKforthesinkermass,
WSKforthebuoyancycorrectionduetosinker,andWS-A forthe
combinedbuoyancycorrectionduetoionicliquidandabsorbed gas.BuoyancycorrectionsarecalculatedaccordingtoEqs.(3)and (4): WSK=VSKdG (3) WS-A=
mS+mA dS-A dG=VS-AdG (4)whereVSKstandsforthesinkervolume,dS-AandVS-Afordensity
andvolume,respectively,ofILsamplewithabsorbedgas.The buoy-ancyeffectduetoILsampleandabsorbedgas,WS-A,changeswith
theamountofabsorbedgasduetotheswellingeffect,with increas-ingamountsofabsorbedgasthefluidexpandsleadingtolarger VS-AvaluesandtolargerWS-Acontributions.AsmAincreaseswith
pressureforisothermalconditions,WS-Awillbemoreimportant
forthehigh-pressureregionwhereasitisalmostnegligibleinthe low-pressureregion.RearrangingEqs.(2)and(5)isobtained:
mA=m−mS−mSK+WSK+WS-A (5)
ThethirdfirsttermsinEq.(5)areexperimentalamounts:
C=m−mS−mSK (6)
The problem rises into the calculation of WS-A through the
determinationofexactvaluesofVS-A.Inthiswork,experimental
swellingdataforthestudiedsystemscomingfromtheliterature is usedto calculatetheVS-A term.Aki et al.[47] reported CO2
absorptionandvolumetricdatafor[bmim][PF6]and[bmim][Tf2N]
ionicliquids.Renetal.[85]reporteddatafor[emim][Tf2N].Aki
etal.[47]reporteddataat313.15and333.15Kfor[bmim][PF6]
and[bmim][Tf2N],andRenetal.[85]at323.15and343.15Kfor
[emim][Tf2N],whereasexperimentalmeasurementswerecarried
outat318and338Kinthiswork.Nevertheless,molarvolumeis reportedinFig.2,Vm,asafunctionofCO2molefractionforthe
twotemperaturesclosetomeasurementsreportedinthis work, showingthatVmdoesnotchangeforthestudiedtemperaturerange
forthethreeconsideredILs.Therefore,experimentalVmdata
com-ingfromtheliterature[47,85]isused,fromwhich,experimental mSwererecalculated,andthus,VS-Aisobtainedasafunctionof
mA,Fig.3.These valuesdo notchangewithinthestudied
tem-peraturerange,andthus,theywerefittedtogether(temperature independent)accordingtoalinearmodelforeachIL,Eq.(7):
VS-A=a1mA+a0 (7)
CombiningEqs.(5)–(7),Eq.(8)isobtained:
mA=C+WSK+(a1mA+a0)dG (8)
Eq.(8)wassolvedforeachexperimentalpointleadingtoswelling correctedCO2 absorptiondata,Table2andFig.4.Swelling
cor-recteddatawerecomparedwiththoseavailableintotheliterature,
Figs.S1–S5(Supplementary data). Themaindifferences risefor [bmim][PF6], Fig.S1(Supplementary data);deviations withAki
etal.[47] andLiuet al.[86]aremore thanthecomparisonsto those reportedby Zhanget al. [87], Shiflettand Yokozeki [88], Kumelanetal.[89],andKampsetal.[90].Akietal.[47]reported thestrong effectof decomposition productsfrom the degrada-tionof[PF6]−anionontheCO2 solubilitymeasurements,which
couldjustifythedifferencesbetweenthedatareportedinthiswork andthosereportedinsomeliteraturesources,althoughitshould beremarkedtheexcellentagreementbetweendatareportedin thisworkandotherliteraturesources.Datafor[bmim][Tf2N]and
[emim][Tf2N]are in excellent agreementwithliterature values
(a)[bmim][PF6] (b)[bmim][Tf2N] (c)[emim][Tf2N] 0 0.2 0.4 0.6 0.8 x(CO2) 80 120 160 200 Vm / cm 3 mo l -1 313.15 K 333.15 K 0 0.2 0.4 0.6 0.8 x(CO2) 80 120 160 200 240 280 Vm / cm 3 mo l -1 313.15 K 333.15 K 0.2 0.4 0.6 0.8 x(CO2) 80 120 160 200 240 Vm / cm 3 mo l -1 323.15 K 343.15 K
Fig.2.Variationofmolarvolume,Vm,withthemolefractionofabsorbedCO2.
ExperimentaldatafromAkietal.[47]andRenetal.[85].
0 0.01 0.02 0.03 0.04 mA / g 0.075 0.08 0.085 0.09 0.095 0.1 VS-A /c m 3 323.15 K 343.15 K 0 0.01 0.02 0.03 mA / g 0.07 0.08 0.09 0.1 VS-A / cm 3 313.15 K 333.15 K 0 0.02 0.04 0.06 0.08 mA / g 0.18 0.2 0.22 0.24 0.26 VS-A /c m 3 313.15 K 333.15 K
(a)[bmim][PF6] (b)[bmim][Tf2N] (c)[emim][Tf2N]
VS-A= 0.7429mA+0.1967 VS-A= 0.8692mA+0.0711 VS-A= 0.7617mA+0.0732
mS= 0.101960 g
mS= 0.101106g
mS= 0.265319 g
Fig.3.Variationofsamplevolume(swelling),VS-A,withtheamountofabsorbedCO2(mA).
3.3. Correlationofabsorptiondatausingcubicequationsofstate Experimental CO2 absorption data (vapor–liquid
equilib-rium data) were correlated using Peng–Robinson (PR) and
0 4 8 12 16 20
P / MPa
0 0.2 0.4 0.6 0.8x(C
O
2)
[BMIM][PF6] - 318 K [BMIM][PF6] - 338 K [BMIM][TF2N] - 318 K [BMIM][TF2N] - 338 K [EMIM][TF2N] - 318 K [EMIM][TF2N] - 338 KFig.4.IsothermalexperimentalsolubilitydataofCO2inthestudiedionicliquids.
x(CO2)standsforCO2molefraction.
Table3
CriticalpropertiesandacentricfactorsusedforEOScalculations.
Tc(K) Pc(MPa) Vc(cm3mol−1) w
[bmim][PF6]a 708.9 1.73 779.5 0.7553
[bmim][Tf2N]a 1265.0 2.76 1007.1 0.2656
[emim][Tf2N]a 1244.9 3.26 892.9 0.1818
CO2b 304.13 7.38 94.1 0.2239
aDatafromValderramaandRobles[95]. bDatafromREFPROP9.0[73].
Soave–Redlich–Kwong(SRK)equations ofstate(EOS),combined withvanderWaals2-parametermixingrule[94].Critical proper-tiesandacentricfactorsrequiredforEOScalculations,Table3,were obtainedfromValderramaandRobles[95]whousedagroup con-tributionmethodtopredicttheseproperties.Correlationresults arereportedinTable4 andFig.5,both EOSleadtosatisfactory
Table4
Binaryinteractionparameters(k12andl12)andequationsofstatecorrelationresults
forionicliquid+CO2vaporliquidequilibria.%AARDstandsforpercentageabsolute
averagerelativedeviation.
T(K) PR SRK k12 l12 %AARD k12 l12 %AARD [bmim][PF6] 318 0.2096 0.0400 1.57 0.2134 0.0394 1.49 338 0.2491 0.0536 1.00 0.2528 0.0462 0.91 [emim][Tf2N] 318 0.0547 0.0267 1.73 0.0555 0.0270 1.77 338 0.0508 0.0294 1.43 0.0555 0.0317 1.49 [emim][Tf2N] 318 0.0536 0.0330 1.11 0.0523 0.0332 1.15 338 0.0440 0.0251 1.56 0.0446 0.0281 1.62
Fig.5.ResultsofCO2absorptiondatacorrelationusingPeng–RobinsonandSoave–Redlich–KwongequationsofstatewithbinaryinteractionparametersreportedinTable2.
correlation,withpercentage absoluteaveragerelativedeviation lowerthan1.77%forbothfluidsandEOS.
Renetal.[85]reportedtheappearanceofvapor–liquid–liquid equilibriumandliquid–liquidequilibriumfor[emim][Tf2N]+CO2
system at 298.15K. High-pressure phase diagrams for [emim][Tf2N]+CO2 system were extrapolated using the binary
interactionparameters reportedin Table4,for 318and 338K, which are reportedin Fig. 6 in comparison withthat reported byRenetal.[85]at298.15K.TheresultsreportedinFig.6show mixturecritical points,which someauthors have discardedfor CO2+ionicliquidsystems[26,85]byconsideringitasanartifact
oftheEOSpredictionsinthehighpressureregions.Theresults reportedinFig.6for318and 338Kdo notshowtheexistence neitherofthreephaselines(vapor–liquid–liquidequilibria),nor ofliquid–liquidequilibriabecausetheyareabovethecriticalpoint ofpureCO2.
3.4. Moleculardynamics
Simulationswere carriedout as a function ofabsorbed CO2
mole fraction (from pure ionic liquids to CO2 equimolar
sys-tems,TableS1,Supplementarydata)forthethreestudiedionic liquids([emim][Tf2N],[bmim][Tf2N]and[bmim][PF6]).The
anal-ysisofmoleculardynamicsresultsreportedinthis workwillbe doneconsidering:(i)structuralmicroscopicfeatures,usingradial distribution functions (RDFs)and spatial distribution functions (SDFs), together with volume expansion upon CO2 absorption
(swellingeffect)(ii)energeticfeatures,usingintermolecular inter-actionenergies,and(iii)dynamicproperties,usingself-diffusion
coefficients.DetailedcenterofmassRDFs,andtheircorresponding coordination numbers,arereported in Figs.S4–S9, Supplemen-tary data. The main conclusion that may be inferred from the evolution of RDFs with increasing CO2 mole fraction is
Fig.6. Phaseequilibriafor[emim][Tf2N]+CO2.LinesshowPeng–Robinson
cor-relationresultswithparametersreportedinTable2,circlesshowexperimental data.Dataat298KobtainedfromRenetal.[85].Dashedpinklinesshowthe Peng–Robinsonpredictionsofmixturecriticalpoints.(Forinterpretationofthe ref-erencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthe article.)
0 4 8 12 16 20 r / Å 0 1 2 3 4 5 g( r) 0 20 40 60 80 N 0 1 2 3 4 5 g( r) 0 20 40 60 80 N 0 1 2 3 4 5 g( r) 0 20 40 60 80 N
(a) [emim][Tf
2N]
(b) [bmim][Tf
2N]
(c)
[bmim][PF
6]
Fig.7. Anion–cationcenter-of-massradialdistributionfunctions,g(r),andthe cor-respondingcoordinationnumbers,N,forxCO2+(1−x){(a)[emim][Tf2N]or(b)
[bmim][Tf2N]or(c)[bmim][PF6]}systems,at298Kand2.5MPaobtainedfrom
moleculardynamicssimulations.Continuouslinescorrespondtox=0(pureionic liquids)anddashedlinestox=0.5systems.
theabsenceof remarkablechanges in theion–ion interactions,
Figs.S4,S6,andS8(panelsa–c,Supplementarydata).Onlyvery sub-tlechangesareinferredforanion–cationRDFs,asshowninFig.7, leadingtoadecreaseinthecoordinationnumber.Neverthelessthis decreaseisalmostnegligibleinthefirstsolvationshell(∼8 ˚A)for thethreestudiedionicliquids,andthusshortandmediumrange anion–cationinteractionsarenotaffectedbythepresenceofCO2
moleculeswhen consideringconcentrationsashighas equimo-larsolutions.CO2–ionRDFsarereportedinFig.8,thestructuring
of CO2 is different around anion and cation, and also
remark-abledifferencesareinferredwhenconsidering[PF6]−and[Tf2N]−
anions.Kanakuboetal.[96]reportedaX-raydiffractionstudyof [bmim][PF6]+CO2mixturesshowingCO2moleculespreferentially
solvatingthe[PF6]−anion.Thispreferentialsolvationisconfirmed
bytheRDFsreportedinFig.8[29,64,65].Nevertheless,for[Tf2N]
containingsystems, thedifferencesof CO2 distributionsaround
anionandcationaremoresubtle.Amoredetailedpictureofthe spatialdistributionoftheinvolvedmoleculesmaybeobtainedfrom
1 2 3 4 5 g( r) 20 40 60 80 N [emim][Tf2N]+CO2 (x=0.5) [bmim][Tf2N]+CO2 (x=0.5) [bmim][PF6]+CO2 (x=0.5) 0 4 8 12 16 20 r / Å 0 1 2 3 4 g( r) 0 20 40 60 N (a)
CO
2- A
(b)CO
2- C
Fig.8. (a)CO2–anionand(b)CO2–cationcenter-of-massradialdistribution
func-tions,g(r),andthecorrespondingcoordinationnumbers,N,forx(=0.5)CO2+(1−x)
{[emim][Tf2N]or[bmim][Tf2N]or[bmim][PF6]}systems,at298Kand2.5MPa
obtainedfrommoleculardynamicssimulations.Astandsforanion,andCforcation.
SDFsreportedinFigs.9and10andFig.S10(Supplementarydata), whichshowSDFsfor{[emim][Tf2N]or[bmim][Tf2N]}+CO2
sys-temsbeingclearlydifferenttothosefor[bmim][PF6]+CO2.SDFs
aroundimidazoliumcationsshowthattheyinteractwith[Tf2N]−
anionpreferentially throughtheregionopposite tothefluorine atoms,withoutremarkablechangesbetweenpureionicliquidsand equimolarCO2solutions,Figs.9and10andFig.S10
(Supplemen-tarydata,panelsaandb).For[bmim][PF6]systems,imidazolium
cationssolvate[PF6]−anionsinthewell-knownoctahedral
distri-butionbecauseofitssphericalsymmetryandchargedistribution
[65].Nevertheless,aniondistributionaroundimidazoliumcations is very similarboth for [Tf2N]− and [PF6]−,Figs. 9 and 10 and
Fig.S10(Supplementarydata,panelsdande).Thedistributionof CO2aroundanionsisremarkabledifferentfor[Tf2N]−and[PF6]−
ions,Figs.9and10andFig.S10(Supplementarydata,panelc),and alsodifferentforthedistributionaroundcations(Figs.9and10and
Fig.S10,Supplementarydata,panelf).Thereforethepresenceof spherical[PF6]−anionleadstoremarkablechangesinthemolecular
structuringandCO2distributioninthestudiedionicliquids.
Thestructural differencesrisingfromthepresence of[PF6]−
anionincomparisonwith[Tf2N]−shouldjustifythedifferentCO2
solubility(lowerfor[PF6]−basedsystems).Severalstudieshave
analyzedtherelationshipofavailablefree spacein ionicliquids withgassolubility,andtheionicliquidvolumeexpansionupon CO2 absorption.Huangetal.[46]carriedoutsimulation studies
toanalyzethesmallpartialmolarvolumeofCO2in[bmim][PF6],
whichwasjustifiedthroughthespatialrearrangementofcavities intheionicliquid.Themostrelevantvolumetricpropertiesforthe threestudiedsystemsarereportedinFig.11.Molarvolumefollows alinearincrease withincreasingCO2 molefraction,withslopes
increasingwithincreasingalkylchainlengthonthecationfora fixedanion([Tf2N]−),andwithlowerslopesfor[PF6]−containing
Fig.9. SpatialdistributionfunctionsinxCO2+(1−x)[emim][Tf2N]systemsasafunctionofcomposition,at298Kand2.5MPaobtainedfrommoleculardynamicssimulations.
Inpanelsa–dblueandredsurfacesshow7timesaveragebulkdensity,andinpanelscandfyellowsurfacesshow6timesaveragebulkdensity.AstandsforanionandCfor cation.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)
systems, Fig. 11a. Percentage volume expansion, %Vexpansion, is
definedasthechangeinabsolutevolumeoftheionicliquid[47], eq.(9):
%Vexpansion=100×Vmix(T,P,x)−VIL(T,P0
) VIL(T,P0)
(9) where subindices mix and IL stand for the volume of IL+CO2
and IL systems, respectively. %Vexpansion reported in Fig. 11c
is larger than values obtained from experimental data [47]. Aki et al. [47] reported a percentage volume expansion of
16.8% and 14.2% at 298.15K and equimolar composition, for [bmim][PF6] and [bmim][Tf2N], respectively, whereas data
cal-culatedin this workare31% and 17.9%,respectively. Themain differences appear for [bmim][PF6], which couldrise from the
used samples for experimental measurements, as previously mentioned, and in theforcefield parameterization used in this work. Bhargava et al. [64] alsoobtained slightly larger expan-sions for CO2+[bmim][PF6] system using molecular dynamics
simulations. Nevertheless, the trends are in agreement with experimentaldata: (i)lower expansions forlarger imidazolium
Fig.10. SpatialdistributionfunctionsinxCO2+(1−x)[bmim][PF6]systemsasafunctionofcomposition,at298Kand2.5MPaobtainedfrommoleculardynamicssimulations.
Inpanelsa–dblueandredsurfacesshow7timesaveragebulkdensity,andinpanelscandfyellowsurfacesshow6timesaveragebulkdensity.AstandsforanionandCfor cation.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)
(a)
(b)
(c)
0 0.1 0.2 0.3 0.4 0.5 x(CO2) 120 160 200 240 280 320 Vm /c m 3mo l -1 CO +[emim]Tf N CO+[bmim]TfN CO+[bmim]PF 0 0.1 0.2 0.3 0.4 0.5 x(CO2) -12 -8 -4 0 V E/ cm 3mo l -1 V CO2= 65.4 ± 0.5c m3 mol-1 V CO 2= 3 6.4 ± 1.7 c m3 mol-1 V CO2= 4 9.3 ± 1.3 cm3 mol-1 0 0.1 0.2 0.3 0.4 0.5 x(CO2) 0 10 20 30 40 %Ve xp an sio nFig.11.(a)Molarvolume,Vm,(b)excessmolarvolume,VE,and(c)liquidphasevolumeexpansionuponCO2absorption,%Vexpansion,forxCO2+(1−x){[emim][Tf2N]or
[bmim][Tf2N]or[bmim][PF6]}systems,at298Kand2.5MPaobtainedfrommoleculardynamicssimulations.Inpanel(a)linesshowlinearfits,andinpanels(bandc)lines
showpolynomialfits,forguidingpurposes.Inpanel(a)wereportcalculatedCO2partialmolarvolume.
alkyl chain for a fixed anion and (ii) larger expansion for [PF6]−containingsystems.Excessmolarvolume,calculatedfrom
simulateddatausingthemethodpreviouslyproposed[97],shows largenegativevalues (upto−10.7cm3mol−1 for [bmim][Tf2N],
Fig.11b),whichisinagreementwiththelowexpansionuponCO2
absorptionandwiththeabsorptionmechanismproposedbyHuang etal.[46].
Intermolecular interaction energies are analyzed in
Figs.12and13andFig.S11(Supplementarydata).Theenergyof thestudiedsystemsiscalculatedinthisworkusingtheforcefield
expressionreportedinEq.(10):
E=
bonds kr(r−req)2+ angles k(−eq)2+Etor + i j 4εij ij rij 12 − ij rij 6+ qiqje2 4ε0rij (10)
where the first three terms correspond to bonds, angles and dihedralcontribution,and thelasttwo termstointermolecular
0 0.1 0.2 0.3 0.4 0.5 x(CO2) -20 -16 -12-2 -1.5 -1 Einte r / kJ mo l -1 0.1 0.2 0.3 0.4 0.5 x(CO2) -18 -15 -12 -4 -2 0 Einte r / kJ mo l -1 0 0.1 0.2 0.3 0.4 0.5 x(CO2) -2000 -1800 -1600 600 800 1000 Einte r / kJ mo l -1 0.1 0.2 0.3 0.4 0.5 x(CO2) -12 -8 -4 0 4 8 12 Einte r / kJ mo l -1 (a) (b) (c) (d) A-A A-C C-C A-CO2 CO2-CO2 C-CO2
coulombic
Lennard-Jones
ion-CO 2 ion-ion0 0.1 0.2 0.3 0.4 0.5 x(CO2) -2800 -2600 -2400 -2200 600 800 1000 1200 Einte r / kJ mo l -1 0.1 0.2 0.3 0.4 0.5 x(CO2) -16 -12 -8 -4 0 4 Einte r / kJ mo l -1
(a)
(b)
(c)
(d)
A-A A-C C-C A-CO2 CO2-CO2 C-CO2coulombic
Lennard-Jones
ion-CO 2 ion-ion 0 0.1 0.2 0.3 0.4 0.5 x(CO2) -8 -4 0 4 8 Einte r / kJ mo l -1 0.1 0.2 0.3 0.4 0.5 x(CO2) -10 -8 -6 -4 -2 0 Einte r / kJ mo l -1Fig.13. SplitofintermolecularinteractionenergiesintheliquidphaseofxCO2+[bmim][PF6]at298Kand2.5MPaobtainedfrommoleculardynamicssimulations.
energies, which are split in Lennard–Jones and coulombic contributions. For [emim][Tf2N] and [bmim][Tf2N] systems,
intermolecularenergiesareverysimilar,Fig.12andFig.S11 (Sup-plementarydata,panelsaandb),althoughbyincreasingthealkyl chainlengthonimidazoliumcation,energyforion–ioninteractions decreases(inabsolutevalue).Forexample,forpureionicliquids coulombicanion–cationenergydecreaseina15%causedthe pres-enceofalargeralkylchain,whichleadstoacertaindegreeofsteric hindranceweakeninganion–cation interaction. Withincreasing CO2 concentration anion–cation coulombic interaction energy
interactiondecreases(inabsolutevalue)inanalmostlinearway (15%and12%for[emim][Tf2N]and[bmim][Tf2N],respectively).
VariationsinLennard–Jonescontributionsforion–ioninteractions arealmostnegligiblewithincreasingCO2molefraction.CO2–anion
andCO2–cationcoulombiccontributionsshowalmostthesame
valuesbutwithoppositesigns,whereastheLennard–Jones con-tributionsarelargerfortheinteractionswiththe[Tf2N]−anion,but
CO2–cationinteractions arealsoimportant.Forthe[bmim][PF6]
ionicliquid,Fig.13,ion–ioninteractionenergiesarelargerthanfor [bmim][Tf2N],forexampleinpureionicliquidsanion–cation
inter-actionenergiesare53%larger(inabsolutevalue)in[bmim][PF6],
ancation–cationinteractionsarealso54% larger.Ion–ion inter-actionenergies decreaseslinearlywithincreasingCO2 amounts
for[bmim][PF6],i.e.anion–cationenergydecreasesa8%ongoing
frompureionicliquidtoequimolarCO2solutions,Fig.13a,which
ishalfofthedecreasingfor[emim][Tf2N]and[bmim][Tf2N]
sys-tems.Therefore,thelargeranion–cationinteractionenergiesfor [bmim][PF6]systemsarerelatedwiththelowerCO2solubilityin
thisionicliquid,theabsorbedCO2isnotabletoweakenitas
effec-tivelyasfor[Tf2N]−containingsystems.Therefore,thisbehavior
togetherwiththelargerexpansionvolumein[bmim][PF6](fitting
CO2 moleculesrequiresmorecavitieschanges)wouldjustifythe
effectof[PF6]− aniononCO2 solubilityin [bmim][PF6]in
com-parisonwith[Tf2N]−-based ILs.Furthermore,from anenergetic
viewpointtheinteractionofCO2withionsin[bmim][PF6]isalso
differenttothosecalculatedin[Tf2N]−systems,showingstronger
ion–CO2coulombicandLennard–Jonesinteractionsinthecaseof
the[bmim][PF6],Fig.13(panelscandd).Nevertheless,although
ion–CO2interactionsarestrongerfor[bmim][PF6],whichshould
beafactortoincreaseCO2solubilityincomparisonwith[Tf2N]−
systems,thedifferencesarenotveryremarkable,andthusthemain effectscontrollingabsorptionrisefromtheabilityofionicliquidto fitCO2molecules(poorerin[PF6]−containingsystems,thereforea
factorloweringsolubility)andtheabilityofCO2moleculesto
dis-ruptionicliquidstructuring(alsopoorerin[PF6]−basedsystems).
Self-diffusioncoefficients,D,werecalculatedusingtheEinstein relationship.The reliability of calculated D values wasinferred from the ˇ parameter [98,99], which should be ˇ=1 for fully diffusiveregime.[emim][Tf2N]and[bmim][Tf2N]aremoderately
viscous fluids(34.1 and 51.0mPas, for [emim][Tf2N] [100]and
[bmim][Tf2N][102],respectivelyat298.15Kand0.1MPa),whereas
viscosity for [bmim][PF6] is remarkably larger (270.9mPas at
298.15K and 0.1MPa) [101]. Therefore, fully diffusive regime wouldbereachedfor shortersimulation timesin [emim][Tf2N]
and[bmim][Tf2N]thanin[bmim][PF6].Nevertheless,thelength
of the simulations allows reaching fully diffusive regime, and thus, for [emim][Tf2N] and [bmim][Tf2N] systems a value of
ˇ>0.99 wasused forDcalculations and ˇ>0.95 in thecase of [bmim][PF6]systems.TheresultsreportedinFig.14showlarger
(a)
(b)
(c)
0.1 0.2 0.3 0.4 0.5 x(CO2) 0 1 2 3 4 1 0 9D / m 2s -1 0 0.1 0.2 0.3 0.4 0.5 x(CO2) 0 0.1 0.2 0.3 10 9D /m 2s -1 [EMIM][TfN] [BMIM][TfN] [BMIM][PF ] 0 0.1 0.2 0.3 0.4 0.5 x(CO2) 0 0.1 0.2 0.3 10 9D /m 2s -1anion
cation
CO
2Fig.14.Self-diffusioncoefficients,D,for(a)anion,(b)cationand(c)CO2inxCO2+(1−x){[emim][Tf2N]or[bmim][Tf2N]or[bmim][PF6]}systems,at298Kand2.5MPa
obtainedfrommoleculardynamicssimulations.Linesshowpolynomialfitsforguidingpurposes.
experimentalmeasurementsreportedintotheliterature[102,103], andDvaluesforCO2moleculesareanorderofmagnitudelarger
than those for thecorrespondingions. Ion Dvalues follow the ordering[emim][Tf2N]>[bmim][Tf2N]>[bmim][PF6],which isin
agreementwiththeviscosityvaluesandalsowiththeinteraction energies reportedin Figs. 12 and 13 and Fig.S11 (Supplemen-tarydata).CO2 absorptionleadstoa non-linear increaseof ion
D values with increasing mole fraction: (i) up to x(CO2)∼0.3
weakvariations are inferred and (ii) for x(CO2)>0.3 a steepest
increaseisobtained;Fig.14(panelsaandb).Therefore,thefaster the ionic diffusion, the larger the CO2 solubility, although the
effectofabsorbedCO2 onionicdiffusionisonlyremarkablefor
largerCO2 molefractions. Dvalues for CO2 molecules increase
withincreasingmolefractionwiththelargervaluesobtainedfor [bmim][Tf2N].
4. Conclusions
High-pressure absorption measurements of CO2 in selected
classicalimidazolium-basedionicliquidswerecarriedoutusing new state-of-the-art apparatus up to 20MPa. A remarkable swellingeffectuponCO2absorptionwasobservedfrompressures
higherthan10MPa,whichleadedtoanapparentdecreaseofthe CO2 absorbed amount.Amethodbased ontheuseofavailable
experimentalvolumetricdatafortheCO2+ionicliquidsystemsis
usedtocorrectswellingeffect.Thecorrectedresultsareingood agreementwithmostoftheavailableliteratureexperimentaldata. High-pressure absorption data were successfully correlated using Soave–Redlich–Kwong and Peng–Robinson equations of statecoupledwithbi-parametricvanderWaalsmixingrule.The obtainedbinaryinteractionparametersleadtotheappearanceof mixturecriticalpoints,whichisnotinagreementwiththeavailable literatureinformation.
Classicalmoleculardynamicssimulationswereusedtoanalyze thenanoscopicstructuralbehaviorofCO2+ionicliquidsmixed
sys-temsasa functionofmixturecomposition.Thereportedresults showthedifferentstructuringofCO2aroundanionsandcations,
withthemostimportanteffectofaniontypeonCO2absorption.The
anioneffectisexplainedconsideringthelargerexpansionuponCO2
absorptionfor[PF6]−containingsystems.Fromtheviewpointof
intermolecularinteractionenergies,anion–cationinteraction ener-giesareremarkablyfor[bmim][PF6]incomparisonwith[Tf2N]−
containingsystems,whichleadedtolowerCO2absorptionabilities
for[PF6]−containingsystems.Theanalysisofmixtures’dynamic
propertiesshowedadirectrelationshipbetweenionicdiffusionand CO2solubility.
Theresultsreportedinthisworkshowtheremarkable infor-mation,bothformmacroandmicroscopicviewpoints,thatmay inferred from high pressure absorption measurements coupled withmolecularsimulations
Listofsymbols
[bmim][PF6] 1-butyl-3-methylimidazoliumhexafluophosphate
[emim][Tf2N] 1-ethyl-3-methylimidazolium
bis[trifluoromethylsulfonyl]imide [bmim][Tf2N] 1-butyl-3-methylimidazolium
bis[trifluoromethylsulfonyl]imide EOS equationofstate
IL ionicliquid
PR Peng–Robinsonequationofstate RDF radialdistributionfunction SDF spatialdistributionfunction
SRK Soave–Redlich–Kwongequationofstate %AARD percentageabsoluteaveragerelativedeviation D self-diffusioncoefficient
dgas bensityofthegas,Eq.(1)
dS-A densityofILsampleplusabsorbedgas,Eq.(2)
m experimentalreadings,Eq.(2)
k12 andl12binaryinteractionparameters
mads adsorptionamount,Eq.(1)
mA massofabsorbedgas,Eq.(2)
mS massofionicliquid,Eq.(2)
msample massofthesample,Eq.(1)
msink massofthesinker,Eq.(1)
mSK massofsinker,Eq.(2)
N coordinationnumbersfromRDFs
Vm molarvolume,Vsamplevolumeofthesample,Eq.(1)
VS-A volumeofILsampleplusabsorbedgas,Eq.(2)
Vsinker volumeofthesinker,Eq.(1)
Wbuoy,sample buoyancycorrectionduetosample,Eq.(1)
Wbuoy,sink buoyancycorrectionduetosinker,Eq.(1)
WSK buoyancycorrectionduetosinker,Eq.(2)
WS-A combinedbuoyancy correctionduetoionicliquid and
absorbedgas,Eq.(2) Acknowledgements
ThispublicationwasmadepossiblebyNPRPgrant# [09-739-2-284]fromtheQatarNationalResearchFund(amemberofQatar
Foundation).Thestatementsmadehereinaresolelythe responsi-bilityoftheauthors.
AppendixA. Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.fluid.2012.10.022.
References
[1]P.Scovazzo,D.Camper,J.Kieft,J.Poshusta,C.Koval,R.Noble,Ind.Eng.Chem. Res.43(2004)6855–6860.
[2]J.G.Huddleston,A.E.Visser,W.M.Reichert,H.D.Willauer,G.A.Broker,R.D. Rogers,GreenChem.3(2003)156–164.
[3]J.N.A.CanongiaLopes,A.A.H.Padua,J.Phys.Chem.B110(2006)3330–3335. [4]A.A.H.Padua,M.F.CostaGomes,J.N.A.CanongiaLopes,Acc.Chem.Res.40(40)
(2007)1087–1096.
[5]D. Kerle, R. Ludwig, A.Geiger, D. Paschek,J.Phys. Chem.B 113 (2009) 12727–12735.
[6]X.Han,D.W.Armstrong,Acc.Chem.Res.40(2007)1079–1086.
[7]L.P.N. Rebelo,J.N.A. CanongiaLopes,J.M.S.S. Esperanca,H.J.R.Guedes, J. Lachwa,V.Najdanovic-Visak,Z.P.Visak,Acc.Chem.Res.40(2007)1114–1121. [8]IonicLiquidsFromKnowledgetoApplication,vol.132,AmericanChemical
Society,2010.
[9]M.Freemantle,Chem.Eng.News78(2000)37–50. [10]M.Freemantle,Chem.Eng.News82(2004)44–49. [11]R.Renner,Environ.Sci.Technol.35(2001)410A–413A. [12]D.Rochefort,J.Am.Chem.Soc.131(2009),17031-17031.
[13]S.Aparicio,M.Atilhan,F.Karadas,Ind.Eng.Chem.Res.49(2010)9580–9595. [14]F.Karadas,M.Atilhan,S.Aparicio,EnergyFuel24(2010)5817–5828. [15]J.Zhang,J.Sun,X.Zhang,Y.Zhao,S.Zhang,GreenhouseGasSci.Technol.1
(2011)142–159.
[16]J.L. Anthony, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, E.J. Maginn, J.F. Brennecke, Phase equilibria of gases and liquids with 1-butyl-3-methylimidazoliumtetrafluoroborateIonicLiquidsasGreenSolvents,vol. 856,AmericanChemicalSociety,2003,p.110.
[17]J.L. Anthony, E.J. Maginn, J.F. Brennecke, Gas solubilities in 1-butyl-3-methylimidazoliumhexafluorophosphateIonicLiquids,vol.818,American ChemicalSociety,2002,p.260.
[18]J.L. Anthony, E.J. Maginn, J.F. Brennecke, J. Phys. Chem. B 106 (2002) 7315–7320.
[19]A.M. Scurto,S.N.V.K.Aki, J.F. Brennecke, J. Am. Chem.Soc. 124 (2002) 10276–10277.
[20]J.F.Brennecke,B.E.Gurkan,J.Phys.Chem.Lett.1(2010)3459–3464. [21]M. Ramdin,T.W.de Loos, T.J.H. Vlugt,Ind. Eng. Chem. Res.51 (2012)
8149–8177.
[22]A.Blasig,J.Tang,X.Hu,Y.Shen,M.Radosz,FluidPhaseEquilibr.256(2007) 75–80.
[23]A.Blasig,J.Tang,X.Hu,S.P.Tan,Y.Shen,M.Radosz,Ind.Eng.Chem.Res.46 (2007)5542–5547.
[24]T.Fieback,F.Dreisbach,M.Petermann,R.Span,E.Weidner,FluidPhase Equi-libr.301(2011)217–224.
[25]J.Kumełan,A.Pérez-SaladoKamps,D.Tuma,G.Maurer,J.Chem.Thermodyn. 38(2006)1396–1401.
[26]L.A.Blanchard,Z.Gu,J.F.Brennecke,J.Phys.Chem.B105(2001)2437–2444. [27]Y.S.Kim,W.Y.Choi,J.H.Jang,K.P.Yoo,C.S.Lee,FluidPhaseEquilibr.228–229
(2005)439–445.
[28]J.L.Anthony,J.L.Anderson,E.J.Maginn,J.F.Brennecke,J.Phys.Chem.B109 (2005)6366–6374.
[29]C.Cadena,J.L.Anthony,J.K.Shah,T.I.Morrow,J.F.Brennecke,E.J.Maginn,J. Am.Chem.Soc.126(2004)5300–5308.
[30]X.Zhang,Z.Xhang,H.Dong,Z.Zhao,S.Zhang,Y.Huang,EnergyEnviron.Sci. 5(2012)6668–6681.
[31]P.J.Carvalho,V.H.Alvarez,J.J.B.Machado,J.Pauly,J.L.Daridon,I.M.Marrucho, M.Aznar,J.A.P.Coutinho,J.Supercrit.Fluid48(2009)99–107.
[32]P.J.Carvalho,V.H.Alvarez,I.M.Marrucho,M.Aznar,J.A.P.Coutinho,J. Super-crit.Fluid52(2010)258–265.
[33]J.Jacquemin,M.F.CostaGomes,P.Husson,V.Majer,J.Chem.Thermodyn.38 (2006)490–502.
[34]J.E.Kim,J.S.Lim,J.W.Kang,FluidPhaseEquilibr.306(2011)251–255. [35]J.Kumelan,A.Perez-SaladoKamps,D.Tuma,G.Maurer,J.Chem.Thermodyn.
38(2006)1396–1401.
[36]J.Kumelan,A.Perez-SaladoKamps,D.Tuma,G.Maurer,FluidPhaseEquilibr. 260(2007)3–8.
[37]C.Myers,H.Pennline,D.Luebke,J.Ilconich,J.K.Dixon,E.J.Maginn,J.F. Bren-necke,J.Membr.Sci.322(2008)28–31.
[38]A.M.Schilderman,S.Raeissi,C.J.Peters,FluidPhaseEquilibr.260(2007) 19–22.
[39]A.N.Soriano,B.T.DomaJr.,M.H.Li,J.TaiwanInst.Chem.Eng.40(2009) 387–393.
[40]A.N.Soriano,B.T.DomaJr.,M.H.Li,J.Chem.Thermodyn.41(2009)525–529. [41]S.N. Baker, G.A. Baker, M.A. Kane,F.V. Bright, J. Phys.Chem. B (2001)
9663–9668.
[42]Q.Zhou,L.S.Wang,H.P.Chen,J.Chem.Eng.Data51(2006)905–908. [43]H.C.Chang,J.C.Jiang,C.Y.Chang,J.C.Su,C.H.Hung,Y.C.Liou,S.H.Lin,J.Phys.
Chem.B112(2008)4351–4356.
[44]L.A.Blanchard,D.Hancu,E.J.Beckman,J.F.Brennecke,Nature399(1999) 28–29.
[45]Y.Zhang,J.Y.G.Chan,EnergyEnviron.Sci.3(2010)408–417.
[46]X.Huang, C.J.Margulis,Y. Li, B.J.Berne,J. Am. Chem.Soc.125 (2005) 17842–17851.
[47]S.N.V.K.Aki,B.R.Mellein,E.M.Saurer,J.F.Brennecke,J.Phys.Chem.B108 (2004)20355–20365.
[48]E.D.Bates,R.D.Mayton,I.Ntai,J.H.J.Davis,J.Am.Chem.Soc.124(2002) 926–927.
[49]X.Li,M.Hou,Z.Zhang,B.Han,G.Yang,X.Wang,L.Zou,GreenChem.10(2008) 879–884.
[50]L.M.Galan,Sanchez,G.W.Meindersma,A.B.Haan,Chem.Eng.Res.Des.85 (2007)31–39.
[51]P.Sharma,S.D.Park,K.T.Park,S.C.Nam,S.K.Jeong,Y.Yoon,I.H.Baek,Chem. Eng.J.193–194(2012)267–275.
[52]J.Palomar,M.Gonzalez,A.Polo,F.Rodriguez,Ind.Eng.Chem.Res.50(2011) 3452–3463.
[53]D.M.D’Alessandro, B. Smit, J.R.Long, Angew. Chem.Int.Ed. 49(2010) 6058–6082.
[54]S.Mokhatab,W.A.Poe,M.J.Economides,WorldOil227(2006)113. [55]G.T.Rochelle,Science325(2009)1652–1654.
[56]A.J.Kidnay,W.R.Parrish,FundamentalsofNaturalGasProcessing,CRCPress, 2006.
[57]Y.Belmabkhout,Meas.Sci.Technol.15(2004)848–858. [58]J.Lu,F.Yan,J.Texter,Prog.Polym.Sci.34(2009)431–448.
[59]M.Petermann,T.Weissert,S.Kareth,H.W.Losch,F.Dreisbach,J.Supercrit. Fluid45(2008)156–160.
[60]N.M.Yunus,M.I.Abdul,Z.Man,M.A.Bustam,T.Murugesan,Chem.Eng.J. 189–190(2012)94–100.
[61]M.G.Freire,C.M.S.S.Neves,I.M.Marrucho,J.A.P.Coutinho,A.M.Fernandes,J. Phys.Chem.A114(2010)3744–3749.
[62]K.N. Marsh, J.F. Brennecke, R.D. Chirico, M. Frenkel, A. Heintz, J.W. Magee,C.J.Peters,L.P.N.Rebelo,K.R.Seddon,PureAppl.Chem.81(2009) 781–790.
[63]J.Deschamps,M.F.CostaGomes,A.A.H.Padua,ChemPhysChem5(2004) 1049–1052.
[64]B.L.Bhargava,A.C.Krishna,S.Balasubramanian,J.AIChE54(2008)2971–2980. [65]B.L.Bhargava,S.Balasubramanian,J.Phys.Chem.B111(2007)4477–4487. [66]D.Kerle, R.Ludwig,A.Geiger,D. Paschek,J. Phys.Chem.B 113(2009)
12727–12735.
[67]Y.Shim,H.J.Kim,J.Phys.Chem.B114(2010)10160–10170.
[68]Z.G.Yue,X.M.Liu,Y.L.Zhao,X.C.Zhang,X.M.Lu,S.J.Zhang,ChineseJ.Proc. Eng.11(2011)652–659.
[69]A.F. Ghobadi, V. Taghikhani, J.R. Elliott, J. Phys. Chem. B 115 (2011) 13599–13607.
[70]J.D.Holbrey,K.R.Seddon,CleanTechnol.Environ.Policy1(1999)223–236. [71]S.Zulfiqar,F.Karadas,J.Park,E.Deniz,G.D.Stucky,Y.Jung,M.Atilhan,C.T.
Yavuz,EnergyEnviron.Sci.4(2011)4528–4531.
[72]F.Karadas,C.T.Yavuz,S.Zulfiqar,S.Aparicio,G.D.Stucky,M.Atilhan,Langmuir 27(2011)10642–10647.
[73]E.W.Lemmon,M.L.Huber,M.O.McLinden,NISTStandardReferenceDatabase 23:ReferenceFluidThermodynamicandTransportProperties-REFPROP, Ver-sion9.0,NationalInstituteofStandardsandTechnology,StandardReference DataProgram,Gaithersburg,MD,2010.
[74]A.P.Lyubartsev,A.Laaksonen,Comput.Phys.Commun.128(2000)565–589. [75]W.G.Hoover,Phys.Rev.A31(1985)1695–1697.
[76]M.Tuckerman,B.J.Berne,G.J.Martyna,J.Chem.Phys.97(1992)1990–2001. [77]U.Essmann,L.Perera,M.L.Berkowitz,T.Darden,L.Hsing,L.G.Pedersen,J.
Chem.Phys.103(1995)8577–8593.
[78]T.I.Morrow,E.J.Maginn,J.Phys.Chem.B106(2002)12807–12813. [79]N.Y.Van-Oanh,C.Houriez,B.Rousseau,Phys.Chem.Chem.Phys.12(2010)
930–936.
[80]W.Shi,E.J.Maginn,J.Phys.Chem.B112(2008)2045–2055. [81]T.M.Fieback,F.Dreisbach,Ind.Eng.Chem.Res.50(2011)7049–7055. [82]A.Rajendran,B.Bonavoglia,N.Forrer,G.Storti,M.Mazzotti,M.Morbidelli,
Ind.Eng.Chem.Res.44(2004)2549–2560.
[83]I.SakellariosNikolaos,IonicLiquidsIIIA:Fundamentals,Progress,Challenges, andOpportunities,vol.901,AmericanChemicalSociety,2005.
[84]I.SakellariosNikolaos,G.KazarianSergei,InsituIRspectroscopicstudyofthe CO2inducedswellingofionicliquidmediaIonicLiquidsIIIA:Fundamentals,
Progress,Challenges,andOpportunities,vol.901,AmericanChemicalSociety, 2005,p.89.
[85]W.Ren,B.Sensenich,A.M.Scurto,J.Chem.Thermodyn.42(2010)305–311. [86]Z.Liu,W.Wu,B.Han,Z.Dong,G.Zhao,J.Wang,T.Jiang,G.Yang,Chem.Eur.
J.9(2003)3897–3903.
[87]S.Zhang,X.Yuan,Y.Chen,X.Zhang,J.Chem.Eng.Data50(2005)1582–1585. [88]M.B.Shiflett,A.Yokozeki,Ind.Eng.Chem.Res.44(2005)4453–4464. [89]J.Kumelan,A.Perez-SaladoKamps,D.Tuma,G.Maurer,J.Chem.Eng.Data51
(2006)1802–1807.
[90]A.P.S.Kamps,D.Tuma,J.Xia,G.Maurer,J.Chem.Eng.Data48(2003)746–749. [91]S.Raeissi,C.J.Peters,J.Chem.Eng.Data54(2009)382–386.
[92]B.C.Lee,S.L.Outcalt,J.Chem.Eng.Data51(2006)892–897. [93]A.Shariati,C.J.Peters,J.Supercrit.Fluid34(2005)171–176.
[94]H.Orbey,S.Sandler,ModelingVapor–LiquidEquilibria:CubicEquationsof StateandtheirMixingRules,CambridgeUniversityPress,Cambridge,1998. [95]J.O.Valderrama,P.A.Robles,Ind.Eng.Chem.Res.46(2007)1338–1344. [96]M.Kanakubo,T.Umecky,Y.Hiejima,T.Aizawa,H.Nanjo,Y.Kameda,J.Phys.
Chem.B109(2005)13847–13850.
[97]S.Aparicio,M.Atilhan,M.Khraisheh,R.Alcalde,J.Fernandez,J.Phys.Chem. B115(2011)12487–12498.
[98]S.Aparicio,M.Atilhan,M.Khraisheh,R.Alcalde,J.Phys.Chem.B115(2011) 12473–12486.
[99]M.G.DelPopolo,G.A.Voth,J.Phys.Chem.B108(2004)1744–1752. [100]A.Ahosseini,A.M.Scurto,Int.J.Thermophys.29(2008)1222–1243. [101]K.R. Harris, M. Kanakubo, L.A. Woolf, J. Chem. Eng. Data 52 (2007)
1080–1085.
[102]H.Tokuda,K.Hayamizu,K.Ishii,M.A.B.H.Susan,M.Watanabe,J.Phys.Chem. B108(2004)16593–16600.
[103]H.Tokuda,K.Hayamizu,K.Ishii,M.A.B.H.Susan,M.Watanabe,J.Phys.Chem. B109(2005)6103–6110.